首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
In spite of research efforts to develop vaccines against the causative agent of human malaria, Plasmodium falciparum, effective control remains elusive. The predominant vaccine strategy focuses on targeting parasite blood stages in the vertebrate host. An alternative approach has been the development of transmission-blocking vaccines (TBVs). TBVs target antigens on parasite sexual stages that persist within the insect vector, anopheline mosquitoes, or target mosquito midgut proteins that are presumed to mediate parasite development. By blocking parasite development within the insect vector, TBVs effectively disrupt transmission and the resultant cascade of secondary infections. Using a mosquito midgut-specific mouse monoclonal antibody (MG96), we have partially characterized membrane-bound midgut glycoproteins in Anopheles gambiae and Anopheles stephensi. These proteins are present on the microvilli of midgut epithelial cells in both blood-fed and unfed mosquitoes, suggesting that the expression of the protein is not induced as a result of blood feeding. MG96 exhibits a dose-dependent blocking effect against Plasmodium yoelii development in An. stephensi. We achieved 100% blocking of parasite development in the mosquito midgut. Preliminary deglycosylation assays indicate that the epitope recognized by MG96 is a complex oligosaccharide. Future investigation of the carbohydrate epitope as well as gene identification should provide valuable insight into the possible mechanisms of ookinete attachment and invasion of mosquito midgut epithelial cells.  相似文献   

3.
During mosquito transmission, malaria ookinetes must cross a chitin-containing structure known as the peritrophic matrix (PM), which surrounds the infected blood meal in the mosquito midgut. In turn, ookinetes produce multiple chitinase activities presumably aimed at disrupting this physical barrier to allow ookinete invasion of the midgut epithelium. Plasmodium chitinase activities are demonstrated targets for human and avian malaria transmission blockade with the chitinase inhibitor allosamidin. Here, we identify and characterize the first chitinase gene of a rodent malaria parasite, Plasmodium berghei. We show that the gene, named PbCHT1, is a structural ortholog of PgCHT1 of the avian malaria parasite Plasmodium gallinaceum and a paralog of PfCHT1 of the human malaria parasite Plasmodium falciparum. Targeted disruption of PbCHT1 reduced parasite infectivity in Anopheles stephensi mosquitoes by up to 90%. Reductions in infectivity were also observed in ookinete feeds-an artificial situation where midgut invasion occurs before PM formation-suggesting that PbCHT1 plays a role other than PM disruption. PbCHT1 null mutants had no residual ookinete-derived chitinase activity in vitro, suggesting that P. berghei ookinetes express only one chitinase gene. Moreover, PbCHT1 activity appeared insensitive to allosamidin inhibition, an observation that raises questions about the use of allosamidin and components like it as potential malaria transmission-blocking drugs. Taken together, these findings suggest a fundamental divergence among rodent, avian, and human malaria parasite chitinases, with implications for the evolution of Plasmodium-mosquito interactions.  相似文献   

4.
Malaria parasite transmission-blocking control strategies within the mosquito vector require an adequate understanding of the parasite mosquito interaction at the molecular level. The ookinete P25-P28 surface proteins are required for the transition from ookinete to oocyst in the mosquito midgut; however, their respective molecular interactions in the mosquito are largely unknown. We used recombinant Pvs25 and Pvs28 as probes for identification of potential Anopheles albimanus midgut ligands. A 50 kDa protein interacted with Pvs25 but not with Pvs28 in blot overlay assays. This protein was identified as calreticulin by LS MS and was detected in membrane, but not in soluble midgut protein extracts. Calreticulin was detected in An. albimanus midgut microvilli by immunofluorescence analysis. The An. albimanus calreticulin cDNA was cloned and recombinant calreticulin was shown to interact with recombinant Pvs25 in overlay and co-immunoprecipitation assays, confirming the interaction of the two proteins. The Pvs25-calreticulin interaction in vivo could represent a potential target for developing transmission blocking strategies based on interfering the parasite-midgut interaction.  相似文献   

5.
6.
Pore-forming proteins are employed by many pathogens to achieve successful host colonization. Intracellular pathogens use pore-forming proteins to invade host cells, survive within and productively interact with host cells, and finally egress from host cells to infect new ones. The malaria-causing parasites of the genus Plasmodium evolved a number of life cycle stages that enter and replicate in distinct cell types within the mosquito vector and vertebrate host. Despite the fact that interaction with host-cell membranes is a central theme in the Plasmodium life cycle, little is known about parasite proteins that mediate such interactions. We identified a family of five related genes in the genome of the rodent malaria parasite Plasmodium yoelii encoding secreted proteins all bearing a single membrane-attack complex/perforin (MACPF)-like domain. Each protein is highly conserved among Plasmodium species. Gene expression analysis in P. yoelii and the human malaria parasite Plasmodium falciparum indicated that the family is not expressed in the parasites blood stages. However, one of the genes was significantly expressed in P. yoelii sporozoites, the stage transmitted by mosquito bite. The protein localized to the micronemes of sporozoites, organelles of the secretory invasion apparatus intimately involved in host-cell infection. MACPF-like proteins may play important roles in parasite interactions with the mosquito vector and transmission to the vertebrate host.  相似文献   

7.
To initiate invasion of the mosquito midgut, Plasmodium ookinetes secrete chitinolytic activity to penetrate the peritrophic matrix surrounding the blood meal. While ookinetes of the avian malaria parasite Plasmodium gallinaceum appear to secrete products of two chitinase genes, to date only one chitinase gene, PfCHT1, has been identified in the nearly completed Plasmodium falciparum strain 3D7 genome database. To test the hypothesis that the single identified chitinase of P. falciparum is necessary for ookinete invasion, the PfCHT1 gene was disrupted 39 bp upstream of the stop codon. PfCHT1-disrupted parasites had normal gametocytogenesis, exflagellation, and ookinete formation but were markedly impaired in their ability to form oocysts in Anopheles freeborni midguts. Confocal microscopy demonstrated that the truncated PfCHT1 protein was present in mutant ookinetes but that the concentration of mutant PfCHT1 within the apical end of the ookinetes was substantially reduced. These data suggest that full-length PfCHT1 is essential for intracellular trafficking and secretion and that the PfCHT1 gene product is necessary for ookinetes to invade the mosquito midgut.  相似文献   

8.
The mosquito-invasive form of the malarial parasite, the ookinete, develops numerous secretory organelles, called micronemes, in the apical cytoplasm. Micronemal proteins are thought to be secreted during midgut invasion and to play a crucial role in attachment and motility of the ookinete. We found a novel ookinete micronemal protein of rodent malarial parasite Plasmodium berghei, named P. berghei von Willebrand factor A domain-related protein (PbWARP), and report it here as a putative soluble adhesive protein of the ookinete. The PbWARP gene contained a single open reading frame encoding a putative secretory protein of 303 amino acids, with a von Willebrand factor type A module-like domain as a main component. Western blot analysis demonstrated that PbWARP was firstly produced 12 h after fertilization by maturing ookinetes as SDS-resistant complexes. Recombinant PbWARP produced with a baculovirus system also formed SDS-resistant high-order oligomers. Immuno-electron microscopic studies showed that PbWARP was randomly distributed in the micronemes. PbWARP homologues also exist in human malarial parasites, Plasmodium falciparum and Plasmodium vivax. Highly conserved primary structures of PbWARP homologues among these phylogenetically distant Plasmodium species suggest their functional significance and the presence of a common invasion mechanism widely utilized throughout Plasmodium parasites.  相似文献   

9.
Plasmodium ookinetes secrete chitinases to penetrate the acellular, chitin-containing peritrophic matrix of the mosquito midgut en route to invasion of the epithelium. Chitinases are potentially targets that can be used to block malaria transmission. We demonstrate here that chitinases of Plasmodium falciparum and P. gallinaceum are concentrated at the apical end of ookinetes. The chitinase PgCHT1 of P. gallinaceum is present within ookinete micronemes and subsequently becomes localized in the electron-dense area of the apical complex. These observations suggest a pathway by which ookinetes secrete proteins extracellularly.  相似文献   

10.
Anopheles gambiae is the major African vector of Plasmodium falciparum, the most deadly species of human malaria parasite and the most prevalent in Africa. Several strategies are being developed to limit the global impact of malaria via reducing transmission rates, among which are transmission-blocking vaccines (TBVs), which induce in the vertebrate host the production of antibodies that inhibit parasite development in the mosquito midgut. So far, the most promising components of a TBV are parasite-derived antigens, although targeting critical mosquito components might also successfully block development of the parasite in its vector. We previously identified A. gambiae genes whose expression was modified in P. falciparum-infected mosquitoes, including one midgut carboxypeptidase gene, cpbAg1. Here we show that P. falciparum up-regulates the expression of cpbAg1 and of a second midgut carboxypeptidase gene, cpbAg2, and that this up-regulation correlates with an increased carboxypeptidase B (CPB) activity at a time when parasites establish infection in the mosquito midgut. The addition of antibodies directed against CPBAg1 to a P. falciparum-containing blood meal inhibited CPB activity and blocked parasite development in the mosquito midgut. Furthermore, the development of the rodent parasite Plasmodium berghei was significantly reduced in mosquitoes fed on infected mice that had been immunized with recombinant CPBAg1. Lastly, mosquitoes fed on anti-CPBAg1 antibodies exhibited reduced reproductive capacity, a secondary effect of a CPB-based TBV that could likely contribute to reducing Plasmodium transmission. These results indicate that A. gambiae CPBs could constitute targets for a TBV that is based upon mosquito molecules.  相似文献   

11.
12.
The development of transmission-blocking vaccines is one approach to malaria control. To identify novel Plasmodium zygote- and ookinete-secreted proteins as targets of blocking malaria transmission, monoclonal antibodies (MAbs) were produced against parasite-secreted proteins found in Plasmodium gallinaceum ookinete culture supernatants. Four MAbs-1A6, 2A5, 2B5, and 4B6-were identified that bound to P. gallinaceum zygotes and ookinetes in diverse patterns in terms of spatial localization on parasites, time course of antigen expression, and Western immunoblot patterns. MAbs 2A5 and 4B6 recognized more than one protein band as detected by Western immunoblot of P. gallinaceum ookinete supernatants. Beginning at 0 h postfertilization, MAb 2A5 recognized a diverse set of antigens; at 10 h postfertilization, MAb 4B6 recognized several antigens as well. MAb 1A6 recognized a single approximately 17-kDa protein, and 2B5 recognized a single approximately 32-kDa protein at 15 h postfertilization. In membrane feeding assays to assess the effect of these MAbs on P. gallinaceum infectivity for Aedes aegypti mosquitoes, the addition of MAbs 1A6 and 2B5 to infectious blood meals significantly inhibited oocyst development in the mosquito midgut. In contrast, MAb 2A5 seemed to enhance infectivity. These results demonstrate that Plasmodium ookinetes secrete proteins (in addition to previously characterized chitinases) that may be targets for blocking malaria transmission. Future investigation of ookinete-secreted neutralization-sensitive molecules should provide valuable insight into mechanisms by which ookinetes exit the blood meal, penetrate and transverse the peritrophic matrix, and invade the mosquito midgut epithelium.  相似文献   

13.
Malaria parasites express a broad repertoire of proteins whose expression is tightly regulated depending on the life-cycle stage of the parasite and the environment of target organs in the respective host. Transmission of malaria parasites from the human to the anopheline mosquito is mediated by intraerythrocytic sexual stages, termed gametocytes, which circulate in the peripheral blood and are essential for the spread of the tropical disease. In Plasmodium falciparum, gametocytes express numerous extracellular proteins with adhesive motifs, which might mediate important interactions during transmission. Among these is a family of six secreted proteins with adhesive modules, termed PfCCp proteins, which are highly conserved throughout the apicomplexan clade. In P. falciparum, the proteins are expressed in the parasitophorous vacuole of gametocytes and are subsequently exposed on the surface of macrogametes during parasite reproduction in the mosquito midgut. One characteristic of the family is a co-dependent expression, such that loss of all six proteins occurs if expression of one member is disrupted via gene knockout. The six PfCCp proteins interact by adhesion domain-mediated binding and thus form complexes on the sexual stage surface having adhesive properties. To date, the PfCCp proteins represent the only protein family of the malaria parasite sexual stages that assembles to multimeric complexes, and only a small number of such protein complexes have so far been identified in other life-cycle stages of the parasite.  相似文献   

14.
Analysis of differentially expressed genes is a common molecular biological tool to investigate changes in mosquito genes after a bloodmeal or parasite exposure. We report here the characterization of a differentially expressed actin gene, CNAct-1, from the subtropical mosquito, Culex nigripalpus Theobald (Diptera: Culicidae). The CNAct-1 genomic clone is 1.525 kb, includes one 66-bp intron, and a 328-bp 3'-untranslated region. The 376-amino acid putative translation product shares high similarity with muscle-specific actin proteins from other insects, including Culex pipiens pipiens L., Aedes aegypti (L.), Anopheles gambiae Giles and Drosophila melanogaster (Meigen). CNAct-1 is expressed in second and third instars, late pupae, and adult females and males. Interestingly, Cx. nigripalpus actin was highly expressed in female mosquito midgut tissue isolated 6-12 h after ingestion of a bloodmeal. This expression profile indicates a unique function for CNAct-1 in midgut processes that are initiated after blood ingestion.  相似文献   

15.
Using an in vitro development system for Plasmodium berghei sporogonic stages and microarray technology we examined parasite gene expression during ookinete invasion of Aedes cells and the ensuing oocyst development. A number of genes were found to be differentially expressed. The most prominent class of up-regulated elements corresponded to products involved in protein synthesis and metabolism. Furthermore, several previously studied genes with a known in vivo developmental profile matched published data. A large number of genes with a hitherto unknown function during the life cycle stages studied also show a differential pattern of expression, indicating the involvement of their products in control and execution of active developmental processes.  相似文献   

16.
The alternative pathway of complement in the mouse serum significantly reduced, but did not eliminate, the infectivity of Plasmodium yoelii to Anopheles stephensi. The reduction of the infectivity is mainly due to the inability of the zygote to transform into the ookinete in the mosquito midgut.  相似文献   

17.
18.
Ookinetes of the genus Plasmodium are motile, invasive cells that develop in the mosquito midgut following ingestion of a parasite-infected blood meal. We show here that ookinetes display gliding motility on glass slides in the presence of insect cells. Moreover, in addition to stationary “flexing” and “twirling” of the cells, two distinct types of movements occur: productive forward translocational motility in straight segment that progresses with an average speed of approximately 6 μm/min and rotational motility, which does not lead to forward translocation. Locomotion is reduced by treatment with butanedione monoxime, an inhibitor of myosin ATPase, and by three different actin inhibitors. We also studied the expression during ookinete development of genes encoding actin and two small class XIV myosins, PbMyoA, and PbMyoB. Western immunoblots revealed that PbMyoA is only present in fully mature ookinetes, whilst the other two proteins are additionally expressed in gametocytes and zygotes. Immunofluorescence experiments reveal that MyoA and actin co-localize in the apical tip of the parasite whereas MyoB displays a punctate pattern of expression around the entire cell periphery. Following treatment with jasplakinolide, the apparent level of detectable actin appears to substantially increase and becomes concentrated in a discrete area in the basal pole of the ookinete.  相似文献   

19.
During the process of bloodfeeding by Anopheles stephensi, mammalian latent transforming growth factor beta1 (TGF-beta1) is ingested and activated rapidly in the mosquito midgut. Activation may involve heme and nitric oxide (NO), agents released in the midgut during blood digestion and catalysis of L-arginine oxidation by A. stephensi NO synthase (AsNOS). Active TGF-beta1 persists in the mosquito midgut to extended times postingestion and is recognized by mosquito cells as a cytokine. In a manner analogous to the regulation of vertebrate inducible NO synthase and malaria parasite (Plasmodium) infection in mammals by TGF-beta1, TGF-beta1 regulates AsNOS expression and Plasmodium development in A. stephensi. Together, these observations indicate that, through conserved immunological cross talk, mammalian and mosquito immune systems interface with each other to influence the cycle of Plasmodium development.  相似文献   

20.
Laminin is a major constituent of the basal lamina surrounding the midgut of the malaria vectors that has been implicated in the development of the Plasmodium oocyst. In this report we describe the cloning of the Anopheles gambiae gene encoding the laminin gamma 1 polypeptide and follow its expression during mosquito development. To further investigate the putative role of laminin in the transmission of the malaria parasite we studied the potential binding of the P25 surface protein of Plasmodium berghei using a yeast two-hybrid system. Heterodimer formation was observed and does not require any additional protein factors since purified fusion proteins can also bind each other in vitro. Laminin gamma 1 also interacts with the paralogue of P25, namely P28, albeit more weakly, possibly explaining why the two parasite proteins can substitute for each other in deletion mutants. This represents the first direct evidence for molecular interactions between a surface protein of the Plasmodium parasite with an Anopheles protein; the strong interplay between laminin gamma 1 and P25 suggests that this pair of proteins may function as a receptor/ligand complex regulating parasite development in the mosquito vector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号