首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laneuville  P; Chang  W; Kamel-Reid  S; Fauser  AA; Dick  JE 《Blood》1988,71(3):811-814
Retroviral vectors containing the selectable bacterial gene for G418 resistance (neo) were used to demonstrate gene transfer into primary human bone-marrow progenitor cells. To obtain populations of cells in which a high proportion of cells were expressing the neo gene, several important modifications were made to earlier procedures. Cells from normal donors were infected in vitro, were exposed to high concentrations of G418 for two days in liquid culture to enrich for cells expressing the neo gene, and were plated in semisolid medium. Gene transfer and expression were detected in colonies arising from progenitors of granulocyte-macrophage and erythroid lineages. Survival curves indicated that a high proportion of progenitor cells, approaching 100%, were G418 resistant. Furthermore, addition of growth factors contained in 5637-conditioned medium to the bone marrow improved the recovery of G418-resistant progenitors twofold to threefold. In addition to these biological measurements of gene expression in progenitor cells, significant levels of neo-specific RNA, similar to the levels of RNA expression in the virus-producing fibroblast cell line, were detected in the bone marrow cells after preselection. These results demonstrate that retrovirus vectors can be used successfully to transfer genes at high efficiency into progenitor cells in the human blood-forming system.  相似文献   

2.
Amphotropic retroviral vectors containing either a mutant dihydrofolate reductase gene (DHFR) or the bacterial neomycin phosphotransferase gene (neo) were used to infect canine hemopoietic cells. We report successful transfer and expression of the DHFR and neo genes in canine hemopoietic progenitor cells (colony-forming units, granulocyte/macrophage) as measured by the ability of the viruses to confer resistance to either methotrexate or the aminoglycoside G418, respectively. Transfer was achieved in the absence of helper virus by using retrovirus packaging cell lines. Successful transfer of these genes into canine hemopoietic progenitor cells in vitro indicates the feasibility of gene transfer into canine marrow for autologous reconstitution. Studies of transfer of new genetic information into a large, outbred animal such as the dog will provide a preclinical model for future gene therapy in humans.  相似文献   

3.
The retroviral vector N2, which is derived from the Moloney murine leukemia retrovirus, was used to transfer the bacterial NeoR gene (conferring resistance to the neomycin analogue G418) into hematopoietic progenitor cells from fetal, neonatal, and adult dogs and cats. Infection of canine and feline bone marrow cells with the N2 vector resulted in resistance of granulocyte-macrophage colony-forming units (CFU-GM) to G418. Approximately 2%-4% of fetal liver, fetal bone marrow, and adult bone marrow day-7 CFU-GM were resistant to 1.75 mg/ml G418, a dose toxic to cells not expressing the NeoR gene, after infection with the N2 retrovirus. In sharp contrast to the low rate of infectivity of both fetal and adult marrow samples, the mean +/- SD of G418-resistant CFU-GM was 11.7% +/- 14.1% and 14.0% +/- 18.1% for neonatal dog and cat marrow samples, respectively. The neomycin phosphotransferase enzyme activity was detected in G418-resistant CFU-GM, confirming that G418-resistant CFU-GM expressed the NeoR gene. The increased efficiency of retroviral vector-mediated gene transfer into neonatal hematopoietic progenitor cells was not due to an increased fraction of actively dividing cells, as determined by tritiated thymidine suicide. Understanding the basis for increased gene transfer into neonatal hematopoietic progenitor cells may be helpful in designing effective retroviral vectors/gene transfer protocols for gene therapy.  相似文献   

4.
Retroviral gene transfer has been used successfully to correct the glucocerebrosidase (GCase) deficiency in primary hematopoietic cells from patients with Gaucher disease. For this model of somatic gene therapy, we developed a high-titer, amphotropic retroviral vector designated NTG in which the human GCase gene was driven by the mutant polyoma virus enhancer/herpesvirus thymidine kinase gene (tk) promoter (Py+/Htk). NTG normalized GCase activity in transduced Gaucher fibroblasts and efficiently infected human monocytic and erythroleukemic cell lines. RNA blot-hybridization (Northern blot) analysis of these hematopoietic cell lines showed unexpectedly high-level expression from the Moloney murine leukemia virus long terminal repeat (Mo-MLV LTR) and levels of Py+/Htk enhancer/promoter-initiated human GCase RNA that approximated endogenous GCase RNA levels. Furthermore, NTG efficiently infected human hematopoietic progenitor cells. Detection (by means of the polymerase chain reaction) of the provirus in approximately one-third of NTG-infected progenitor colonies that had not been selected in G418-containing medium indicates that relative resistance to G418 underestimated the actual gene transfer efficiency. Northern blot analysis of NTG-infected, progenitor-derived cells showed expression from both the Mo-MLV LTR and the Py+/Htk enhancer/promoter. NTG-transduced hematopoietic progenitor cells from patients with Gaucher disease generated progeny in which GCase activity had been normalized.  相似文献   

5.
The liver is an important target for potential gene therapy because of the critical role it plays in intermediary metabolism and synthesis of serum proteins. We report the use of retroviral vectors for transfer of recombinant genes into primary mouse hepatocytes. Hepatocytes were grown in a defined serum-free medium and expressed liver-specific functions for up to 14 days. Hepatocytes were transformed to Genticin (G418) resistance by infection with recombinant retroviruses carrying the Tn5 neomycin-resistance gene. The G418-resistant cells exhibited characteristic hepatocyte morphology and continued to express liver-specific gene function. A retrovirus that expresses neomycin resistance driven by a herpes simplex thymidine kinase promoter produced the most efficient transformation compared with viruses using the retroviral long terminal repeat promoter or the simian virus 40 early-region promoter. These experiments indicate that primary hepatocytes can be successfully cultured and transformed with recombinant genes using retroviral vectors. These results provide a model for future somatic gene replacement therapy in which functional genes can be introduced into hepatocytes by viral-mediated gene transfer.  相似文献   

6.
Glucocerebrosidase cDNA and the neomycin-resistance gene (neo) were cloned into a retrovirus vector. Mouse fibroblasts infected with this vector expressed human glucocerebrosidase, which was readily distinguished from the mouse enzyme using mouse monoclonal anti-glucocerebrosidase antibodies. Cultured fibroblasts and transformed lymphoblasts from patients with type I Gaucher disease were infected with the retrovirus rescued from the mouse fibroblasts by a helper virus. Transformed cells were selected with the antibiotic G418. The enzyme activity of cells infected with virus containing glucocerebrosidase cDNA was restored to normal, while uninfected cells or cells infected with virus containing only the neo gene did not produce glucocerebrosidase.  相似文献   

7.
8.
Gene therapy for patients with hemoglobin disorders has been hampered by the inability of retrovirus vectors to transfer globin genes and their cis-acting regulatory sequences into hematopoietic stem cells without rearrangement. In addition, the expression from intact globin gene vectors has been variable in red blood cells due to position effects and retrovirus silencing. We hypothesized that by substituting the globin gene promoter for the promoter of another gene expressed in red blood cells, we could generate stable retrovirus vectors that would express globin at sufficient levels to treat hemoglobinopathies. Recently, we have shown that the human ankyrin (Ank) gene promoter directs position-independent, copy number-dependent expression of a linked gamma-globin gene in transgenic mice. We inserted the Ank/(A)gamma-globin gene into retrovirus vectors that could transfer one or two copies of the Ank/(A)gamma-globin gene to target cells. Both vectors were stable, transferring only intact proviral sequences into primary mouse hematopoietic stem cells. Expression of Ank/(A)gamma-globin mRNA in mature red blood cells was 3% (single copy) and 8% (double copy) of the level of mouse alpha-globin mRNA. We conclude that these novel retrovirus vectors may be valuable for treating a variety of red cell disorders by gene replacement therapy including severe beta-thalassemia if the level of expression can be further increased.  相似文献   

9.
Using a Moloney leukemia virus vector containing the bacterial neo gene, we demonstrate that retrovirus vectors can be used to introduce genes into the mouse germ line. Infection of preimplantation embryos with the vector MLV-NEO.1 resulted in integration of neo sequences in approximately equal to 10% of the progeny mice. One of these animals, mouse F.2, contained approximately six MLV-NEO.1 proviruses at independent integration sites, each present at less than a single copy per cell. This mosaic mouse transmitted one of these proviruses to her offspring, producing a line of transgenic mice carrying a full-length, unrearranged MLV.NEO.1 provirus at a single chromosomal integration site. Mice homozygous at this MLV-NEO.1 locus have also been produced. No expression of the neo gene has been detected in the transgenic mice, either by screening of primary bone marrow or lung cells for resistance to G418 or by RNA transfer blot analysis of RNA from several tissues. In addition, the neo gene was found to be extensively methylated in the transgenic mice; however, treatment of primary cells with 5-azacytidine did not induce G418 resistance. The inactivity of the MLV-NEO.1 provirus in transgenic mice and potential means of eliciting neo expression under these conditions are discussed.  相似文献   

10.
11.
Development of HIV vectors for anti-HIV gene therapy.   总被引:6,自引:0,他引:6       下载免费PDF全文
Current gene therapy protocols for HIV infection use transfection or murine retrovirus mediated transfer of antiviral genes into CD4+ T cells or CD34+ progenitor cells ex vivo, followed by infusion of the gene altered cells into autologous or syngeneic/allogeneic recipients. While these studies are essential for safety and feasibility testing, several limitations remain: long-term reconstitution of the immune system is not effected for lack of access to the macrophage reservoir or the pluripotent stem cell population, which is usually quiescent, and ex vivo manipulation of the target cells will be too expensive and impractical for global application. In these regards, the lentivirus-specific biologic properties of the HIVs, which underlie their pathogenetic mechanisms, are also advantageous as vectors for gene therapy. The ability of HIV to specifically target CD4+ cells, as well as non-cycling cells, makes it a promising candidate for in vivo gene transfer vector on one hand, and for transduction of non-cycling stem cells on the other. Here we report the use of replication-defective vectors and stable vector packaging cell lines derived from both HIV-1 and HIV-2. Both HIV envelopes and vesicular stomatitis virus glycoprotein G were effective in mediating high-titer gene transfer, and an HIV-2 vector could be cross-packaged by HIV-1. Both HIV-1 and HIV-2 vectors were able to transduce primary human macrophages, a property not shared by murine retroviruses. Vesicular stomatitis virus glycoprotein G-pseudotyped HIV vectors have the potential to mediate gene transfer into non-cycling hematopoietic stem cells. If so, HIV or other lentivirus-based vectors will have applications beyond HIV infection.  相似文献   

12.
To determine the feasibility of retrovirus-mediated gene transfer into stem cells for studying T-cell development, we constructed a high-titer retrovirus vector containing the neomycin phosphotransferase (neo) gene and a murine T-cell receptor (TCR) beta-chain gene with the V beta 6 variable segment. The TCR gene was placed under the control of the human beta-actin promoter and enhancer. Bone marrow cells pretreated with 5-fluorouracil were infected by coculturing with psi-2 virus-producing cells in the presence of recombinant interleukins 1, 2, 4, and 6 as well as interleukin 3 from WEHI-3 conditioned medium. The infected cells were transplanted into irradiated mice, and expression of the exogenous V beta 6 gene was examined with a V beta 6-specific monoclonal antibody, RNase protection, and polymerase chain reaction amplification. Three of seven mice expressed the retroviral TCR gene on the surface of a significant proportion of mature T cells 5-6 months after transplantation. In mice analyzed less than 1 month after transplantation, up to 30% of mature T cells expressed V beta 6 TCRs, an increase of at least 20% above the level of endogenous V beta 6 expression. DNA analysis revealed that pluripotent hematopoietic stem cells were infected by the retroviral vector in a long-term reconstituted mouse that showed increased V beta 6 expression.  相似文献   

13.
Germeraad  WT; Asami  N; Fujimoto  S; Mazda  O; Katsura  Y 《Blood》1994,84(3):780-788
The neomycin phosphotransferase (neo) gene was transduced into murine hematopoietic stem cells by culturing a recombinant retrovirus- producing cell line in a Transwell (Costar, Cambridge, MA) (bottomed with a porous membrane) hung into a Dexter-type long-term bone marrow (BM) culture. Gene transduction into stem cells retaining long-term reconstitution ability was successfully performed by using protocols of total 15 to 18 days of culture including establishment of the Dexter culture, transduction, and G418 selection. In the irradiated recipients of these cells, a large majority of the BM, thymus, and spleen cells as well as peripheral blood (PB) leukocytes were of donor origin and the neo gene was present in these organs up to 21 weeks after cell transfer. One third to two thirds of the in vitro colony-forming cells in the BM of the recipient mice were resistant to cultivation with G418. It was further found that the hematopoietic system of secondary recipients given BM cells from a primary recipient mouse was predominated by original donor-type cells. The transduced neo gene was detected in the PB, BM, thymus, and spleen cells of these secondary recipients. These results indicate that our procedure of retroviral vector-mediated gene transfer is highly effective in safely introducing a gene into pluripotent hematopoietic stem cells.  相似文献   

14.
Retroviral gene expression is inhibited in embryonal carcinoma (EC) cells. We have constructed a recombinant retroviral vector that is capable of expressing the neomycin-resistance (neo) gene in EC cells. The critical modification that permits expression of the neo gene is the insertion of a composite simian virus 40 early gene-herpes simplex virus type 1 thymidine kinase gene (SVtk) promoter 3' to the viral first intron and 5' to the neo gene. When the SVtk promoter is deleted, the recombinant retrovirus is either unable or extremely inefficient at expressing the neo gene in EC cells.  相似文献   

15.
16.
Amphotropic helper-free retrovirus vectors containing the bacterial neomycin phosphotransferase gene (neo) and the human adenosine deaminase gene (adenosine aminohydrolase, EC 3.5.4.4; ADA) were used to transduce canine marrow cells. In one approach, dogs were treated for 7 days with recombinant human granulocyte colony-stimulating factor to stimulate hematopoietic cell division. Bone marrow cells were collected and transduced by 24 hours of cocultivation on vector-producing cells followed by incubation in a vector-containing long-term marrow culture system for 4 days. Transduced autologous marrow (0.4 to 1.0 x 10(8) cells/kg) was infused into dogs administered otherwise lethal total body irradiation (TBI) of 920 cGy. Two of four dogs engrafted, and their marrows showed intermittently between 1% and 11% G418-resistant colony-forming unit granulocyte-macrophage (CFU-GM) colonies for up to 2 years after transplantation. In a different experimental approach, autologous marrow, obtained at the time of the PB neutrophil nadir 7 days after a single cyclophosphamide injection (40 mg/kg intravenously), was cocultivated for 24 hours on vector-producing cells and infused at doses of 0.06 to 0.18 x 10(8) cells/kg into dogs administered 920 cGy TBI. One of three dogs engrafted, and the marrow showed intermittently 1% to 10% G418-resistant CFU-GM colonies for at least 2 years. Culture results were confirmed by polymerase chain reaction (PCR) showing the presence of the neo gene in marrow cells, peripheral blood (PB) granulocytes, and PB and lymph node lymphocytes. Dilution experiments indicated that up to 10% of marrow, lymph node, and PB cells contained the neo gene, consistent with the culture results. Samples harboring the neo gene also contained the gene for human ADA. However, repeated analyses of PB and marrow cells for human ADA gene expression by starch gel electrophoresis were negative. PB samples of all dogs were free of helper virus, and no long-term side effects from the transduction were observed.  相似文献   

17.
We studied cultured canine keratinocytes to determine whether they could serve as targets for retrovirus-mediated gene transfer and whether infected cells could persist after transplantation into dogs, a large random-bred model for gene transfer studies. Canine keratinocytes obtained from skin biopsy samples were cultured in vitro with lethally irradiated NIH 3T3 cells used as a feeder layer. The keratinocyte colonies consisted of squamous epithelium with numerous desmosomes, tonofilaments, and keratohyalin granules. In addition, the cells were strongly reactive with monoclonal antibodies to cytokeratin intermediate filament proteins. For the infection studies, we grew the keratinocytes on a feeder layer of lethally irradiated PA317 retrovirus packaging cells, which produced a helper-free amphotropic retroviral vector containing the neomycin phosphotransferase (neo) gene. After cocultivation, 34% (range, 10-76%) of the keratinocytes were found to be resistant to the neomycin analogue G418. Infected keratinocytes were then transplanted into the dog of origin; 1% (range, less than 0.1-3%) of the keratinocytes obtained 27-130 days after transplantation from skin biopsy samples gave rise to G418-resistant colonies. We conclude that canine keratinocytes cultured in vitro can be infected efficiently with a neo gene-containing retroviral vector, and they show persistent G418 resistance for at least 130 days after transplantation into the skin donor.  相似文献   

18.
Retroviral-mediated gene transfer to multipotent and committed hematopoietic stem cells and marrow stromal cells was evaluated in long-term bone marrow cultures (LTBMCs). The retroviral vector pZIP-Neo(SV)(X) carrying the bacterial neomycin resistance (neor) gene that confers resistance to the neomycin analog G418 in mammalian cells was packaged in a Moloney envelope either as a replication-competent or replication-defective virus. Virus was introduced by infection of long-term marrow cultures at day 7. During a period of 12 weeks in culture, 10%-50% of harvested hematopoietic progenitor cells that formed differentiated CFU-GEMM colonies in response to pokeweed mitogen-containing spleen cell-conditioned medium (SCCM) and erythropoietin expressed the neor gene. In contrast, 1%-10% of hematopoietic progenitor cells that formed colonies in agar in response to WEHI-3B- or L-cell-conditioned medium expressed resistance to G418. The percentage of resistant progenitors was not detectably enhanced when replication-competent Moloney murine leukemia virus (M-MuLV) was present as helper virus, even though M-MuLV infected greater than 90% of cells in the long-term marrow cultures. In a separate CFU-F assay, 12%-17% of the adherent stromal cells in LTBMCs were found to express the neor gene. Thus gene transfer is limited by the fraction of progenitor cells that can integrate and express the transferred genetic sequences, rather than by the fraction of cells that are initially infected by the vector.  相似文献   

19.
目的将IL6基因转导至成纤维细胞NIH3T3,并使转染株有效地表达IL6,为IL6转基因治疗奠定基础.方法利用重组载体构建技术将质粒pUCIL6cDNA的目的片段连接于逆转录病毒载体上,并以脂质体介导的方法将重组载体转染包装细胞PA317,以G418筛选克隆细胞,浓缩克隆细胞上清以制备重组病毒液,继之感染NIH3T3细胞后,进行Southernblot和Northernblot分析,检测目的基因在靶细胞的整合与转录水平.结果成功地构建了重组载体pZIPIL6cDNA,筛选出抗生较强的克隆细胞,制备了高滴度的重组病毒液.杂交结果表明转导株3T3IL6具有IL6基因的整合和相应mRNA的高表达.结论IL6基因能稳定整合至靶细胞并进行有效的转录表达,为IL6基因治疗的应用奠定了可靠的基础  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号