首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recurrent circulation of highly pathogenic avian influenza (HPAI) H5N1 in Indian poultry since 2006 resulted in emergence of the viruses of distinct antigenic clades of haemagglutinin (HA) with the majority of the H5N1 outbreaks since 2011 belonging to clade 2.3.2.1. The present study was aimed to characterize the antigenic profile of a collection of H5N1 HPAI viruses of clade 2.3.2.1 isolated in India by applying antigenic cartography, serological data and phylogenetic analysis. Eleven H5N1 viruses (2 of clade 2.2 and 9 of clade 2.3.2.1) were selected based on genetic analysis and were further characterized by antigenic cartography analysis based on cross HI (hemagglutination inhibition) data. This study highlights the intercladal antigenic differences between clades 2.3.2.1 and 2.2 and the intracladal antigenic divergence among the clade 2.3.2.1 viruses. Five viruses of clade 2.3.2.1 were also studied for analysis of glycosylation pattern of Hemagglutinin (HA) gene and the growth kinetics analysis in MDCK cells in which the viruses CL03485/H5N1 and 03CL488/H5N1 showed better replication kinetics than other viruses. The study presents a baseline data of antigenicity and other factors that can be used in the selection of suitable H5 vaccine strains or HA donor viruses to develop H5 vaccine strains by reverse genetics or other methods for control of currently circulating H5N1 viruses in Indian region.  相似文献   

2.
Highly pathogenic H5N1 avian influenza viruses emerged in 1996 and have since evolved so extensively that a single strain can no longer be used as a prepandemic vaccine or diagnostic reagent. We therefore sought to identify the H5N1 strains that may best serve as cross-reactive diagnostic reagents. We compared the cross-reactivity of 27 viruses of clades 0, 1, 2.1, 2.2, 2.3, and 4 and of four computationally designed ancestral H5N1 strains by hemagglutination inhibition (HI) and microneutralization (MN) assays. Antigenic cartography was used to analyze the large quantity of resulting data. Cartographs of HI titers with chicken red blood cells were similar to those of MN titers, but HI with horse red blood cells decreased antigenic distances among the H5N1 strains studied. Thus, HI with horse red blood cells seems to be the assay of choice for H5N1 diagnostics. Whereas clade 2.2 antigens were able to detect antibodies raised to most of the tested H5N1 viruses (and clade 2.2-specific antisera detected most of the H5N1 antigens), ancestral strain A exhibited the widest reactivity pattern and hence was the best candidate diagnostic reagent for broad detection of H5N1 strains.  相似文献   

3.
Li Z  Ma C  Liu Z  He W 《Immunology letters》2011,135(1-2):59-63
To study immunogenicity and serologic cross-reactivity of hemagglutinins (HAs) among humans and birds infected with highly pathogenic avian influenza (HPAI) H5N1, four representative H5N1 HA genes from humans and birds infected with distinct genetic clusters of H5N1 viruses in China were cloned, and several H5N1 infected human serum and H5N1 positive bird serum samples were used. Recombinant HA proteins were generated for ELISA assays and pseudotype viruses containing HAs were produced for neutralization assays and hemagglutination inhibition (HI) tests. We found significant differences among clades compared to species in binding, neutralization and HI activity of H5N1 strains isolated from birds. While significant differences were observed among species in H5N1 isolated from humans, investigation of H5N1 infected human and avian sera provided evidence that the pressure from nAb may be a driving force for positive selection. Therefore, improved anti-viral nAb therapies could block avian influenza transmission in humans.  相似文献   

4.
5.
The wide distribution of H5N1 highly pathogenic avian influenza viruses is a global threat to human health. Indonesia has had the largest number of human infections and fatalities caused by these viruses. To understand the enzootic conditions of the viruses in Indonesia, twenty-four H5N1 viruses isolated from poultry from 2003 to 2007 were phylogenetically characterized. Although previous studies exclusively classified the Indonesian viruses into clades 2.1.1-2.1.3, our phylogenetic analyses showed a new sublineage that did not belong to any of the present clades. In addition, novel reassortant viruses were identified that emerged between this new sublineage and other clades in 2005-2006 on Java Island. H5N1 viruses were introduced from Java Island to Sulawesi, Kalimantan, and Sumatra Island on multiple occasions from 2003-2007, causing the geographical expansion of these viruses in Indonesia. These findings identify Java Island as the epicenter of the Indonesian H5N1 virus expansion.  相似文献   

6.
Continued circulation and geographical expansion of highly pathogenic avian influenza H5N1 virus have led to the emergence of numerous clades in Vietnam. Although viral RNA sequencing and phylogenetic analysis are the gold standard for H5N1 HA clade designation, limited sequencing capacity in many laboratories precludes rapid H5N1 clade identification and detection of novel viruses. Therefore, a Taqman real-time RT-PCR assay for rapid differentiation of the four major H5N1 clades detected in Vietnam was developed. Using HA sequence alignments of clades 1.1, 2.3.2.1, 2.3.4, and 7 viruses, primers and FAM-labeled probes were designed to target conserved regions characteristic of each clade. The assay was optimized and evaluated using circulating clades of H5N1 collected in Vietnam from 2007 to 2012 and shown to be both sensitive and specific for the differentiation of the four H5N1 clades. The assay provides a useful tool for screening of large specimen collections for HA gene sequencing and phylogenetic analysis and for the rapid identification of molecular clade signatures to support outbreak investigations and surveillance activities. Finally, this assay may be useful to monitor for the emergence of novel or variant clades of H5N1 in Vietnam in the future or in other countries where these particular clades may circulate.  相似文献   

7.
Since 2003, highly pathogenic H5N1 avian influenza viruses have caused outbreaks among poultry in Indonesia every year, producing the highest number of human victims worldwide. However, little is known about the H5N1 influenza viruses that have been circulating there in recent years. We therefore conducted surveillance studies and isolated eight H5N1 viruses from chickens. Phylogenic analysis of their hemagglutinin and neuraminidase genes revealed that all eight viruses belonged to clade 2.1.3. However, on the basis of nucleotide differences, these viruses could be divided into two groups. Other viruses genetically closely related to these two groups of viruses were all Indonesian isolates, suggesting that these new isolates have been evolving within Indonesia. Among these viruses, two distinct viruses circulated in the Kalimantan islands during the same season in 2010. Our data reveal the continued evolution of H5N1 viruses in Indonesia.  相似文献   

8.
The Asian highly pathogenic avian influenza H5N1 virus was first detected in the goose population of Guangdong, China in 1996. The viruses in this lineage are unique in their ecological success, demonstrating an extremely broad host range and becoming established in poultry over much of Asia and in Africa. H5N1 viruses have also diverged into multiple clades and subclades that generally do not cross neutralize, which has greatly confounded control measures in poultry and pre-pandemic vaccine strain selection. Although H5N1 viruses currently cannot transmit efficiently between mammals they exhibit high mortality in humans and recent experimental studies have shown that it is possible to generate an H5N1 virus that is transmissible in mammals. In addition to causing unprecedented economic losses, the long-term presence of the H5N1 virus in poultry and its frequent introductions to humans continue to pose a significant pandemic threat. Here we provide a summary of the genesis, molecular epidemiology and evolution of this H5N1 lineage, particularly the factors that have contributed to the continued diversification and ecological success of H5N1 viruses, with particular reference to the poultry production systems they have emerged from.  相似文献   

9.
Our aim was to establish the phylogenetic and genetic relationships among avian influenza viruses (AIV) recently isolated from poultry in Israel. During this study we analyzed complete nucleotide sequences of two envelope (hemagglutinin and neuraminidase) and six internal genes (polymerase B1, polymerase B2, polymerase A, nucleoprotein, nonstructural, and matrix) of 29 selected H9N2 and six internal genes of five H5N1 viruses isolated in Israel during 2000–2006. Comparative genetic and phylogenetic analyses of these sequences revealed that the local H5N1 viruses are closely related to H5N1 viruses isolated in European, Asian, and Middle Eastern countries in 2005–2006. The H9N2 Israeli isolates, together with viruses isolated in Jordan and Saudi Arabia formed a single group. Our data support the claim that during recent years a new endemic focus of H9N2 has been formed in the Middle East. The introduction of H5N1 and co-circulation of these two subtypes of AIV in this region may augment the risk of potentially pandemic strains emergence.  相似文献   

10.
Highly pathogenic avian influenza (HPAI) virus subtype H5N1 was first reported in Myanmar in 2006. In this study, we have characterized 6 HPAI (H5N1) viruses recovered from 2007-2010 as well as three additional available nucleotide sequences representing Myanmar AI outbreaks. Phylogenetic analysis showed that the Myanmar viruses belong to HPAI (H5N1) clades 7, 2.3.2 and 2.3.4. The result suggested that the HPAI (H5N1) viruses recovered from Myanmar had been introduced into the country by multiple introductions. Genetic analysis of the viruses confirmed the HPAI characteristics of the viruses.  相似文献   

11.
Chen MJ  La T  Zhao P  Tam JS  Rappaport R  Cheng SM 《Virus research》2006,122(1-2):200-205
Genetic analyses were performed on 228 influenza A(H1) viruses derived from clinical subjects participating in an experimental vaccine trial conducted in 20 countries on four continents between 2001 and 2003. HA1 phylogenetic analysis of these viruses showed multiple clades circulated around the world with regional prevalence patterns. Sixty-five of the A(H1) viruses were identified as A(H1N2), 40 of which were isolated from South Africa. The A(H1) sequences of these viruses cluster with published H1N2 viruses phylogenetically and share with them diagnostic signature V169A and A193T changes. The results also showed for the first time that H1N2 viruses were prominent in South Africa during the 2001-2002 influenza season, accounting for over 90% of the A(H1) cases in our study, and infecting both children (29/31) and the elderly (11/13). Phylogenetic analysis of the 65 H1N2 viruses we identified, in conjunction with the 56 recent H1N2 viruses currently available in the database, provided a comprehensive view of the circulation and evolution of distinct clades of H1N2 viruses in a temporal manner between early 2001 and mid-2003, shortly after the appearance of these recent reassortant viruses in or near year 2000.  相似文献   

12.
Lindstrom SE  Cox NJ  Klimov A 《Virology》2004,328(1):101-119
Phylogenic analysis of all gene segments of human H2N2 viruses isolated from 1957 to 1968 was undertaken to better understand the evolution of this virus subtype. Human H3N2 viruses isolated from 1968 to 1972 were also examined to investigate genetic events associated with their emergence in humans and to identify the putative H2N2 ancestral virus. All gene segments of human H2N2 viruses demonstrated divergent evolution into two distinct clades (I and II) among late H2N2 isolates. All gene segments of 1968 H3N2 viruses that were retained from human H2N2 viruses were most similar to clade I H2N2 genes. However, genes of both clades were found among H3N2 isolates of 1969-1971. Unique phylogenic topologies reflected multiple reassortment events among late H2N2 or H3N2 viruses that resulted in a variety of different genome constellations. These results suggest that H2N2 viruses continued to circulate after 1968 and that establishment of H3N2 viruses in humans was associated with multiple reassortment events that contributed to their genetic diversity.  相似文献   

13.
Highly pathogenic avian H5N1 influenza viruses are endemic in poultry in Asia and pose a pandemic threat to humans. Since the deployment of vaccines against a pandemic strain may take several months, adequate antiviral alternatives are needed to minimize the effects and the spread of the disease. Passive immunotherapy is regarded as a viable alternative. Here, we show the development of an IgA monoclonal antibody (DPJY01 MAb) specific to H5 hemagglutinin. The DPJY01 MAb showed a broad hemagglutination inhibition (HI) profile against Asian H5N1 viruses of clades 0, 1.0, 2.1, 2.2, and 2.3 and also against H5 wild bird influenza viruses of the North American and Eurasian lineages. DPJY01 MAb displayed also high neutralization activity in vitro and in vivo. In mice, DPJY01 MAb provided protection via a single dose administered intranasally before or after inoculation with a sublethal dose of H5N1 viruses of clades 1.0 and 2.2. Pretreatment with 50 mg of DPJY01 MAb kg of body weight at either 24, 48, or 72 h before highly pathogenic H5N1 virus (A/Vietnam/1203/2004 [H5N1]) inoculation resulted in complete protection. Treatment with 50 mg/kg at either at 24, 48, or 72 h after H5N1 inoculation provided 100%, 80%, and 60% protection, respectively. These studies highlight the potential use of DPJY01 MAb as an intranasal antiviral treatment for H5N1 influenza virus infections.Influenza type A viruses are negative-sense segmented RNA viruses that belong to the family Orthomyxoviridae (11). They are further subdivided into subtypes based on the antigenic properties of the two surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA). Among these subtypes, the highly pathogenic avian H5N1 influenza viruses have been intensively studied since the first report of lethal human infections in 1997 (36). H5N1 viruses continue to circulate in poultry in Asia and occasionally are transmitted from birds to humans, posing a potential pandemic threat (1). As of 6 April 2010, the World Health Organization (WHO) had reported 493 human infections with 292 deaths, a fatality rate exceeding 60%. These strains have shown significant evolutionary changes and are currently divided into 10 HA clades (36). Among these clades, clade 2 is further classified into five subclades (2.1 to 2.5), and within each subclade there are several lineages (35). Clade 2.1 is predominant in Indonesia, the country in which H5N1 has become endemic and in which the highest number of human infections and associated fatalities have been reported. In Indonesia, of the 163 cases confirmed to date by the WHO, 135 have been fatal. The latest human infections with H5N1 viruses have been reported in Egypt, where viruses from clade 2.2.1 are endemic. In Egypt since 2006, H5N1 viruses have been identified as the causative agent in 109 human infections with 34 deaths according to the WHO. More importantly, some of these strains have developed resistance to available antiviral drugs (17, 21). For example, most clade 1 H5N1 viruses are resistant to adamantanes (10), and oseltamivir-resistant H5N1 viruses with neuraminidase mutations (H274Y and N294S) have been also identified in infected patients during or after treatment (7, 12). These limitations and others, such as the poor immunogenicity of H5N1 vaccines (3, 16, 26, 31), call for the development of alternative intervention strategies.Several groups have reported the development of monoclonal antibodies (MAbs) against the HA of influenza viruses, particularly against the H1, H3, and H5 subtypes (9, 14, 38). Some of these MAbs have broad subtype cross-reactions (38). Human and mouse monoclonal antibodies against H5 HA have been shown to provide protection against lethal infection in a mouse model (4, 20, 24). These anti-H5 MAbs are usually of the IgG1 or IgG2a subtypes and are administered by parenteral routes. Retrospective studies have suggested that those patients with influenza pneumonia during the 1918 Spanish influenza pandemic who received influenza convalescent-phase human blood products may have experienced a reduction in the risk of death (15), and H5N1-infected patients treated with convalescent H5N1 plasma recovered from the infection (39). Therefore, passive antibody immunotherapy is an attractive and potentially efficient alternative for the treatment of H5N1 infections. To our knowledge, intranasal administration of antibodies against H5N1 has not been reported. Although intranasal administration of drugs depends largely on the health status of the patient, it does represent an alternative intervention strategy. Intranasal administration of antibodies would allow the antibodies to directly reach their target in the respiratory track, which is the major site for influenza virus replication in humans and other mammals (29, 33). IgA-mediated neutralization monoclonal antibody therapy against H5N1 has not been reported, and only a few IgA MAbs against A/Puerto Rico/8/34 (H1N1) have been reported to show antiviral activity when given intravenously (2). In this study, we generated an IgA monoclonal antibody (DPJY01) with a broad HI profile and high neutralization activity against the H5N1 virus in vitro and in vivo. Remarkably, DPJY01 provided protection against sublethal H5N1 infection after a single dose through intranasal administration.  相似文献   

14.
BackgroundInfluenza vaccine composition is reevaluated each year due to the frequency and accumulation of genetic changes that influenza viruses undergo. The beginning of the 2016–2017 influenza surveillance period in Israel has been marked by the dominance of influenza A(H3N2).ObjectivesTo evaluate the type, subtype, genetic evolution and amino acid substitutions of influenza A(H3N2) viruses detected among community patients with influenza-like illness (ILI) and hospitalized patients with respiratory illness in the first weeks of the 2016–2017 influenza season.Study designRespiratory samples from community patients with influenza-like illness and from hospitalized patients underwent identification, subtyping and molecular characterization. Hemagglutinin sequences were compared to the vaccine strain, phylogenetic tree was created, and amino acid substitutions were determined.ResultsInfluenza A(H3N2) predominated during the early stages of the 2016–2017 influenza season. Noticeably, approximately 20% of community patients and 36% of hospitalized patients, positive for influenza3), received the 2016–2017 influenza vaccine. The influenza A(H3N2) viruses demonstrated genetic divergence from the vaccine strain into three separate subgroups within the 3C.2a clade. One resembled the new 3C.2a1 subclade, one resembled the recently proposed 3C.2a2 subclade and the other was not previously described. Diversity was observed within each subgroup, in terms of additional amino acid substitutions.ConclusionsCharacterization of the 2016–2017 A(H3N2) influenza viruses is imperative for determining the future influenza vaccine composition.  相似文献   

15.
Highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was first diagnosed in poultry in Egypt in 2006, and since then the disease became enzootic in poultry throughout the country, affecting the poultry industry and village poultry as well as infecting humans. Vaccination has been used as a part of the control strategy to help to control the disease. Epidemiological data with sequence analysis of H5N1 viruses is important to link the mechanism of virus evolution in Egypt. This study describes the evolutionary pattern of Egyptian H5N1 viruses based on molecular characterization for the isolates collected from commercial poultry farms and village poultry from 2006 to 2011. Genetic analysis of the hemagglutinin (HA) gene was done by sequencing of the full-length H5 gene. The epidemiological pattern of disease outbreaks in Egyptian poultry farms seems to be seasonal with no specific geographic distribution across the country. The molecular epidemiological data revealed that there are two major groups of viruses: the classic group of subclade 2.2.1 and a variant group of 2.2.1.1. The classic group is prevailing mainly in village poultry and had fewer mutations compared to the originally introduced virus in 2006. Since 2009, this group has started to be transmitted back to commercial sectors. The variant group emerged by late 2007, was prevalent mainly in vaccinated commercial poultry, mutated continuously at a higher rate until 2010, and started to decline in 2011. Genetic analysis of the neuraminidase (NA) gene and the other six internal genes indicates a grouping of the Egyptian viruses similar to that obtained using the HA gene, with no obvious reassortments. The results of this study indicate that HPAI-H5N1 viruses are progressively evolving and adapting in Egypt and continue to acquire new mutations every season.  相似文献   

16.
To study the receptor specificity of modern human influenza H1N1 and H3N2 viruses, the analogs of natural receptors, namely sialyloligosaccharides conjugated with high molecular weight (about 1500 kDa) polyacrylamide as biotinylated and label-free probes, have been used. Viruses isolated from clinical specimens were grown in African green monkey kidney (Vero) or Madin-Darby canine kidney (MDCK) cells and chicken embryonated eggs. All Vero-derived viruses had hemagglutinin (HA) sequences indistinguishable from original viruses present in clinical samples, but HAs of three of seven tested MDCK-derived isolates had one or two amino acid substitutions. Despite these host-dependent mutations and differences in the structure of HA molecules of individual strains, all studied Vero- and MDCK-isolated viruses bound to Neu5Ac alpha2-6Galbeta1-4GlcNAc (6'SLN) essentially stronger than to Neu5Acalpha2-6Galbeta1-4Glc (6'SL). Such receptor-binding specificity has been typical for earlier isolated H1N1 human influenza viruses, but there is a new property of H3N2 viruses that has been circulating in the human population during recent years. Propagation of human viruses in chicken embryonated eggs resulted in a selection of variants with amino acid substitutions near the HA receptor-binding site, namely Gln226Arg or Asp225Gly for H1N1 viruses and Leu194Ile and Arg220Ser for H3N2 viruses. These HA mutations disturb the observed strict 6'SLN specificity of recent human influenza viruses.  相似文献   

17.
Jia B  Shi J  Li Y  Shinya K  Muramoto Y  Zeng X  Tian G  Kawaoka Y  Chen H 《Archives of virology》2008,153(10):1821-1826
It has long been thought that pigeons are resistant against H5 highly pathogenic avian influenza (HPAI) viruses. Recently, however, highly pathogenic H5N1 avian influenza viruses have demonstrated distinct biological properties that may be capable of causing disease in pigeons. To examine the susceptibility of domestic pigeons to recent H5N1 viruses, we inoculated pigeons using H5N1 viruses isolated in China from 2002 to 2004. Within 21 days following inoculation, all pigeons had survived and fully recovered from temporary clinical signs. However, seroconversion assays demonstrated that several viruses did in fact establish infection in pigeons and caused a certain amount of viral shedding in the oropharynx and cloaca. There was not, however, a definitive relationship between viral shedding and viral origin. Viruses were also inconsistently isolated from various organs of pigeons in infected groups. Pathological examination revealed that the infection had started as respiratory inflammation and caused the most severe lesions in the brain in later stages. These results indicate that pigeons are susceptible to the more recent Asian H5N1 HPAI and could be a source of infection to other animals, including humans.  相似文献   

18.
This study reports the genetic characterization of highly pathogenic avian influenza (HPAI) virus (subtype H5N1) isolated from poultry in West Bengal, India. We analyzed all the eight genome segments of two viruses isolated from chickens in January 2010 to understand their genetic relationship with other Indian H5N1 isolates and possible connection between different outbreaks. The hemagglutinin (HA) gene of the viruses showed multiple basic amino acids at the cleavage site, a marker for high virulence in chickens. Of greatest concern was that the viruses displayed amino acid substitution from serine-to-asparagine at position 31 of M2 ion channel protein suggesting emergence of amantadine-resistant mutants not previously reported in HPAI H5N1 outbreaks in India. Amino acid lysine at position 627 of the PB2 protein highlights the risk the viruses possess to mammals. In the phylogenetic trees, the viruses clustered within the lineage of avian isolates from India (2008-2009) and avian and human isolates from Bangladesh (2007-2009) in all the genes. Both these viruses were most closely related to the viruses from 2008 in West Bengal within the subclade 2.2.3 of H5N1 viruses.  相似文献   

19.
20.
Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype have been diversified into multiple phylogenetic clades over the past decade and are highly genetically variable. In June 2015, one outbreak of HPAI H5N1 in backyard chickens was reported in the Nogardan village of the Mazandaran Province. Tracheal tissues were taken from the dead domestic chickens (n = 10) and processed for RT-PCR. The positive samples (n = 10) were characterized as HPAI H5N1 by sequencing analysis for the hemagglutinin and neuraminidase genes. Phylogenetic analysis of the samples revealed that the viruses belonged to clade 2.3.2.1c, and cluster with the HPAI H5N1 viruses isolated from different avian species in Bulgaria, Romania, and Nigeria in 2015. They were not closely related to other H5N1 isolates detected in previous years in Iran. Our study provides new insights into the evolution and genesis of H5N1 influenza in Iran and has important implications for targeting surveillance efforts to rapidly identify the spread of the virus into and within Iran.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号