首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Calcium-dependent potential changes and inward currents were studied in guinea-pig neocortical neurons maintained in vitro. Under conditions of reduced outward potassium current, induced by external application of tetraethylammonium ions or internal application of caesium ions, regenerative Ca2+-dependent action potentials could be elicited. Strontium and barium ions could substitute for calcium as the charge carrier but not magnesium; cadmium blocked the calcium spikes. In caesium-loaded neurons, in the presence of tetrodotoxin and tetraethylammonium, inward currents were recorded when the membrane potential was step-depolarized to potentials more positive than -50 mV. These currents were blocked by cadmium. It is concluded that guinea-pig neocortical neurons are capable of generating a calcium action potential via the activation of a slow inward current.  相似文献   

2.
Intracellular recordings were made from vesical pelvic ganglion cells of the rabbit in a Krebs solution containing tetrodotoxin (1 microM). Experiments were carried out during complete suppression of the calcium-dependent potassium conductance by tetraethylammonium (greater than or equal to 20 mM) and/or intracellular injection of cesium ions. The action potential was followed by a depolarizing afterpotential which lasted for 0.3-10 s and had a peak amplitude of 5-20 mV at about -50 mV. The afterdepolarization (ADP) could not be observed when the preceding calcium-dependent action potential was blocked in a nominally calcium-free solution. Intracellular injection of ethyleneglycol-bis(beta-aminoethyl ether)N,N'-tetraacetic acid (EGTA) or total substitution of extracellular calcium ions with barium ions selectively blocked the ADP. The ADP, associated with an increased membrane conductance, reversed its polarity at -17 mV, when ganglion cells were impaled with microelectrodes filled with potassium chloride or cesium chloride. This reversal level was similar to that of the depolarization induced by gamma-aminobutyric acid. The reversal potential shifted to about -50 mV when acetate or sulphate were injected as counter anions. The peak amplitude and the total duration of the ADP was increased by substitution of external sodium chloride with sucrose or sodium isethionate. These results suggest that the ADP results from calcium entry during the spike and subsequent opening of chloride channels in parasympathetic neurons of the rabbit.  相似文献   

3.
The mechanisms of generation of self-sustained depolarizing plateau potentials (DPs) were studied in intracellular recordings in aminopyridine-induced ictal seizure foci in the motor cortex of the cat. In some experiments single-electrode voltage clamp techniques were used and intracellular pressure injection of aminopyridine (Ap), phorbol esters (PhEs) and tetraethylammonium (TEA) was carried out. After several ictal episodes, DPs with bursts of action potentials or with spike inactivation developed gradually in the clonic and interictal phases, without synchronism with surface ictal seizure potentials. In many cases DPs were followed by hyperpolarizing afterpotentials and neuronal inhibition. In bursting neurons DPs originated from the augmented depolarizing envelope of bursts of action potentials. In non-bursting neorons DPs were initiated from summated depolarizing afterpotentials and slow spikes with high threshold, resembling Ca-spikes. In a few neurons DPs were triggered by enlarged excitatory postsynaptic potentials. It was possible to evoke DPs by injections of depolarizing current pulses into single neurons of the Ap-focus, or by intracellular injection of AP, PhEs or TEA. We conclude that DPs are not causal cellular bases of the ictal paroxysmal discharges, rather they occur as consequences of abnormal neuronal activity. It is suggested that DPs are intrinsic regenerative membrane events induced by a transient dominance of voltage-dependent inward currents (carried primarily by calcium ions although sodium ions may contribute) by simultaneous decreases in concurrent outward potassium currents.  相似文献   

4.
By using whole-cell recordings in acute and organotypic hypothalamic slices, we found that following K+ channel blockade, sustained plateau potentials can be elicited by current injection in suprachiasmatic neurons. In an attempt to determine the ionic basis of these potentials, ion-substitution experiments were carried out. It appeared that to generate plateau potentials, calcium influx was required. Plateau potentials were also present when extracellular calcium was replaced by barium, but were independent upon an increase in the intracellular free calcium concentration. Substitution of extracellular sodium by the impermeant cation N-methyl-D-glucamine indicated that sodium influx could also contribute to plateau potentials. To gain some information on the pharmacological profile of the Ca++ channels responsible for plateau potentials, selective blocker of various types of Ca++ channel were tested. Plateau potentials were unaffected by isradipine, an L-type Ca++ channel blocker. However, they were slightly reduced by omega-conotoxin GVIA and omega-agatoxin TK, blockers of N-type and P/Q-type Ca++ channels, respectively. These data suggest that R-type Ca++ channels probably play a major role in the genesis of plateau potentials. We speculate that neurotransmitters/neuromodulators capable of reducing or suppressing potassium conductance(s) may elicit a Ca++-dependent plateau potential in suprachiasmatic neurons, thus promoting sustained firing activity and neuropeptide release.  相似文献   

5.
Neuronal membrane excitability and the synaptic connections among neurons produce behavior and cognition. The intracellular compartment of neurons is negatively charged relative to the extracellular space, and this charge, as well as current flow, is produced by ions. From the perspective of charged ions, the lipid bilayer of the neuronal membrane acts as a capacitor, and transmembrane glycoprotein pores or channels act as resistors. The open and closed states of ionic channels determine the membrane potential. At equilibrium, the lowest resistance or greatest permeability is for potassium, and the resting membrane potential is close to the equilibrium potential for potassium. When a channel is opened, permeable ions diffuse down their electrochemical gradients and the membrane potential is changed. Channels are gated (opened or closed) by voltage, neurotransmitters, and second messengers. The neuron integrates synaptic potentials produced by transmitter-gated channel activity and either generates a subthreshold potential, or a suprathreshold depolarization that generates an action potential or a burst of action potentials. Action potential generation is mediated by a large, brief sodium influx that is followed by activation of a voltage-dependent potassium eflux. The pattern of action potential firing is dependent on the interaction of a repertoire of voltage-dependent ion conductances. The action potential is the main signaling mechanism to activate synaptic transmission at axon terminals. Synaptic transmission is graded depending on the amount of calcium entering the presynaptic terminal. The number of action potentials, or the shape of the action potential, will determine the amount of calcium entering the terminal and the efficacy of synaptic transmission. Presynaptic ion channels may also be controlled by neurotransmitters or modulators and affect synaptic transmission by altering the amount of calcium influx.  相似文献   

6.
Long-term facilitation (LTF) of synaptic transmission was investigated in the crayfish opener muscle to determine the factors necessary for its induction and expression. LTF was induced without action potentials by intracellular depolarization of presynaptic nerve terminals. Following induction, the synaptic transmission was enhanced by about 80% for a period of several hours. Intracellular recordings from pre- and postsynaptic cells, combined with ionic and pharmacological tests, permitted dissection of LTF into 2 phases: an initial tetanic phase that depended on the presence of both sodium and calcium ions and a subsequent long-lasting phase. This latter long-lasting enhancement of synaptic transmission was induced by repeated depolarizations of synaptic terminals but did not depend on the influx of sodium or calcium ions or on intracellular release of calcium ions. Both tetanic and long-lasting phases of LTF are attributable to activity of a single neuron, i.e., they are homosynaptic phenomena. Furthermore, LTF is associated with an increase of quantal release, whereas the size of quanta remains unchanged. During the long-lasting phase of LTF, the nerve terminal releases more transmitter for a given depolarization than before induction of LTF. Thus, the locus of LTF is presynaptic. Our findings suggest the presence of a voltage-dependent mechanism in the presynaptic membrane different from voltage-gating of Na or Ca channels. Such a mechanism may be important in the establishment of long-lasting synaptic changes at the crayfish neuromuscular junction and perhaps in other neural systems.  相似文献   

7.
Anomalous rectification of mammalian sympathetic ganglion cells   总被引:2,自引:0,他引:2  
The relationship of EPSP amplitude to membrane potential, and current to voltage, of cell membranes in the isolated superior cervical ganglion of the rabbit were determined with intracellular microelectrode techniques. When the ganglion cell membrane was hyperpolarized beyond −90 mv, the EPSP amplitude did not increase linearly with membrane potential. The current to voltage relationship of the membrane also deviated from linearity. There was a decrease in the slope resistance during a hyperpolarizing current (anomalous rectification). The anomalous rectification was unchanged by removal of extracellular sodium ions or removal of extracellular or intracelluar choride ions. It was abolished by barium or strontium ions (10 mm). Calcium ions (10 mm) decreased the anomalous rectification, but magnesium ions (10 mm) were without effect. Tetraethylammonium blocked the delayed rectification, but had no effect on the anomalous rectification, even at isotonic concentrations. It was concluded that the anomalous rectification is due to an increase in the potassium conductance of the ganglion cell membrane. This increase in membrane conductance will explain the non-linearity between membrane potential and amplitude of EPSP.  相似文献   

8.
Stimulation of the bag cell neurons of Aplysia triggers a long-lasting afterdischarge in these cells. In vivo, such a discharge causes the onset of a sequence of reproductive behaviors. We have found that treatments that trigger discharges in vitro stimulate the hydrolysis of phosphoinositides in the bag cell neurons, as measured by increased incorporation of 3H-inositol into fractions containing membrane lipids and water-soluble inositol phosphates. The electrophysiological effects of inositol trisphosphate, one of the products of phosphoinositide turnover that has been shown to mobilize intracellular calcium in non-neuronal cells, were investigated using isolated bag cell neurons in cell culture. Microinjection of inositol trisphosphate into cultured bag cell neurons caused a transient hyperpolarization of the membrane (approximately 35 sec), together with an increase in conductance. This effect of inositol trisphosphate was abolished by 50 mM tetraethylammonium ions. Inositol trisphosphate also reduced the amplitude of action potentials. Injection of calcium ions directly into bag cell neurons mimicked these responses seen after inositol trisphosphate injection. Using the cell-attached patch-clamp technique in conjunction with inositol trisphosphate microinjection, we observed that inositol trisphosphate evoked increases in the activity of a channel carrying outward current at the resting potential and more positive potentials. The estimated slope conductance of the channel modulated by inositol trisphosphate was approximately 40 pS, and its reversal potential was close to that predicted for potassium ions. The increased opening of this channel in response to inositol trisphosphate injection appeared to result from a transient shift of its voltage-dependence to more negative potentials. In a few cases, inositol trisphosphate injection also elicited an increase in the activity of a channel passing inward current at rest. Direct measurements of changes in intracellular calcium in response to inositol trisphosphate were made using digital imaging of isolated neurons loaded with the fluorescent calcium indicator fura-2. These revealed that injection of inositol trisphosphate significantly elevated intracellular calcium levels, and that this inositol trisphosphate-induced rise in cytosolic calcium was not affected by removal of extracellular calcium. In contrast to the effects of trains of action potentials in calcium-containing media, which produced increases in calcium primarily in neurites, the inositol trisphosphate-induced elevation of calcium appeared more localized to the somata of these neurons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Most mechanoreceptor neurons encode mechanical signals into action potential trains within the same cell. Evidence suggests that intracellular calcium ion concentration, [Ca2+], increases during mechanotransduction, either by direct entry through mechanically activated channels or indirectly through voltage-activated calcium channels. However, little is known about the amounts of calcium involved or its roles in mechanotransduction. We estimated [Ca2+] in mechanoreceptor neurons of the spider, Cupiennius salei, during mechanical stimulation using Oregon Green BAPTA-1, and a single-compartment model of [Ca2+] as a function of action potential firing rate. Resting [Ca2+] was approximately 400 nM and increased to up to 2 microM at 30 action potentials/s. Similar levels of resting and stimulated [Ca2+] were obtained in the cell soma, axon and two parts of the sensory dendrite, including the region immediately adjacent to the site of sensory transduction. The time constant of rise and fall of [Ca2+] was 1-5 s in the dendrite and axon, but up to 15 s in the soma. Calcium elevation was dependent on action potentials and could not be induced by the receptor potential alone. Blockade of voltage-activated calcium channels by nickel ions prevented calcium increase, but thapsigargin, which empties intracellular calcium stores, had no effect. Estimates of calcium entry per action potential from fluorescence changes agreed approximately with estimates based on action potential voltage-time profile and previous reports of calcium channel properties. This first report of calcium levels during transduction in spiking mechanoreceptors suggests that calcium signaling plays important roles in primary somatosensory neurons.  相似文献   

10.
Voltage-gated currents in identified rat olfactory receptor neurons   总被引:2,自引:0,他引:2  
Whole-cell recording techniques were used to characterize voltage-gated membrane currents in neonatal rat olfactory receptor neurons (ORNs) in cell culture. Mature ORNs were identified in culture by their characteristic bipolar morphology, by retrograde labeling techniques, and by olfactory marker protein (OMP) immunoreactivity. ORNs did not have spontaneous activity, but fired action potentials to depolarizing current pulses. Action potentials were blocked by tetrodotoxin (TTX), which contrasts with the TTX-resistant action potentials in salamander olfactory receptor cells (e.g., Firestein and Werblin, 1987). Prolonged, suprathreshold current pulses evoked only a single action potential; however, repetitive firing up to 35 Hz could be elicited by a series of brief depolarizing pulses. Under voltage clamp, the TTX-sensitive sodium current had activation and inactivation properties similar to other excitable cells. In TTX and 20 mM barium, sustained inward current were evoked by voltage steps positive to -30 mV. This current was blocked by Cd (100 microM) and by nifedipine (IC50 = 368 nM) consistent with L-type calcium channels in other neurons. No T-type calcium current was observed. Voltage steps positive to -20 mV also evoked an outward current that did not inactivate during 100-msec depolarizations. Tail current analysis of this current was consistent with a selective potassium conductance. The outward current was blocked by external tetraethylammonium but was unaffected by Cd or 4-aminopyridine (4-AP) or by removal of external calcium. A transient outward current was not observed. The 3 voltage-dependent conductances in cultured rat ORNs appear to be sufficient for 2 essential functions: action potential generation and transmitter release. As a single odorant-activated channel can trigger an action potential (e.g., Lynch and Barry, 1989), the repetitive firing seen with brief depolarizing pulses suggests that ORNs do not integrate sensory input, but rather act as high-fidelity relays such that each opening of an odorant-activated channel reaches the olfactory bulb glomeruli as an action potential.  相似文献   

11.
Endogenous long-duration burst-organizing potentials (driver potentials, DPs) generated by neurons in the lobster cardiac ganglion play a critical role in the ability of the system to generate rhythmic bursts of nerve impulses. The DPs are normally terminated by a voltage-dependent potassium current, but when this is suppressed by tetraethylammonium ion (TEA), the five motorneurons in the system show heterogeneity in properties. Perfusion with TEA increases DP amplitude in all cells in a similar fashion, but it increases DP duration disproportionately in the most anterior motorneurons. Substitution of barium ions for calcium also prolongs DPs in all of the motorneurons, but the effect of this treatment is not different along the anterior-posterior axis of the ganglion. The results suggest that the different behavior of the neurons reflects a difference in either the extent of calcium inactivation of the calcium current responsible for the DP, or in the kinetics or magnitude of a calcium-activated potassium conductance which contributes to membrane repolarization. In contrast to previously reported results, reduction in extracellular sodium ion concentration decreases driver potential amplitude and/or duration. This effect is not differentially expressed in different motorneurons.  相似文献   

12.
The aim of the study was to evaluate which ionic currents are modified in the sinoatrial node of guinea pigs when the vagus is stimulated. Responses of isolated atrial preparations to bilateral vagus nerve stimulation were examined. In bath-mounted preparations, 10-s trains of vagal stimulation (1-50 Hz) slowed the rate at which atrial contractions occurred. After the trains of stimuli, the force generated by each contraction was reduced. Both vago-inhibitory responses persisted in the presence of caesium (2 mM) and barium ions (1 mM). Vagal stimulation evoked a similar bradycardia in superperfused preparations in which intracellular recordings were made from pacemaker cells in the sinoatrial node. When pacemaking activity was abolished by adding the organic calcium channel antagonist nifedipine (1 microM) to the perfusate, vagal stimulation generated an inhibitory junction potential (IJP). Both the bradycardia and the amplitude of the inhibitory junction potential increased as the frequency of vagal stimulation was increased. The ability of vagal stimulation to produce inhibitory junction potentials was unaffected by the addition of caesium and barium ions to the perfusate. These observations suggest that the negative chronotropic and inotropic responses to vagal stimulation only minimally involve a muscarinically activated potassium current (I(KACh)) or changes in the hyperpolarization-activated pacemaker current Ih.  相似文献   

13.
Calcium ions play important roles in the adaptation of auditory hair cells, and there is evidence that they are involved in modifying the sensitivity and adaptation of a variety of vertebrate and invertebrate mechanoreceptors. However, there is little direct evidence concerning the concentration changes, signaling pathways or ultimate effects of these proposed modulatory mechanisms. We measured receptor potential, receptor current and action potentials intracellularly during mechanotransduction in a group of sensory neurons of the spider Cupiennius salei, which possesses low-voltage-activated calcium channels. Simultaneously, we elevated intracellular [Ca(2+) ] by UV light release from cage molecules, and observed increases in [Ca(2+) ] as changes in calcium-sensitive dye fluorescence. Increases of 10-15% in [Ca(2+) ] caused reductions of approximately 40% in receptor potential and approximately 20% in receptor current. Mechanically evoked action potential firing caused much larger increases in [Ca(2+) ], and the firing rate fell as [Ca(2+) ] rose during mechanical stimulation. Release of caged calcium just before mechanical stimulation significantly reduced peak firing. Dose-response measurements suggested that the binding of one or two intracellular calcium ions per channel reduces the probability of the mechanotransduction channel being open. Our data indicate that calcium regulates sensitivity in these mechanoreceptor neurons by negative feedback from action potentials onto transduction channels.  相似文献   

14.
We studied the activation of low-threshold calcium spikes (LTS) by excitatory postsynaptic potentials in pyramidal neurons from guinea pig medial frontal cortex with intracellular recording. We used extracellular bicuculline and phaclofen and intracellular QX-314 to block inhibitory synaptic potentials and sodium currents. Postsynaptic potentials were evoked by stimulation of layer I. We found that large (> 10-15 mV) excitatory synaptic potentials evoked from membrane potentials more negative than -75 mV were able to trigger LTS. The activation of LTS resulted in an increase of the rising slope or amplitude of the synaptic potentials depending on the size of the excitatory postsynaptic potential (EPSP). We used 100 microM NiCl2 to confirm the presence of LTS as part of the EPSPs. The N-methyl-D-aspartate (NMDA) and non-NMDA components of the excitatory synaptic potentials were isolated using (+/-)2-amino-5-phosphonovaleric acid (APV; 50 microM) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 20 microM); both components could, independently, trigger an LTS. With recordings made with K+ acetate-filled electrodes, we show that the activation of LTS was critical to allow excitatory synaptic potentials to reach the threshold of action potential firing; also, this amplification of synaptic responses produced the firing of more than a single action potential by the postsynaptic cell. These results demonstrate that in cortical pyramidal neurons the activation of low-threshold calcium spikes results in the amplification of synaptic responses.  相似文献   

15.
A Baranyi  M B Szente 《Brain research》1987,423(1-2):378-384
The mechanisms of associative long-lasting potentiation (LLP) of excitatory postsynaptic potentials (EPSPs) were studied in the motor cortex of anesthetized cats. Mono- and oligosynaptic EPSPs were evoked by stimulations of thalamic VL nucleus, pyramidal tract, callosal and somatosensory system and paired with orthodromic, antidromic or current-induced action potentials. EPSP-spike stimulus pairs with 0.1-0.2 Hz frequency and 0-200 ms interstimulus intervals induced increases in the amplitudes and durations of EPSPs for 40-60 min or longer after 20-50 pairings. The LLP was prevented when postsynaptic firing was blocked by intracellular current injection or by juxtasomatic application of gamma-aminobutyric acid. LLP was also prevented when the level of intracellular free calcium was lowered by the intracellular injection of the calcium chelator EGTA or when neuronal transport was blocked by the intracellular injection of colchicine. Neither EGTA nor colchicine blocked postsynaptic firing. Thus, these findings show that LLP in the neocortex is a postsynaptic phenomenon which requires conjunctive pre- and postsynaptic activity, adequate levels of intracellular free calcium, and functional intracellular transport.  相似文献   

16.
Development of rabbit hippocampus: physiology   总被引:2,自引:0,他引:2  
The postnatal development of the CA1 region of rabbit hippocampus was studied using intracellular techniques in the in vitro slice preparation. Recordings from immature hippocampal neurons revealed spiking activity and functional synaptic contacts, even in the newborn animal. Resting potentials and time constants in such cells were similar to those of mature cells; input resistance was higher and action potential duration longer in the immature rabbits. These cell properties reach adult values by 2-3 weeks. Presumed calcium spikes, as well as sodium spikes, were elicited in animals as young as 1 day, so that it was not possible to determine whether calcium or sodium spikes occur earlier. Synaptic potentials recorded in immature CA1 neurons were long duration depolarizing events associated with a large conductance increase. The postsynaptic potentials (PSPs) were shown to be predominantly excitatory in nature, and could be potentiated by repetitive stimulation at slow rates and low intensities. Such stimulation in many cases could trigger seizure-like activity. Inhibitory PSPs in CA1 neurons were rare in animals less than 1-2 weeks old. Increased occurrence of hyperpolarizing inhibitory PSPs was correlated in time with the appearance of interneuron cell types in physiological recordings. These data reinforce the indication from morphological studies that inhibition is late in developing in rabbit hippocampus.  相似文献   

17.
Characteristics of transmembrane ionic currents under controlled changes in ionic composition of extra-and intracellular medium were studied by means of intracellular dialysis and voltage clamp in isolated neurons from the molluscs Helix pomatia and Limnea stagnalis. The outward potassium currents were eliminated by replacement of intracellular potassium by Tris and the pure inward current could be measured. Replacement of the Ringer solution by NA-free or Ca-free solutions in the extracellular medium made it possible to separate the inward current into additive components, one of which is carried by sodium ions, and the other, by calcium ions. The sodium and calcium inward currents are shown to have different kinetics and potential dependence: taumNa = 1+/-0.5 ms, taumCa = = 3+/-1 ms, tauhNa = 8+/-2 ms, tauhCa = 115+/-10 ms when Vm = 0, GNa = 0.5 when Vm==-21+/-2 mV, GCa = 0.5 when Vm=-8+/-2 mV. Both currents were not altered by tetrodoxin (TTX), however calcium current is specifically blocked by externally applied calcium ions (2 X 10(-3) M), verapamil, D = 600 as well as by fluoride while introduced inside a cell. These data prove the existence of separate systems of sodium and calcium ion-conducting channels in the somatic membrane.  相似文献   

18.
Schwab Y  Jahke R  Jover E 《Neuroreport》2004,15(7):1219-1223
Rat melanotrophs fire Na+ and Ca2(+)-dependent action potentials. Whereas the molecular identity of Ca2+ channels expressed by these cells is well documented, less is known about Na channels. We characterize the expression of seven sodium channel alpha-subunit and the beta1- and beta2-subunit mRNAs. The tetrodotoxin-resistant Nav1.8 and Nav1.9 alpha subunit mRNAs are detected in the newborn intermediate lobe and in cultured melanotrophs. Electrophysiological recordings further demonstrate the expression of both tetrodotoxin-sensitive and tetrodotoxin-resistant currents by dissociated melanotrophs. Moreover, activated sodium channels are able to elicit intracellular calcium waves, both in the absence or in the presence of tetrodotoxin. This work shows that rat melanotrophs express functional tetrodotoxin-resistant sodium channels, whose activation can lead to the generation of intracellular calcium waves.  相似文献   

19.
Intracellular recordings were made from neurons (n = 121) in the inferior mesenteric ganglion (IMG) in guinea-pig. The pharmacological actions of 4-aminopyridine (4-AP), barium ions (Ba2+) and tetraethylammonium ions (TEA) were studied on IMG cells which received an excitatory, cholinergic input from mechanosensory nerves in the gastrointestinal tract. 4-AP mediated an excitatory action which involved two separate effects. Firstly, 4-AP increased the incidence of spontaneously occurring, fast EPSPs which gave rise to a spontaneous discharge of action potentials. This indirect, excitatory effect was attributed to an increase in the spontaneous release of acetylcholine from excitatory nerves to the IMG. Secondly, 4-AP altered the excitability of IMG cells and brought about burst discharges and continuous discharges of action potentials. This direct, excitatory effect was not dependent on the spontaneous release of acetylcholine; instead, it was attributed to the blockade of a potassium current similar to the A-current (IA). The excitatory action of Ba2+ also involved two separate effects. Firstly, Ba2+ increased the incidence of spontaneously occurring, fast EPSPs which gave rise to a spontaneous discharge of action potentials. This indirect, excitatory effect was interpreted as Ba2+ mimicking the actions of Ca2+ to facilitate the spontaneous release of acetylcholine. Secondly, Ba2+ altered the excitability of IMG cells and brought about a continuous discharge of action potentials. This excitatory effect was attributed to the blockade of a potassium current similar to the M-current (IM). TEA exerted an excitatory, then inhibitory, action on IMG cells. Initially, TEA brought about the continuous discharge of action potentials; firing gradually arrested as IMG cells depolarized slowly and a depolarizing block of excitation (i.e. inhibition) developed. The block on excitation was relieved by first restoring the resting membrane potential of IMG cells with hyperpolarizing current-clamp. Thereafter, action potentials were elicited by anode-break excitation by temporarily removing the hyperpolarizing current-clamp. The durations of action potentials and afterspike hyperpolarizations were prolonged in the presence of TEA. The effect of TEA on the action potential of IMG cells was attributed to the blockade of the delayed rectifier (IK). The effect on the afterspike hyperpolarization was considered the indirect consequence of a blockade of IK; it allowed the development of an inward calcium current which enhanced the calcium-activated, potassium current (IKCa) mediating afterhyperpolarizations.  相似文献   

20.
The somata of mouse hypogastric ganglion cells injected with Lucifer yellow were ovoid in shape, lacked dendritic processes but gave rise to a single axonal process. Antidromic activation demonstrated that some of the cells contained in this ganglion innervated the vas deferens. The passive and active membrane properties of the ganglion cells were determined in current clamp experiments. Cells fired tetrodotoxin-sensitive action potentials in response to intracellularly-applied depolarizing current. In voltage clamp evidence was obtained for both a persistent inward calcium current at potentials between -30 and -40 mV and a transient calcium current evoked by step depolarizations to around -20 mV. In current clamp, however, cells did not fire calcium action potentials in the presence of tetrodotoxin. Three potassium currents, IM (blocked by 1 mM barium and by 30 microM bethanechol), IA (blocked by 2 mM 4-aminopyridine) and IK(Ca) fast (blocked by 100 microM cadmium and by 5 mM tetraethylammonium) were characterized in these neurons. In addition, IK(Ca) slow was observed in a small proportion of cells. Fast, all-or-nothing, excitatory synaptic potentials were recorded in response to single stimuli applied to the afferent fibres running to the ganglion. In most cells the excitatory synaptic potentials were suprathreshold for action potential initiation and were markedly reduced or abolished by 100 microM mecamylamine, 1 mM hexamethonium and following desensitization to 100 microM nicotine. Excitatory synaptic potentials arose from stimulation of a single presynaptic nerve process and are typical of strong synaptic inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号