首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Tectal efferent neurons were retrogradely filled from extracellular injections of horseradish peroxidase (HRP) into pathways efferent from the tectum. Tectorotundal neurons have cylindrical dendritic trees, 80-100 microns in diameter, that extend vertically across the central and superficial tectal layers. Apical and basal dendrites are laden with complex appendages. The axon gives rise to an intratectal, collateral arbor that extends horizontally into the stratum griseum centrale beyond the cell's dendritic tree. The parent axon exits the tectum laterally in the tectothalamic tract. Tectogeniculate neurons also have narrow, radially oriented, and highly branched apical dendrites, but their basal dendrites are infrequently branched and lack appendages. An intratectal axon collateral forms a small, spherical arbor overlapping the apical dendrites in sublayer c of the stratum fibrosum et griseum superficiale. The parent axon ascends vertically and just below the stratum opticum turns rostrad to follow the optic fibers to the diencephalon. Tectoisthmi neurons have small somata and thin, radial dendrites that arborize below the pial surface in the stratum zonale. An intratectal axon collateral forms a spatially restricted arbor ventral to the soma in register with the dendritic tree. Tectoisthmobulbar neurons have dendrites that arborize extensively in sublayer a of the stratum fibrosum et griseum superficiale. The axon exits the tectum without collateralizing and joins a small-caliber component of the ventral tectobulbar tract. Ipsilateral tectobulbar neurons have stellate dendritic fields, 150-250 microns in diameter, that are restricted to the deep layers of the tectum. Sparsely branched dendrites are appendage-free but bear many short, fine spicules. The axon initially ascends from the soma and recurves into the stratum album centrale without collateralizing before joining a medium-caliber component of the ventral tectobulbar tract. Crossed tectobulbar neurons have large, stellate dendritic trees with diameters ranging from 200 to 500 microns. Like ipsilateral tectobulbar neurons, their dendrites are appendage-free but bear spicules. Their thick-caliber axons exit the tectum without collateralizing and course deep in the stratum album centrale to reach the dorsal tectobulbar tract.  相似文献   

2.
We have studied the stratum fibrosum et griseum superficiale (SFGS) of the carp optic tectum with optic and electron microscopy. This stratum is a dense neuropil with disordered appearance, in which numerous neuronal bodies of different characteristics and variable distribution according to the tectal regions are intercalated, more abundant in the dorsomedial zones of the tectum. Within these neuronal types, the most characteristic of SFGS are the large pyramidals of vertical development. Such neurons shows an ascendant dendritic shaft, very developed in the stratum marginale, a thinner dendritic shaft in the basal pole and a descending axon that reaches the internal zones of the stratum griseum centrale. Glial elements are highly associated to the pyramidal neuron bodies. The synaptic contacts are abundant and of various types, specially on the spinous dendritic branches which lie in the stratum marginale.  相似文献   

3.
The efferent connections and axonal and dendritic morphologies of periventricular neurons were examined in the optic tectum of rainbow trout to classify periventricular efferent neurons in salmonids. Among the target nuclei of tectal efferents, tracer injections to the following four structures labeled periventricular neurons: the area pretectalis pars dorsalis (APd), nucleus pretectalis superficialis pars magnocellularis (PSm), nucleus ventrolateralis of torus semicircularis (TS), and nucleus isthmi (NI). Two types of periventricular neurons were labeled by injections to the APd. One of them had an apical dendrite ramifying at the stratum fibrosum et griseum superficiale (SFGS), with an axon that bifurcated into two branches at the stratum griseum centrale (SGC), and the other had an apical dendrite ramifying at the SGC. Two types of periventricular neurons were labeled after injections to the TS. One of them had an apical dendrite ramifying at the boundary between the stratum opticum (SO) and the SFGS, and the other had dendritic branches restricted to the stratum album centrale or stratum periventriculare. Injections to the PSm and NI labeled periventricular neurons of the same type with an apical dendrite ramifying at the SO and a characteristic axon that split into superficial and deep branches projecting to the PSm and NI, respectively. This cell type also possessed axonal branches that terminated within the tectum. These results indicate that periventricular efferent neurons can be classified into at least five types that possess type-specific axonal and dendritic morphologies. We also describe other tectal neurons labeled by the present injections.  相似文献   

4.
Monoclonal antibodies against two alpha-bungarotoxin-binding subunits (alpha 7 and alpha 8) of the nicotinic acetylcholine receptors (nAChRs) were used as immunohistochemical probes to map their distribution in the chick diencephalon and mesencephalon. The distribution of the alpha 7 and alpha 8 nAChR subunits was compared to the distribution of immunoreactivity produced by a monoclonal antibody against the beta 2 structural subunit of the nAChRs. Structures that contained high numbers of alpha 7-like immunoreactive (LI) somata included the intergeniculate leaflet, nucleus intercalatus thalami, nucleus ovoidalis, organum paraventricularis, nucleus rotundus, isthmic nuclei, nucleus trochlearis, oculomotor complex, nucleus interstitio-pretecto-subpretectalis, stratum griseum centrale of the optic tectum, and nucleus semilunaris. Neuropil staining for alpha 7-LI was intense in the nucleus dorsomedialis hypothalami, nucleus geniculatus lateralis ventralis, griseum tecti, isthmic nuclei, nucleus lentiformis mesencephali, nucleus of the basal optic root, and stratum griseum et fibrosum superficiale of the tectum. High numbers of alpha 8-LI somata were found in the stratum griseum et fibrosum superficiale of the tectum and the nucleus interstitio-pretecto-subpretectalis, and intense neuropil staining for alpha 8-LI was found in the dorsal thalamus, nucleus geniculatus lateralis ventralis, lateral hypothalamus, griseum et fibrosum superficiale of the tectum. High numbers of beta 2-LI somata were found only in the nucleus spiriformis lateralis, whereas neuropil staining for beta 2-LI was intense in the nucleus geniculatus lateralis ventralis, nucleus suprachiasmaticus, nucleus lateralis anterior, nucleus habenularis lateralis, area pretectalis, griseum tecti, nucleus lentiformis mesencephalis, nucleus externus, and nucleus interpeduncularis, and in the stratum griseum centrale, stratum griseum et fibrosum superficiale, and stratum opticum of the tectum. These results indicate that there are major disparities in the localization of the alpha-bungarotoxin-binding alpha 7 and alpha 8 nAChR subunits and the beta 2 structural nAChR subunit in the chick diencephalon and mesencephalon. These nAChR subunits appear, however, to coexist in several regions of the chick brain.  相似文献   

5.
Tectal projection neurons to the retinopetal nucleus in the filefish   总被引:1,自引:0,他引:1  
Following horseradish peroxidase (HRP) injections into the preoptic retinopetal nucleus (PRN), neurons in the ipsilateral optic tectum were labeled retrogradely. Labeled neurons exhibited a 'Golgi-like' appearance, somata of these neurons were pyriform or round, and most of them were located in the stratum album centrale (SAC) or the stratum periventriculare (SPV). These neurons had a long apical dendrite, which ramified in the upper-half of SGC into horizontally arborized dendritic fields. The main trunk of the apical dendrites also gave off several branches in the stratum fibrosum et griseum superficiale (SFGS) and reached the stratum opticum (SO). These neurons resemble the 'large pyriform neurons' of Vanegas et al. (Vanegas, H., Laufer, M. and Amat, J., The optic tectum of a perciform teleost. I. General configuration and cytoarchitecture, J. Comp. Neurol., 154 (1974) 43-60) except that in the tecto-PRN neurons the axons originates from the apical dendritic shaft at or near the level of the SAC. Judging from their dendritic patterns, the tectal neurons projecting indirectly to the retina may receive non-retinal inputs besides the retinal input.  相似文献   

6.
Fiber connections of the torus longitudinalis (TL) and target(s) of toral recipient tectal neurons (pyramidal cells) in the optic tectum were examined by tract-tracing methods in holocentrids. Injections into the stratum marginale (SM) labeled neurons in the stratum opticum and stratum fibrosum et griseum superficiale (SFGS). They had superficial spiny dendrites, with a fan-shaped branching pattern in SM and a thick basal dendrite that gave rise to bushy horizontal branches at the boundary between the SFGS and the stratum griseum centrale (SGC), where an axon and a thin dendrite arose. The axon terminated in a middle cellular layer of the SGC, and the thin dendrite ramified slightly deeper to this cellular layer. The SM injections also labeled cells in the ipsilateral TL. Injections into either the lateral or the medial part of TL labeled terminals in the ipsilateral SM and neurons in the bilateral nucleus paracommissuralis (NPC) and nucleus subvalvularis and ipsilateral nucleus subeminentialis. Only medial TL injections labeled cells in the ipsilateral SGC. These neurons had a basal dendrite that branched in the middle cellular layer of SGC, suggesting that they receive inputs from the pyramidal cells and project back to the TL to form a closed circuit. Only lateral TL injections labeled terminals in the corpus cerebelli. A visual telencephalic portion projects to the NPC and sublayers of SGC, where dendrites of the pyramidal cells and SGC neurons ramify. The present results therefore suggest that the TL and SM are components of an intricate circuitry that exerts telencephalic descending visual influence on the optic tectum and corpus cerebelli.  相似文献   

7.
Significant differences in stratification and size of the visual layers of the optic tectum were found between three clear-water minnows (Notropis amabilis, N. boops, Cyprinella venustas) and three turbid-water minnows (N. atherinoides, N. bairdi, and C. lutrensis). Correlations among a variety of neural structures suggested the importance of stratum marginale (SM), stratum opticum (SO), and stratum fibrosum et griseum superficiale (SFGS), stratum griseum centrale (SGC) and stratum periventriculare (SPV) in vision, of stratum album centrale (SAC) and SGC for olfaction, and of SPV for the processing of acoustico-lateral information.  相似文献   

8.
Studies in various vertebrate classes, particularly amphibians and mammals, have revealed that retinal ganglion cells with different functional properties project by means of axons of correspondingly different diameters onto specific target regions. Whether a similar pattern exists in teleosts is partly investigated in the present study. HRP was injected into the optic nerve of Sebastiscus and Navodon. The calibers of intraretinal HRP-labeled axons were classed as fine (ca. 0.8 micron), medium (ca. 1.3 micron), and coarse (ca. 2.5 microns). The calibers of HRP-labeled retinofugal axons were then determined in their target areas, and these can be summarized as follows: Optic hypothalamus: fine, medium. Lateral geniculate nucleus: fine. Dorsolateral thalamic nucleus: fine, medium. Area pretectalis: fine. Nucleus of the posterior commissure: fine, medium. Area ventralis lateralis, contralateral: fine, medium, coarse; ipsilateral: coarse. Optic tectum, stratum opticum: fine, medium; stratum fibrosum et griseum superficiale: fine, medium, coarse, segregated in sublayers; stratum album centrale: fine, medium, coarse. Therefore, fine fibers were found to reach all target areas except the ipsilateral area ventralis lateralis, and these were the only fibers found in the lateral geniculate nucleus, area pretectalis, and stratum griseum centrale of the optic tectum. Coarse fibers, on the other hand, were found only in the area ventralis lateralis and the optic tectum (stratum fibrosum et griseum superficiale and stratum album centrale). Terminal patterns of these fibers were also studied. Most fine fibers take tortuous courses giving off a few branches and terminate with many varicosities, and medium and coarse fibers give off several finer branches and terminate with bulbous swellings. The physiological significance of these findings is discussed. In addition, retrogradely labeled (retinopetal) cells were found in the olfactory bulb and the area ventralis pars ventralis of the telencephalon, as well as in the preoptic area and the dorsolateral thalamic nucleus.  相似文献   

9.
The distribution of calretinin-like immunopositive cells and fibers in the optic tectum of the tench (Tinca tinca) was studied by using a polyclonal antibody and the avidin-biotin-peroxidase technique. A clear laminated pattern of calretinin-like immunoreactivity was observed. The stratum periventriculare demonstrated a large number of strongly labeled cells whereas in the strata album centrale and griseum centrale, and at the boundary between the strata griseum centrale and fibrosum et griseum superficiale, some scarce, weakly immunostained cells were observed. No immunoreactive cells were seen in the strata fibrosum et griseum superficiale, opticum and marginale. Cells belonging to neuronal types X and XIV, previously characterized using Golgi impregnation, were found to be calretinin-like immunoreactive. Most calretinin-like immunopositive fibers were found in the strata fibrosum et griseum superficiale and opticum with a distribution pattern similar to retinotectal axons in these layers. In agreement with previous biochemical studies, our data suggest that, by contrast to all other classes of vertebrates, instead of calretinin and calbindin D-28k, only one protein is present in teleosts. Nevertheless, the calretinin-like immunostaining pattern in the teleost optic tectum was more complex than that previously described for calbindin D-28k. When compared to the calretinin-immunostaining in the rat superior colliculus, it is evident the presence in both amniotes and anamniotes of calretinin-immunopositive retinotectal axons. However, the distribution patterns of intrinsic calretinin-immunoreactive cells were different. Immunolabeled cells have been described in all layers of the superior colliculus, whereas the cells containing calretinin were restricted to the three deep strata of the tench optic tectum, a more similar distribution to what has been reported in the chick optic tectum.  相似文献   

10.
The sonic motor nucleus and its fiber connections were examined in a rockfish, Sebastiscus marmoratus by means of tracer methods using horseradish peroxidase (HRP), biocytin, and carbocyanine dye (DiI). Sebastiscus has a swimbladder and a pair of extrinsic sonic/drumming muscles. The sonic muscle is ipsilaterally innervated by the occipital nerve which is composed of two ventral roots arising from the sonic motor nucleus. The sonic motor neurons are distributed in the most ventral part of the ventral column from the caudal medulla to the rostral spinal cord, and form a ventrally located columnar nucleus. Each neuron in this nucleus possesses a long thick dendrite and several short dendrites. The long dendrite extends dorsolaterally and branches in the lateral funiculus, whereas the short dendrites branch around their cell bodies. After biocytin injections into the sonic motor nucleus, two groups of premotor neurons were retrogradely labeled bilaterally, one in the dorsomedial portion of the descending octaval nucleus (DO) and the other in the medial zone of the reticular formation (RF) in the medulla. The DO premotor neurons were multipolar with several dendrites branching near the cell bodies, and the RF premotor neurons were bipolar. One of the two dendrites of the RF premotor neurons extends laterally into the ventral portion of the DO, and the other dendrite extends into the ventromedial area in the medulla. In the ventromedial dendritic field of the RF premotor neurons, descending fibers arising from the optic tectum (TO) and torus semicircularis (TS) traverse in the tractus tectobulbaris and terminate bilaterally. After DiI insertion into the ventromedial dendritic field, retrogradely labeled neurons were found bilaterally in the TS and TO. The majority of tectal neurons were located in the stratum griseum centrale. These neurons had two short basal dendrites branching in the cell layer and a long apical dendrite extending to the stratum fibrosum et griseum superficiale and stratum opticum. The toral neurons were bipolar and were distributed throughout the TS. Furthermore, biocytin injections into the medial nucleus of the lateral line system revealed that the nucleus projects bilaterally to the RF premotor neurons. These results show that premotor neurons for the sonic motor nucleus are located in the dorsomedial portion of the DO and the medial zone of the RF in the medulla. It is suggested that the sonic motor nucleus receives auditory input via the DO premotor neurons and input from RF premotor neurons which receive lateral line input via the medial nucleus, vestibular input through the lateral dendrite extending into the ventral portion of the DO, and information from the TO and TS via the tractus tectobulbaris.  相似文献   

11.
The morphology of single retinal terminals in the optic tectum of the eastern garter snake was demonstrated by orthograde filling from extracellular injections of horseradish peroxidase (HRP) into the optic tract. HRP-filled terminals share a characteristic shape and structure. Their parent axons course caudally in the stratum opticum within fascicles of 200-300 fibers of varying diameters. Single axons exit a fascicle and course into either the stratum fibrosum et griseum superficiale, ventrally, or the stratum zonale, dorsally, where they bifurcate successively two or three times into preterminal branches. Each preterminal branch gives rise to many thin, terminal branchlets laden with boutons. The arbors are ellipsoidal with their long axes oriented mediolaterally and their short axes oriented rostrocaudally. Arbors vary in their overall size (from 45 to 150 micron), in the diameters of their parent axons (from less than 0.5 to 3.0 micron), and in the size of their terminal boutons (from 0.5 to 3.5 micron). Bouton size increased with increasing diameter of the parent axon. The great majority of arbors are confined to one of three retinorecipient sublayers in the superficial tectum. However, the full range of arbor sizes and axon diameters is present in each sublayer.  相似文献   

12.
Retinotectal projections were studied in 33 different species of Actinopterygii, the ray-finned fishes, with horseradish peroxidase and cobalt tracing techniques. The distribution of retinorecipient layers in the contralateral optic tectum was analyzed. In addition, the degree of differentiation of the stratum periventriculate, and the presence of ipsilateral retinotectal projections was examined. Retinofugal fibers are labeled in the stratum opticum (SO), stratum fibrosum et griseum superficiale (SFGS), stratum griseum centrale (SGC), stratum album centrale (SAC) and stratum periventriculare (SPV). Some species lack the projection to the SO, others lack the projection to the SGC, and a third group of fishes lack both projections. Five different patterns of retinorecipient tectal strata are distinguished. These patterns correlate with the species' taxonomic position. Evolutionary trends of tectal lamination and retinotectal innervation are described. The retinotectal projection patterns provide a useful indicator of phylogenetic relationships. Some of our data suggest different relationships between actinopterygian species than hitherto believed.  相似文献   

13.
Serotoninergic innervation of the cat cerebral cortex   总被引:1,自引:0,他引:1  
Serotoninergic axons in the cat cerebral cortex were demonstrated immunohistochemically with a monoclonal antibody to serotonin (5-HT). Three types of 5-HT axons are distinguished at the light microscopic level by differences in their morphology. Small varicose axons are fine (less than 0.5 micron) and bear fusiform varicosities that are generally less than 1 micron in diameter. These axons extend throughout the width of the cortex and branch frequently, giving rise to widely spreading collaterals. Nonvaricose axons are smooth, show a relatively large and constant caliber (about 1 micron), travel in straight, horizontal trajectories, and branch infrequently. Large varicose axons are distinguished by large round or oval varicosities (1 micron or more in diameter) borne on fine-caliber fibers. These axons often form basket-like arbors around the somata of single neurons. In the simplest basket-like arbors, several large, round varicosities from a small number of axons contact the soma. In complex baskets intertwining collaterals contact the soma and apparently climb along and outline the cell's major dendrites. The patterns revealed by the climbing axons suggest that a variety of nonpyramidal cell types selectively receive dense 5-HT innervation. Serial reconstructions of the 5-HT axons within the cortex show that the large varicose axons arise as infrequent collaterals from the nonvaricose axons. A single nonvaricose parent axon gives rise to several large varicose axon collaterals that may contribute to different basket-like arbors. Conversely, a single basket-like arbor may be formed by large varicose axon collaterals from more than one nonvaricose parent axon. The small varicose axons do not appear to be related within the cortex to either the nonvaricose or large varicose axon types. The results support the hypothesis that the 5-HT projection to the cortex is organized into two subsystems, one of which may exert widespread influence in the cortex via highly divergent branches, while the other, with a more restricted distribution, acts on specific classes of cortical neurons.  相似文献   

14.
The distribution, cross-sectional area, and presynaptic and postsynaptic characteristics of retinal ganglion cell axon terminals in the superior colliculus of normal adult female Syrian hamsters were investigated by quantitative ultrastructural techniques. After an intravitreal injection of horseradish peroxidase, most labelled axon terminals were found in the stratum griseum superficiale and stratum opticum of the contralateral superior colliculus. However, a small proportion (approximately 2%) of retinal ganglion cell axon terminals were located in deeper layers of the superior colliculus between the stratum opticum and the periaqueductal grey matter. Terminals were smaller in the upper two-thirds of the stratum griseum superficiale than in the lower one-third of this layer, the stratum opticum, and the stratum griseum intermedium. Presynaptic characteristics such as the length and number of contacts and the postsynaptic neuronal domains (somata, dendritic spines, or shafts) contacted by retinal ganglion cell axons in the superior colliculus were similar in all layers.  相似文献   

15.
In two species of turtle (Emys orbicularis and Testudo horsfieldi), retrograde and anterograde tracer techniques were used to study projections from the optic tectum to the nucleus rotundus (Rot) and to the dorsal lateral geniculate nucleus (GLd). The ipsilateral Rot received the most massive tectal projections, stemming from numerous neurons located in the stratum griseum centrale (SGC). These neurons varied in size and shape, many of them having a wide zone of dendritic arborization within both the (SGC) and the stratum griseum et fibrosum superficiale (SGFS). Projections from the tectum to the GLd were ipsilateral, were extremely scarce, and arose from a small number of neurons of various shapes situated in the SGFS; these cells were, as a rule, smaller than those projecting to the Rot. For the most part, these neurons were radially oriented, with rather restricted dendritic arborizations in the most superficial sublayers of the SGFS; smaller numbers of projection neurons were horizontally oriented, with long dendrites branching throughout the layer. Some neurons located in the stratum griseum periventriculare (SGP) projected to both the Rot and the GLd. Most of these neurons had dendritic arborizations within the retinorecipient zone of the SGFS. We were unable to rule out the possibility that some cells projecting to the GLd were situated in the SGC. Both the GLd and the main body of the Rot did not contain neurons projecting to the optic tectum. Thalamic neurons projecting to the tectum were observed in the ventral lateral geniculate nucleus, the intergeniculate leaflet and the interstitial nuclei of the tectothalamic tract, and the nucleus of the decussatio supraoptica ventralis. The question of whether variation in the laminar organization of the tectorotundal and tectogeniculate projection neurons in reptiles, birds, and mammals may be related to different degrees of differentiation of the tectal layers is discussed.  相似文献   

16.
Retinal projections were studied using Fink-Heimer and radioautographic methods in Polypterus senegalus, a species which is representative of a small group of African fresh-water bony fish often considered to be very primitive.The large optic nerve showed partial decussation at the chiasm. Two major contralateral tracts were observed: the axillary and marginal optic tracts, with the latter being subdivided posteriorly into the tractus opticus medialis and tractus opticus lateralis. The retina projected onto the: (1) hypothalamus (area optica postoptica); (2) thalamus (nucleus opticus dorsolateralis thalimi, nucleus dorsomedialis thalami, corpus geniculatum laterale, area optica dorsolateralis thalami, area optica ventrolateralis thalami); (3) pretectum (nuclei commissurae posterioris, pretectalis ventralis, pretectalis dorsalis); and (4) optic tectum (stratum marginale, stratum opticum, stratum griseum et fibrosum superficiale, stratum griseum et album centrale, stratum griseum et fibrosum periventriculare). Ipsilateral retinal projections were demonstrated to the same 4 levels and more precisely to the nucleus opticus dorsolateralis thalami, area optica dorsolaterale thalami, nucleus commissurae posterioris, stratum marginale and stratum griseum et album centrale. The existence of a retinal projection to the mesencephalic tegmentum is discussed.Comparing the primary optic system of Polypterus with that of other jawed vertebrates, and particularly with that of other bony fish, indicated that this species possesses a combination of characteristics which are both actinopterygian and sarcopterygian. The phylogenetic significance of this mozaic anatomical arrangement is discussed.  相似文献   

17.
Sparsely spined neurons were described in the visual cortex of the rat. A large cell type was found in all laminae, but mainly in L III-L V. The soma is large and the dendrites are vertically oriented. In most cases, the axon originates from the upper main dendrite or the upper soma pole. The axonal arborization is vertical. In the terminal axonal segments the number of boutons is high. A small neuron type could be demonstrated in L IV. The soma is small, and the dendritic field is nearly multipolarly or horizontally oriented. The axon derives from the basal pole or laterally at the soma.  相似文献   

18.
Glutamate was immunohistochemically localized in the goldfish retina and tectum at the light and electron microscopic (E.M.) levels using double affinity purified antisera against glutaraldehyde conjugated L-glutamate. In retina, glutamate-immunoreactivity (Glu+) was observed in cone inner segments, cone pedicles, bipolar cells, a small number of amacrine cells and the majority of cells in the ganglion cell layer. The latter were shown to be ganglion cells by simultaneous retrograde labeling. Centrally, Glu+ was observed in axons in the optic nerve and tract, and in stratum opticum and stratum fibrosum et griseum superficialis (SFGS) of the tectum. The Glu+ in the optic pathway disappeared four days after optic denervation and was restored by regeneration without affecting the Glu+ of intrinsic tectal neurons. In tectum, Glu+ was also observed in torus longitudinalis granule cells, toral terminals in stratum marginale, some pyramidal neurons in the SFGS, multipolar and fusiform neurons in stratum griseum centrale, large multipolar and pyriform projection neurons in stratum album centrale, and many periventricular neurons. Glu+ was also localized within unidentified puncta throughout the tectum and within radially oriented dendrites of periventricular neurons. At the E.M. level, a variety of Glu+ terminals were observed. Glu+ toral terminals formed axospinous synapses with dendritic spines of pyramidal neurons. Ultrastructurally identifiable Glu+ putative optic terminals formed synapses with either Glu+ or Glu- dendritic profiles, and with Glu- vesicle-containing profiles, presumed to be GABAergic. These findings are consistent with the hypothesis that a number of intrinsic and projection neurons in the goldfish retinotectal system, including most ganglion cells, may use glutamate as a neurotransmitter.  相似文献   

19.
The optic tectum is a visual center of nonmammalian vertebrates that receives retinal fibers in a retinotopic manner. It has been accepted that retinal fibers project to some superficial laminae of the tectum, but do not go through lamina g of stratum griseum et fibrosum superficiale (SGFS). By a novel fiber-tracing method, we found a novel pathway of retinal fibers that run through deep laminae of the tectum. The retinal fibers that would run through the newly identified pathway first run caudally along the medial edge after invading the tectum, turn laterally, and extend toward the lateral side through the deep pathway. The deep pathway runs through stratum album centrale and stratum fibrosum periventriculare. The fibers that run through the deep pathway do not enter the stratum opticum, where the conventional retinal fibers run. As development proceeds, these fibers decrease and disappear by the adult stage. By the new method, we found that some of the conventional retinal fibers transiently run through lamina g of SGFS and invade laminae h/i. In conclusion, we found distinct but transient retinal fiber pathway in the deep tectal laminae, which have not been thought to be retinorecipient.  相似文献   

20.
The projection of the retina upon the optic tectum of the pigeon.   总被引:1,自引:0,他引:1  
The projection of the retina onto the optic tectum of the pigeon has been investigated using silver impregnation methods for degenerating axons and terminals, autoradiographic tracing, and the Golgi methods. Degenerating optic afferents distribute to sublaminae a-d and f of the stratum griseum et fibrosum superficiale over the whole tectum, but two major fields are observed. One occupies the caudal and ventral tectum (in which region laminar cytoarchitecture is marked), and the other rostral and dorsal tectum (where demarcation of cell laminae is relatively poor). Degeneration in the latter field is coarse and clearly distributes in a distinctly laminated fashion within the stratum griseum et fibrosum superficiale. In contrast, degeneration in the caudo-ventral region is fine, and laminated distribution less clear. The evolution of the degeneration pattern over survival periods from 3 to 56 days suggests that these laminar distributions reflect the existence of several different types of optic terminal ramification present in all parts of the tecum. A selective laminar distribution of such optic afferent types correlates well with our own and other Golgi studies. The results of the autoradiography experiments are broadly compatible with these findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号