首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single-neuron activities were recorded in the hindlimb region of the primary somatosensory cortex and part of area 5 in awake Japanese monkeys. A total of 1050 units were isolated from five hemispheres of four animals. Receptive fields (RFs) and submodalities were identified for 90% of isolated neurons in areas 3a and 3b. The percentage decreased as the recoding site moved to the more caudal areas. Deep or skin submodality neurons were dominant in area 3a or area 3b, respectively. Deep submodality neurons increased in more caudal areas and were the majority in areas 2 and 5. These observations were consistent with those in the hand and/or digit or arm and/or trunk region. The identified neurons were classified by their RF positions into four types: the foot, leg, foot and leg, or hindlimb and other body parts type. Among 831 identified neurons, 33 neurons had bilateral RFs, 14 had ipsilateral RFs, and the rest (N=784) had contralateral RFs. The relative incidence of neurons with bilateral or ipsilateral RFs among identified neurons was less than 1% in areas 3a, 3b, and 1, and 16% or 25% in areas 2 or 5, respectively. Within areas 2 and 5, the percentage of neurons with bilateral or ipsilateral RFs was significantly smaller in the foot type (5%) than in other RF types (24-57%). RFs of the foot type were on the sole or single toe but never on multiple toes. These observations contrasted with the previous findings that neurons with bilateral RFs were more frequently seen in the hand and/or digit region and that RFs on multiple digit tips were dominant there. The present study thus demonstrated that neurons with bilateral RFs do exist in the hindlimb region. Similarly to the forelimb region, they were found mostly in areas 2 and 5, the caudalmost areas of the postcentral gyrus and hierarchically higher stages in information processing. The relative paucity of neurons with bilateral RFs on the foot, especially those with RFs on multiple toes, may reflect functional differences between the foot and the hand.  相似文献   

2.
Summary The receptive fields of 125 single units recorded from the binocular region of rabbit primary visual cortex have been analysed. The population of 43% radially symmetric, 23% directional, and 23% orientation selective units is similar to that of rabbit monocular visual cortex. The relative scarcity of orientation selective units and the absence of orientation columns differentiates rabbit from cat primary visual cortex. However, the majority of binocular units had similar receptive fields in each eye and very unconventional receptive fields were not encountered. Tested binocular units demonstrated summation upon simultaneous stimulation of both receptive fields. In conjunction with findings reported elsewhere, these results suggest that rabbit and cat possess a similar provision for binocular vision in spite of some differences in their cortical organisation.  相似文献   

3.
Summary Spatial summation of responses in striate neurons in cats under N2O/O2 anaesthesia was examined quantitatively both along the line of the optimal stimulus orientation (length summation) using moving light bars and single light and dark edge stimuli, and at right angles to the optimal orientation (width summation) using stationary flashing bars. Activity profiles and length-response curves were prepared from simple, complex and hypercomplex I and II cells. An activity profile indicates the responsiveness of a cell at locations along the length of its receptive field. The activity profiles from all cell types were usually well fitted by Gaussian functions. Length summation occurs both in end-free (simple and complex) and, to a lesser extent, in end-stopped (hypercomplex I and II) cells over a wide range of stimulus contrasts (0.13 to 0.95). The linearity of length summation was tested either by comparing the recorded length-response curves with the curves predicted from the linear integration of the activity profiles or by comparing the response to the activation of two regions of the receptive field with the sum of the responses to each region activated separately. Although length summation was usually non-linear (either greater than or less than direct proportionality) it was more nearly linear in complex than it was in simple and hypercomplex I cells. Mechanisms responsible for non-linear length summation were studied, including a threshold for discharge, response saturation and summation of end-zone inhibition. Complex cells show little width summation for bars wider than 0.3 °. In simple and hypercomplex I cells there was also relatively little width summation either in an ON or an OFF discharge region at contrasts above about 0.4 but at lower contrasts width summation may be approximately linear. Spatial summation of responses does not appear to be a useful characteristic for distinguishing one striate cell type from another.  相似文献   

4.
Summary Effects of electrical stimulation of the basal ganglia (caudate nucleus and putamen) and cortex (gyrus proreus and compositus) on the receptive fields and response properties of units in the visual cortex of cats were assessed using single lines, double lines and multiple lines (gratings). In the single line experiment caudate stimulation significantly increased the spontaneous activity, optimal firing rate and receptive field size of visual cortex neurons whereas putamen stimulation decreased these parameters. Stimulation of gyrus proreus enhanced, while that of gyrus compositus diminished optimal firing rate without affecting spontaneous activity; in addition, stimulation of ipsilateral proreus and compositus increased the receptive field size whereas their contralateral homologues decreased it. In the double line experiment, proreus and caudate stimulation increased the magnitude of the facilitatory effect of progressive separation of the lines over certain ranges whereas compositus and putamen stimulation increased the inhibitory influences. Orientation selectivity and spatial frequency tuning characteristics were unaffected by the electrical stimulations of any of the four sites. Thus three categories of network properties were delineated: those characterized by remaining invariant to any cerebral stimulation; those characterized by overall activation as by basal ganglia stimulation; and those characterized as interactive which were responsive especially to cortical stimulation.This research was supported by a postdoctoral fellowship from the Medical Research Council of Canada to Maurice Ptito, a predoctoral fellowship from the National Research Council of Canada to Maryse C. Lassonde and NIMH Grant MH12970 and NIMH Career Research Award MH15214 to Karl H. Pribram  相似文献   

5.
Summary The responses of rabbit striate cortex neurons to light or optic nerve shock were tested in 633 units in 54 rabbit pups 3–25 days of age. Units were driven by optic nerve shock at the youngest ages tested, but could not be driven by light until postnatal day eight. It was found that the symmetric receptive field types (concentric, uniform, motion) were present at or near the time of eye opening (10–11 days), while the asymmetric types (directional, simple, complex, oriented-directional) did not appear until several days later. All adult receptive field types were first seen at day 18. Until about day 20, cells with indefinite response properties were much more numerous than in the adult, and it is suggested thab cells with asymmetric receptive fields may differentiate out of the indefinite group. Development of visual response in the striate cortex is markedly retarded when compared to that in the superior colliculus.  相似文献   

6.
Britvina T  Eggermont JJ 《Neuroscience》2008,154(4):1576-1588
It was often thought that synchronized rhythmic epochs of spindle waves disconnect thalamo-cortical system from incoming sensory signals. The present study addresses this issue by simultaneous extracellular action potential and local field potential (LFP) recordings from primary auditory cortex of ketamine-anesthetized cats during spindling activity. We compared cortical spectrotemporal receptive fields (STRF) obtained during spindling and non-spindling epochs. The basic spectro-temporal parameters of "spindling" and "non-spindling" STRFs were similar. However, the peak-firing rate at the best frequency was significantly enhanced during spindling epochs. This enhancement was mainly caused by the increased probability of a stimulus to evoke spikes (effectiveness of stimuli) during spindling as compared with non-spindling epochs. Augmented LFPs associated with effective stimuli and increased single-unit pair correlations during spindling epochs suggested higher synchrony of thalamo-cortical inputs during spindling that resulted in increased effectiveness of stimuli presented during spindling activity. The neuronal firing rate, both stimulus-driven and spontaneous, was higher during spindling as compared with non-spindling epochs. Overall, our results suggests that thalamic cells during spindling respond to incoming stimuli-related inputs and, moreover, cause more powerful stimulus-related or spontaneous activation of the cortex.  相似文献   

7.
Summary The properties of the receptive fields of visual cortex neurons of cats were studied manually and by a computer controlled system using single lines, double lines and multiple lines (gratings). The multiple selectivities of each of the receptive fields studied make it necessary to abandon the concept that each cell functions as a feature detector. Instead, an attempt was made to classify the receptive field properties with the aim to delineate the transfer functions (of the total networks) served by each property. When tested with one-line stimulus, cells with simple receptive field properties diffefed from cells with complex receptive field properties as to their velocity selectivity (simple: 1 ° to 3 °/s; complex: 4 ° to 10 °/s), spontaneous activity (lower for cells with simple properties), optimal firing rate (lower for cells with simple properties) and receptive field size (smaller for cells with simple properties) but not for orientation and direction selectivity. When tested with a 2-lines moving stimulus, the responses of cells with simple properties were facilitated by the progressive separation of the lines whereas the responses of cells with complex receptive field properties were inhibited. When multiple lines, i.e. gratings, were used, an equivalence between simple and X properties and complex and Y properties was shown, while the sustained/transient classification proved to be independent of the simple/complex (X/Y) classification. Thus, receptive field properties can be classified into three categories: one reflects the input to the receptive fields; a second deals with the interactive properties of the fields; while a third appears more related to the overall properties of the network.This research was supported by a postdoctoral fellowship from the Medical Research Council of Canada to Maurice Ptito, a predoctoral fellowship from the National Research Council of Canada to Maryse C. Lassende and NIMH Grant MH12970 and NIMH Career Research Award MH15214 to Karl H. Pribram  相似文献   

8.
Summary Receptive fields (RFs) of 59 cortical taste neurons (35 in the granular insular area, area GI, 21 in the dysgranular insular area, area DI, and 3 in the agranular insular area, area AI) were identified in the oral cavity of the rat. The fraction of the neurons with RFs in the anterior oral cavity only was significantly larger in area GI (74.3%) than in area DI (42.9%). On the other hand, the fraction of neurons with RFs in both the anterior and posterior oral cavity was larger in area DI (42.9%) than in area GI (11.4%). On the whole, it is suggested that area GI is involved in discrimination of several taste stimuli in the oral cavity, whereas in area DI taste information originating from various regions of the oral cavity is integrated. When neurons were classified according to the best stimulus which most excited the neuron among the four basic tastes, different categories of taste neurons had RFs in different parts of the oral cavity. It is suggested that, in either taste area, different categories of taste neurons are involved in different sorts of taste coding. The majority of neurons in both areas had bilateral RFs. In area GI, neurons with RFs on single subpopulations of taste buds were significantly more numerous at the rostral region of the cortex than at the caudal region. There was no such relation between RF types and cortical localization in area DI. Otherwise, topographic representation of the oral cavity by taste neurons on the cortical surface was not obvious. RF features of taste neurons did not differ across layers in either cortical area.  相似文献   

9.
The spatial (magnitude and eccentricity) and spatial-frequency (optimum frequency and width of pass band) characteristics of the receptive fields of the cat visual cortex were investigated. It was shown that in accordance with the predictions of the theory of piecewise Fourier analysis, linear and quasilinear receptive fields of a single size comprise a modulus in each of the fields of which the index of complexity (ratio of size of field to number of periods of its optimum frequency) equals the optimum frequency multiplied by a coefficient that is constant for the given modulus. Five moduli were found with field sizes of 2.6, 3.8, 5.2, 6.2, and 7.0°, shifting with increase in the size of the modulus towards the periphery of the field of view. In accordance with predictions, when the index of complexity is fixed the width of the pass band declines inversely proportionately to the size of the fields. The obtained data directly support the hypothesis according to which the receptive fields effect a piecewise quasi-Fourier expansion of the image.Translated from Fiziologicheskii Zhurnal SSSR imeni I. M. Sechenova, Vol. 69, No. 5, pp. 614–622, May, 1983.  相似文献   

10.
Previous studies have suggested that the descending pathway from the primary somatosensory (SI) cortex to the ventral posterior nucleus of the thalamus has only a mild facilitative influence over thalamic neurons. Given the large numbers of corticothalamic terminations within the rat somatosensory thalamus and their complex topography, we sought to examine the role of corticothalamic feedback in the genesis of spatiotemporal receptive fields and the integration of complex tactile stimuli in the thalamus. By combining focal cortical inactivation (produced by microinjection of the GABA(A) agonist muscimol), with chronic multielectrode recordings, we observed that feedback from the rat SI cortex has multiple influences on its primary thalamic relay, the ventral posterior medial (VPM) nucleus. Our data demonstrate that, when single-whisker stimuli were used, the elimination of cortical feedback caused significant changes in the spatiotemporal structure of the receptive fields of VPM neurons. Cortical feedback also accounted for the nonlinear summation of VPM neural responses to simultaneously stimulated whiskers, in effect "linearizing" the responses. These results argue that the integration and transmission of tactile information through VPM are strongly influenced by the state of SI cortex.  相似文献   

11.
Experiments were done in -choralose anesthetized cats to determine whether local disinhibition would expand the sensory receptive field (RF) of motor cortical neurons. Most of the neurons (n = 17) responded only to a rapid high velocity "tap" of the paw or forearm, often requiring movement of a joint, while four cells responded to light touch of the skin. The receptive field of single neurons was re-examined after microiontophoretic ejection of bicuculline (BIC). In all 21 neurons examined, BIC produced an expansion of the RF (mean 4 times before drug). Expansion was seen most often in the proximal-distal axis (17 neurons) but was also commonly seen in the mediolateral axis (9 neurons). The expansion was usually restricted to the dorsal or ventral surface that the original RF was on; in only three neurons in which the pre-drug RF was on the dorsal surface of the paw did the expansion include part or the entire ventral surface. Response thresholds could only be tested in those neurons with touch RFs and showed no evidence of a change within the original RF of these cells. Local disinhibition has previously been shown to allow for the functional linking of motor cortical points, a mechanism that may be involved in the recruitment of movement related muscle synergies. The present results suggest that this may be also accompanied by expansion of the receptive fields. Such a receptive field expansion may be of functional value since motor cortical output neurons would receive sensory input integrated over a larger area of the limb. The role of local inhibitory control of sensory inputs to motor cortex neurons may thus be different than that in sensory cortex where it is thought to restrict receptive field size.  相似文献   

12.
Summary Cats that sustain lesions of the visual cortex early in life appear to perform certain visual discrimination tasks better than those operated as adults. This study sought to determine whether this recovery of visual capacities was accompanied by reorganization of single cell responses at the level of the superior colliculus. Areas 17 and 18 were ablated in adult cats and in kittens at various times during the neonatal period. Responses of units in superior colliculus ipsilateral to the lesion were recorded following a prolonged recovery period. Following cortical lesions, collicular units rarely exhibited direction selectivity, binocularity was reduced in the majority of animals, and the ocular dominance distribution was biased toward the contralateral eye. The reduction of direction selectivity and binocularity were unrelated to the animal's age at operation.This research was supported by M.R.C. Grant No. MA 5201 and NRC Grant No. A9939(to M.C.) and Grants from NIH (postdoctoral fellowshop to N.B.).  相似文献   

13.
Summary Cats reared with their visual world restricted to vertical lines for one eye and horizontal lines for the other had, in their visual cortices, units with elongated receptive fields that were either vertically or horizontally oriented. These receptive fields could be mapped only using that eye which had seen lines of the same orientation during development. Other units had diffuse, unresponsive receptive fields (Hirsch and Spinelli, 1970). Six cats, from the group above, were revived and allowed normal binocular viewing in an attempt to determine the possibility and extent of adding other types of receptive fields by giving other experiences to their visual systems. After exposure to a normal environment for up to 19 months it was found that indeed there had been a massive increase in the percentage of those classes of receptive fields that were either absent or weak at the end of the selective visual experience. Significantly, these receptive fields, acquired during binocular viewing, were very often binocular.The results, however, show that units whose response characteristics mimic the stimuli viewed during development were almost completely unaffected by normal binocular visual experience, i. e., they were monocularly activated and had the orientation appropriate for the stimuli viewed by the eye from which they could be mapped. Most impressive are a few units whose receptive field shape is almost a carbon copy of the pattern viewed during development. The data provide evidence that visual experience has a direct continuing and lasting effect on the functional connectivity of cells in the visual cortex.  相似文献   

14.
Summary A triangular array of 20 electrodes spaced by 1.5 cm was used to record the distribution of current source-densities at 12 locations over the occipital scalp, in response to tachistoscopic presentation of a 1/2° × 1/2° scanning pattern element which explored a 2° × 2° area of the visual field. Single scalp locations had visual receptive fields of the order of 1°–2° in diameter, their shape varying somewhat according to the response in question. Source density analysis can resolve details of the AEP scalp map to better than 1 cm. Even with a 1/2° × 1/2° stimulus, averages of only a few tens of sweeps gave adequate signal-to-noise ratios.  相似文献   

15.
The goal of this review is twofold. First, it aims to describe the dynamic regulation that constantly shapes the receptive fields (RFs) and maps in the thalamo-cortical sensory systems of undrugged animals. Second, it aims to discuss several important issues that remain unresolved at the intersection between behavioral neurosciences and sensory physiology. A first section presents the RF modulations observed when an undrugged animal spontaneously shifts from waking to slow-wave sleep or to paradoxical sleep (also called REM sleep). A second section shows that, in contrast with the general changes described in the first section, behavioral training can induce selective effects which favor the stimulus that has acquired significance during learning. A third section reviews the effects triggered by two major neuromodulators of the thalamo-cortical system--acetylcholine and noradrenaline--which are traditionally involved both in the switch of vigilance states and in learning experiences. The conclusion argues that because the receptive fields and maps of an awake animal are continuously modulated from minute to minute, learning-induced sensory plasticity can be viewed as a "crystallization" of the receptive fields and maps in one of the multiple possible states. Studying the interplays between neuromodulators can help understanding the neurobiological foundations of this dynamic regulation.  相似文献   

16.
Summary The concept of corresponding retinal points was examined in terms of the binocular receptive fields of neurons in Area 17 of the cerebral cortex of the cat. Only a proportion of the binocular receptive field pairs can be accurately superimposed at the one time in a given plane. The fields which are not corresponding are said to show receptive field disparity. The attempt has been made to establish, on a quantitative basis, the parameters of the receptive field disparities that occur within 5° of the visual axis. A new method was used for defining the zero (vertical) meridian. Very effective paralysis of the extraocular muscles was achieved and the very small residual eye movements that occurred were regularly monitored so that corrections could be applied to the plotted positions of the receptive field pairs. The distribution of the receptive field disparities about the position of maximal correspondence has a range of about ±1.2° (S.D. 0.6°) in both the horizontal and vertical directions for fields in the vicinity of the visual axis. Panum's fusional area may represent the extent to which receptive fields in the one eye, all with the same visual direction, are linked to fellow members of a pair in the other eye over a range of receptive field disparities. A naso-temporal overlap of receptive fields occurs which is probably little if any more than can be accounted for on the basis of the disparity of receptive fields lying along the zero (vertical) meridian. When the extraocular muscles are paralyzed the eyes diverge and the binocular receptive field pairs are separated on the tangent screen. The distribution of the horizontal and vertical separations of the receptive field pairs have been examined.Selby Fellow of the Australian Academy of Sciences.  相似文献   

17.
Summary Examination of cutaneous receptive fields (RFs) of lamina 5 cells in the lumbar spinal cord of decerebrate cats shows them to have three distinct zones with respect to mechanical and electrical stimulation. The mean response rate to both mechanical and electrical stimulation in zone 1 increases steadily up to the highest strengths used; in zone 2, surrounding zone 1 mainly proximally, mild stimuli reduce the mean rate, stronger stimuli increase it; in zone 3, mainly proximal to zone 2, all stimuli reduce the rate.Temporally, zone 1, electric shocks near threshold produce bursts of firing followed by inhibition. With increased stimulus strength, the bursts lengthen to a second or more. In zones 2 and 3, inhibition at all strengths is preceded at higher strengths by bursts of firing.Cold-blocking the spinal cord at lower thoracic levels reversibly increases the ongoing activity of these cells, increases the area of zones 1 and 2, and almost completely suppresses all inhibition.Stimulation of dorsal columns and threshold stimulation of distant dorsal roots inhibits ongoing and induced activity. Barbiturate decreases ongoing activity and the duration of firing produced by cutaneous electrical stimulation but does not decrease inhibition.These results are consistent with a model in which low-threshold fibres are excitatory only over a small central area of the RF of a lamina 5 cell (zone 1), high threshold fibres are excitatory over a larger area (zones 1 and 2), and low threshold fibres are inhibitory over the entire receptive field (zones 1, 2 and 3) with a slower time-course. This inhibition is tonically enhanced by descending influences in the decerebrate cat.It is suggested that the high and low threshold fibres correspond approximately to the small and large diametre fibres whose balance is the basis for the coding of pain in the theory of melzack and wall.Wellcome Trust Fellow, on leave of absence from the Weizmann Institute of Science, Israel.  相似文献   

18.
Summary Simple cells in the macaque striate cortex were tested with bars, edges and gratings. Spatial frequency tuning curves could be predicted from the spatial profiles plotted with bars and edges and the bandwidth could be evaluated more accurately by computing the mean from measured and predicted tuning curves. The results suggest that the mean relative spatial frequency bandwidth (f/fo) is nearly constant and of a moderate value. But at each optimal spatial frequency, cells with different bandwidths (about a factor of two) were recorded. The shapes of spatial response profiles resemble the corresponding spatial and spatial frequency characteristics of line and edge detectors evaluated psychophysically. Among the remaining cell types, concentric cells tend to be tuned to lower spatial frequencies and have broader bandwidths, whereas periodic cells prefer higher spatial frequencies and have narrower bandwidths. Thus the mean relative bandwidth tends to decrease significantly with spatial frequency (as required by a system of patch-by-patch Fourier analysis) only when cells with poor orientation selectivity and the non-linear silent periodic cells are included along with the simple cells. Simple cells, on their own, seem to form a quasi-linear contrast processing system which is more biased towards spatial accuracy than spatial frequency selectivity.Supported by the Wellcome Trust and the Alexander von Humboldt Foundation  相似文献   

19.
Summary Averaged responses of binocularly-activated single units of the striate cortex of paralysed cats were studied using a single, moving visual stimulus and prisms of variable power to control the visual direction of each eye. Binocular facilitation, summation or occlusion of the monocular response occurred, depending on the type of unit and on the prism setting. Binocular stimulating conditions were optimal for a given unit when the prism setting superimposed, or very nearly superimposed, the receptive field pair on the same plane as the moving stimulus. Under these optimal conditions, most units showed summation or facilitation of the monocular responses, with a minority showing occlusion. When the prism setting was changed from the optimal value, binocular occlusion could be demonstrated in all units.Curves plotting binocular response against prism setting provided information on the specificity, temporal properties and symmetry of the binocular response. The binocular response of simple units showed great specificity with a sharply defined peak on the response curve at a particular prism setting. There was variation from one simple unit to another in the exact prism setting required to give the optimal response. A proportion of complex units, despite large receptive field size, showed binocular specificity with a very narrow range of facilitation, of the same order as that shown by simple units. Other complex units showed binocular facilitation over a wide range of prism settings.Selby Fellow of the Australian Academy of Sciences.  相似文献   

20.
Summary The majority of cells in the dorsal nucleus of the lateral geniculate body (LGNd) in the cat have two receptive fields: one for each eye. Of the cells tested for binocularity (113), only 21 (18%) were purely monocular. The remainder had receptive fields for the non-dominant eye, the great majority of which (81 or 88%) were purely inhibitory and only 11 (12%) were excitatory. Cells with receptive fields for the non-dominant eye were found in all three laminae (A, A1 and B) of the LGNd. The proportion of inhibitory receptive fields for the non-dominant eye was slightly greater when the dominant eye was ipsilateral (77%) than when it was contralateral (68%). The distribution of the binocular receptive field pairs about points of exact correspondence in the visual field had a standard deviation of about 0.9° in both horizontal and vertical directions.The properties of the inhibitory receptive fields were studied with moving slits of light and stationary flashing spots. Most of the fields were purely inhibitory and varied in size from 1.5° to 6° across. There were no specific stimulus requirements other than a change in contrast within the receptive field. The inhibitory effect was usually fairly weak, the spontaneous discharge of the neuron being inhibited much more readily than the driven discharge. The latency of the inhibition to a stationary flashing spot was about 50 msec, the inhibition was maximal about 20 msec after the onset and lasted up to about 400 msec.Binocular inhibition is not mediated by a corticogeniculate pathway from the visual areas since it survives removal of areas 17, 18 and 19 and the middle suprasylvian gyrus. It was concluded that the most likely mechanism was via interneurons whose axons cross the borders from one cell layer to another.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号