首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD7 and CD28 are Ig superfamily molecules expressed on thymocytes and mature T cells that share common signaling 0mechanisms and are co-mitogens for T cell activation. CD7-deficient mice are resistant to lipopolysaccharide (LPS)-induced shock syndrome, and have diminished in vivo LPS-triggered IFN-gamma and tumor necrosis factor (TNF)-alpha production. CD28-deficient mice have decreased serum Ig levels, defective IgG isotype switching, decreased T cell IL-2 production and are resistant to Staphylococcus aureus enterotoxin-induced shock. To determine synergistic roles CD7 and CD28 might play in thymocyte development and function, we have generated and characterized CD7/CD28 double-deficient mice. CD7/CD28-deficient mice were healthy, reproduced normally, had normal numbers of thymocyte subsets and had normal thymus histology. Anti-CD3 mAb induced similar levels of apoptosis in CD7-deficient, CD28-deficient and CD7/CD28 double-deficient thymocytes as in control C57BL/6 mice (P = NS). Similarly, thymocyte viability, apoptosis and necrosis following ionomycin or dexamethasone treatment were the same in control, CD7-deficient, CD28-deficient and CD7/CD28-deficient mice. CD28-deficient and CD7/CD28-deficient thymocytes had decreased [3H]thymidine incorporation responses to concanavalin A (Con A) stimulation compared to control mice (P < or = 0.01 and P < or = 0.05 respectively). CD7/CD28 double-deficient mice had significantly reduced numbers of B7-1/B7-2 double-positive cells compared to freshly isolated wild-type, CD7-deficient and CD28-deficient thymocytes. Con A-stimulated CD4/CD8 double-negative (DN) thymocytes from CD7/CD28 double-deficient mice expressed significantly lower levels of CD25 when compared to CD4/CD8 DN thymocytes from wild-type, CD7-deficient and CD28-deficient mice (P < 0.05). Anti-CD3-triggered CD7/CD28-deficient thymocytes also had decreased IFN-gamma and TNF-alpha production compared to C57BL/6 control, CD7-deficient and CD28-deficient mice (P < or = 0.05). Thus, CD7 and CD28 deficiencies combined to produce abnormalities in the absolute number of B7-1/B7-2-expressing cells in the thymus, thymocyte IL-2 receptor expression and CD3-triggered cytokine production.  相似文献   

2.
Apoptotic protease-activating factor 1 (Apaf-1) is a component of the apoptosome which is required for the activation of procaspase-9. As Apaf-1 knockout (KO) (Apaf-1-/-) mice die before birth, the role of Apaf-1 during thymic selection was investigated using 5 day foetal thymic organ culture (FTOC) of thymi obtained at gestational day 15. There was a lower ratio of CD4 single-positive (SP) to CD8 SP cells and decreased apoptosis of CD4+CD8+ (DP) thymocytes from Apaf-1-/- mice compared with wild-type. To determine if these defects resulted in increased production of neglected thymocytes, the Apaf-1-/- mice were crossed with the T-cell receptor (TCR)-alpha-chain KO mice. There was no difference in thymocyte development in the thymi of TCR-alpha-/-Apaf-1-/- and TCR-alpha-/-Apaf-1+/+ mice 5 days after FTOC. To determine if Apaf-1 is involved in apoptosis during death by negative or positive selection, FTOC of the thymus of Apaf-1-/- Db/HY TCR-alphabeta transgenic (Tg) mice was carried out. There was decreased apoptosis of the HY clonal-specific M33+ thymocytes and an increased percentage of the autoreactive CD8+M33+ thymocytes in male, but not female Apaf-1-/- Db/HY TCR Tg mice. Our data suggest that Apaf-1 is not involved in positive selection or death by neglect, but may have a partial role in negative selection during early thymic T-cell development.  相似文献   

3.
The T-cell repertoire is shaped by the positive and negative selection of immature CD4(+) CD8(+) double positive (DP) thymocytes. Positive selection of DP T cells to the CD4(+) CD8(-) and CD4(-) CD8(+) simple positive (SP) lineages is a multistep process which involves cellular interactions between thymocytes and stromal cells. Mutant nackt (nkt/nkt) mice have been shown to have a deficiency in the CD4(+) CD8(-) T-cell subset both in the thymus and in the periphery. The present report suggests that nkt/nkt mice present alterations in early steps of positive selection because they show decreases in the percentages of CD69(+) and CD5(+) cells within the DP subset. Experiments involving bone marrow transfer and thymic chimeras demonstrate that the thymic epithelium of nkt/nkt mice is involved in the alterations registered during positive selection and dictates the ultimate fate of CD4(+) SP cells.  相似文献   

4.
During thymic development, immature thymocytes expressing major histocompatibility complex (MHC) class I-restricted T cell receptors (TcR) differentiate into CD8+ T cells with cytolytic functions. To evaluate the role of CD8 in positive and negative selection during thymic ontogeny, mice rendered CD8-null by gene targeting were bred with three lines of transgenic mice expressing unique MHC class I-restricted TcR. In all three instances CD8 was required for positive selection of MHC class I-restricted transgenic T cells. The efficiency of positive selection decreased in accordance with a reduced level of CD8 expression on thymocytes. Surprisingly, there was a differential requirement for CD8 expression in negative selection of MHC class I-restricted thymocytes, depending on the antigen specificity of TcR. These observations show that CD8 is essential for positive selection but is differentially required for negative selection of MHC class I-restricted T cells. Thus thymic selection, at least for negative selection, can occur in the absence of the CD8 accessory molecule.  相似文献   

5.
CD6, a 130-kDa surface glycoprotein, is expressed primarily on cells of T lineage. A co-stimulatory role for CD6 in mature T cells has been shown, but the function of CD6 during thymocyte development is unknown. Since CD6 ligands are expressed on thymic epithelium, their interactions with CD6 could be important in thymic selection. In this report we show that CD6 is developmentally regulated in human and mouse thymocytes, and further demonstrate that increase in the level of CD6 expression correlates with expression of the selection marker CD69. We also show that activation via CD2 induces CD6 expression on mature human thymocytes and on a subset of immature human thymocytes that are resistant to apoptosis. In human and mouse thymocytes that express heterogeneous TCR, CD6 increases occur as double-positive thymocytes are selected to a single-positive stage. In contrast, in thymocytes from TCR transgenic mice, CD6 is barely increased following selection, suggesting that as functional avidity increases, requirements for CD6-dependent co-stimulation decrease. Taken together, these results indicate that during thymic development CD6-dependent signals may contribute both to thymocyte survival, and to the overall functional avidity of selection in both man and mouse.  相似文献   

6.
Negative selection plays a key role in the clonal deletion of autoreactive T cells in the thymus. However, negative selection is incomplete; as high numbers of autoreactive T cells can be detected in normal individuals, mechanisms that regulate negative selection must exist. In this regard, we previously reported that CD24, a GPI-anchored glycoprotein, is required for thymic generation of autoreactive T lymphocytes. The CD24-deficient 2D2 TCR transgenic mice (2D2(+) CD24(-/-) ), whose TCR recognizes myelin oligodendrocyte glycoprotein (MOG), fail to generate functional 2D2 T cells. However, it was unclear if CD24 regulated negative selection, and if so, what cellular mechanisms were involved. Here, we show that elimination of MOG or Aire gene expression in 2D2(+) CD24(-/-) mice - through the creation of 2D2(+) CD24(-/-) MOG(-/-) or 2D2(+) CD24(/) ~Aire(-/-) mice - completely restores thymic cellularity and function of 2D2 T cells. Restoration of CD24 expression on DCs, but not on thymocytes also partially restores 2D2 T-cell generation in 2D2(+) CD24(-/-) mice. Taken together, we propose that CD24 expression on thymic antigen-presenting cells (mTECs, DCs) down-regulates autoantigen-mediated clonal deletion of autoreactive thymocytes.  相似文献   

7.
8.
Interaction of TCRs on CD4+CD8+ immature T cell with MHC-peptide complexes on stromal cells is required for positive and negative selection in the thymus. Identification and characterization of a subpopulation of CD4+CD8+ thymocytes undergoing selection in the thymus will aid in understanding the mechanisms underlying lineage commitment and thymic selection. Herein, we describe the expression of Ly-6 ThB on developing thymocytes. The majority of CD4+CD8+ thymocytes express Ly-6 ThB at high levels. Its expression is downregulated in a subset of CD4+CD8+ thymocytes as well as in mature CD4+CD8- and CD4-CD8+ T cells. More importantly, interaction of TCR/coreceptor with the self-MHC-peptide contributes to the downregulation of ThB expression on developing thymocytes. These findings indicate that downregulation of ThB on CD4+CD8+ thymocytes identifies a unique subset (CD4+CD8+ThBneg-low) of thymocytes that has received the initial signals for thymic selection but have not yet downregulated the CD4 and CD8 cell surface expression. In addition, these results also indicate that a high frequency (approximately 20-40%) of CD4+CD8+ immature thymocytes receive these initial signals during thymic selection.  相似文献   

9.
Two populations of CD4 single positive (SP) thymocytes were found in transgenic mice bearing class I-restricted Mls-1a reactive (V beta 8.1) TCR genes in the absence of the restriction element. CD3high CD4 SP cells were deleted in the presence of Mls-1a and were cortisone resistant, whereas CD3low CD4 SP cells were not deleted in the presence of Mls-1a and were cortisone sensitive. Intravenous transfer of CD3low CD4 SP cells into nude mice resulted in significant peripheral expansion of these cells with apparent upregulation of CD3. These data indicate that CD3low CD4 SP thymocytes represent an intermediate stage in the transition from CD3low double positive (DP) to CD3high SP thymocytes and raise the possibility that these cells may hve undergone positive but not negative selection events (at least to Mls-1a). Furthermore the fact that CD3high DP thymocytes were also deleted by Mls-1a in these mice suggests strongly that sensitivity to Mls-1a deletion is dependent upon stage of thymic maturation (as revealed by TCR density) rather than CD4/CD8 phenotype.  相似文献   

10.
Death of T cell precursors in the human thymus: a role for CD38   总被引:2,自引:0,他引:2  
Thymic T cell maturation depends on interactions between thymocytes and cells of epithelial and hematopoietic lineages that control a selective process whereby developing T cells with inappropriate or self-reactive receptors die. Molecules involved in this process are the TCR expressed on thymocytes together with the CD3 complex and MHC-peptide on accessory cells. However, other molecules may favor or prevent death of thymocytes, thus playing a role in selection. CD38 is expressed by the majority of human thymocytes, mainly at the double-positive (DP) stage. In contrast, CD38 is not found on subcapsular double-negative (DN) thymocytes and on a proportion of medullary single-positive (SP) thymocytes. CD38 enhances death of thymocytes when it is cross-linked by goat anti-mouse (GAM) antiserum or by one of its ligands, CD31, expressed by thymic epithelial cells or transfected into murine fibroblasts (L cells). As most thymocytes are at an intermediate (DP) stage of development, it is likely that these cells are most vulnerable to death mediated via MHC-peptide-TCR interactions that is increased by CD38 cross-linking. DN and SP thymocytes are refractory to CD38-induced apoptosis. Accessory molecules, e.g. CD38, are expressed during thymic cell maturation and their presence is relevant for the survival or death of DP T cells in the course of selection. Based on our data, CD38 enhances thymocyte death by interacting with CD31 expressed by accessory cells. In addition, CD28 expression on developing thymocytes also appears to play a role for their selection and it synergizes with CD38 to induce apoptosis of DP thymocytes.  相似文献   

11.
Positive and negative selection steps in the thymus prevent non-functional or harmful T cells from reaching the periphery. To examine the role of glucocorticoid (GC) hormone and its intracellular receptor (GCR) in thymocyte development we measured the GCR expression in different thymocyte subpopulations of BALB/c mice with or without previous dexamethasone (DX), anti-CD3 mAb, RU-486 and RU-43044 treatment. Four-color labeling of thymocytes allowed detection of surface CD4/CD8/CD69 expression in parallel with intracellular GCR molecules by flow cytometry. Double-positive (DP) CD4+CD8+ thymocytes showed the lowest GCR expression compared to double-negative (DN) CD4-CD8- thymocytes and mature single-positive (SP) cells. DX treatment caused a concentration-dependent depletion of the DP cell population and increased appearance of mature SP cells with reduced GCR levels. GCR antagonists (RU-486 or RU-43044) did not influence the effect of DX on thymocyte composition; however, RU-43044 inhibited the high-dose GC-induced GCR down-regulation in SP and DN cells. GCR antagonists alone did not influence the maturation of thymocytes and receptor numbers. Combined low-dose anti-CD3 mAb and DX treatment caused an enhanced maturation (positive selection) of thymocytes followed by the elevation of CD69+ DP cells. The sensitivity of DP thymocytes with a GCRlow phenotype to GC action and the ineffectiveness of the GCR antagonist treatment may reflect a non-genomic GC action in the thymic selection steps.  相似文献   

12.
The phenotype of mouse thymic B cells and their capacity to induce T cell negative selection in vitro were analyzed. Thymic B cells expressed B cell markers such as IgM, Fc gamma receptor, CD44, heat-stable antigen, LFA-1 and CD40. In addition, they were positive for the activation molecule CD69 and displayed high levels of B7-2. Although thymic B cells expressed CD5 on their surface, no CD5-specific mRNA was detected. Moreover, thymic B cells induced a stronger deletion of TCR-transgenic (TG) thymocytes than splenic B cells, which had low CD69 and B7-2 levels. Interestingly, CD40-activated splenic B cells up-regulated CD69 and B7-2 and acquired a capacity to induce T cell deletion comparable to that of thymic B cells. Moreover, thymic B cells from CD40-deficient mice displayed lower CD69 and B7-2 levels than control thymic B cells, and lower capacity to induce the deletion of TCR TG thymocytes. These results support the hypothesis that CD40-mediated activation of thymic B cells determines a high efficiency of antigen presentation, suggesting that within the thymus B cells may play an important role in the elimination of autoreactive thymocytes.  相似文献   

13.
Sato T  Ohno S  Hayashi T  Sato C  Kohu K  Satake M  Habu S 《Immunity》2005,22(3):317-328
To understand how CD8 expression is regulated during the transition process from CD4+8+ (CD4 and CD8 double positive, DP) to CD4-8+ (CD8 single positive, CD8SP) cells in the thymus, the involvement of Runx proteins in the alteration of chromatin configuration was investigated. Using the chromatin immunoprecipitation assay, we first demonstrated that Runx proteins bind to the stage-specific CD8 enhancer, as well as the CD4 silencer, in CD8SP thymocytes. Among Runx family members, Runx3 expression was initiated in DP thymocytes receiving a positive selection signal and increased in concert with differentiation to the CD8SP stage. Furthermore, reactivation of the CD8 gene, as well as CD4 silencing, was suppressed in positively selected thymocytes of Runx dominant-negative transgenic mice. These results suggest that Runx proteins, especially Runx3, are involved in lineage specification of CD8 T cells and provide important information for understanding the mechanism for the mutually exclusive expression of coreceptors in mature thymocytes.  相似文献   

14.
We know little about the way mature CD4 (helper) and CD8 (killer) T cells develop from thymic CD4+CD8+ precursors. Here we show that small but not large CD4+CD8+ cells with high levels of the alpha beta T cell receptor (TcRhigh) result from positive selection. Neither CD4+CD8+ cells with low TcR levels nor large CD4+CD8+ thymocytes with high TcR levels differentiate in vitro. However, small CD4+CD8+ cells with high TcR levels develop in vitro into mature cells by gradually decreasing the surface levels of one or the other co-receptor and acquiring the potential to respond with proliferation to ligation of the TcR. Small CD4+CD8+ cells with high levels of a major histocompatibility complex (MHC) class I-restricted transgenic TcR develop in vitro exclusively into CD4-CD8+ cells while small CD4+CD8+ TcRhigh cells with heterogeneous TcR from various mice yield both CD4 and CD8 T cells. While these experiments are consistent with an instructive model of CD4/CD8 lineage commitment they do not rule out other mechanisms which require multiple TcR-MHC ligand interactions in the generation of mature alpha beta T cells.  相似文献   

15.
Thymocytes with a CD4hiCD8lo coreceptor-skewed (CRS) phenotype have been shown to contain precursors for CD8 single-positive (SP) thymocytes, in addition to precursors for CD4 SP cells. The selection mechanisms that stimulate CD4hiCD8lo cells to revert to the CD8 lineage are not known. Mice transgenic (tg) for the major histocompatibility complex (MHC) class I-restricted P14 T cell receptor (TCR), on the H-2bm13 background, generate a large number of CD4hiCD8lo CRS thymocytes. We analyzed the developmental potential and the differentiation requirements of the CD4hiCD8lo population of these mice. Using reaggregate thymic organ cultures (RTOC), we observed that these cells efficiently and almost exclusively differentiate into CD8 SP cells. Differentiation occurred independent of whether or not the MHC haplotype of the thymic stroma corresponds to the MHC restriction of the tg TCR. Loss of CD4 was independent of thymic stroma, up-regulation of CD8 to full levels was dependent on thymic stroma but independent of MHC haplotype. After trypsin treatment and overnight incubation, these CRS cells re-expressed CD8 but failed to re-express CD4, indicating that they are in the process of terminating CD4 synthesis. CD8 SP cells derived from the CRS cells proliferate in response to peptide-pulsed antigen-presenting cells. Our data suggest that CD4hiCD8lo CRS thymocytes bearing the P14 tg TCR have completed positive selection and differentiate autonomously into functionally competent CD8 SP cells.  相似文献   

16.
Development of mature CD4 and CD8 single-positive T cells requires a process known as positive selection, which depends on the specific recognition of self-peptide-MHC complexes on thymic stromal cells by immature CD4+CD8+ thymocytes. We have used an in vitro reaggregate system to study the positive selection of thymocytes by conditionally immortalized thymic epithelial clones. Thymocytes from mice transgenic for the F5 alpha beta TCR, specific for a peptide from the influenza nucleoprotein in the context of H-2Db, are positively selected in the H- 2b MHC background, but fail to mature in mice expressing the H-2q haplotype. Development of embryonic day 15 F5 H-2q transgenic thymocytes was followed in reaggregate cultures supplemented with H-2b- expressing epithelial clones. A conditionally immortalized cortical epithelial clone, derived from H-2Kb-tsA58 transgenic mice, was found to be as efficient as freshly isolated thymic stromal cells in positively selecting CD8 transgenic thymocytes. In contrast, an H-2b- expressing kidney epithelial clone did not augment positive selection above background levels, implying that the effect of the thymic epithelial clone was not merely the presentation of selecting MHC molecules. Mature transgenic thymocytes generated in reaggregate cultures were able to differentiate into functionally competent cytotoxic T cells. This model provides an important in vitro system for the detailed study of the specific molecular interactions leading to positive selection of developing thymocytes.   相似文献   

17.
The T lymphocyte-specific protein tyrosine kinase p56lck (Lck) is an essential component of the TCR-mediated signal transduction complex. Lck knockout mice have reduced numbers of double-positive thymocytes and very few mature single-positive cells, particularly of the CD4 lineage. Here we demonstrate the ability of a tetracycline-based tissue-specific inducible Lck transgene to restore expansion of early thymocytes and maturation of single-positive cells in Lckneg mice upon induction with doxycycline. Restoration of Lck expression is particularly important for positive selection to the CD4+ lineage but has a lesser impact on selection to the CD8+ lineage, suggesting activation of Lck is an important component of the signals involved in lineage choice during thymic differentiation.  相似文献   

18.
Transgenic mice expressing the E7 protein of HPV16 from the keratin 14 promoter demonstrate increasing thymic hypertrophy with age. This hypertrophy is associated with increased absolute numbers of all thymocyte types, and with increased cortical and medullary cellularity. In the thymic medulla, increased compartmentalization of the major thymic stromal cell types and expansion of thymic epithelial cell population is observed. Neither an increased rate of immature thymocyte division nor a decreased rate of immature thymocyte death was able to account for the observed hypertrophy. Thymocytes with reduced levels of expression of CD4 and/or CD8 were more abundant in transgenic (tg) mice and became increasingly more so with age. These thymic SP and DP populations with reduced levels of CD4 and/or CD8 markers had a lower rate of apoptosis in the tg than in the non-tg mice. The rate of export of mature thymocytes to peripheral lymphoid organs was less in tg animals relative to the pool of available mature cells, particularly for the increasingly abundant CD4lo population. We therefore suggest that mature thymocytes that would normally die in the thymus gradually accumulated in E7 transgenic animals, perhaps as a consequence of exposure to a hypertrophied E7-expressing thymic epithelium or to factors secreted by this expanded thymic stromal cell population. The K14E7 transgenic mouse thus provides a unique model to study effects of the thymic epithelial cell compartment on thymus development and involution.  相似文献   

19.
We have analyzed the origin and development of unusual CD4-CD8- alpha/beta T cell receptor-positive peripheral T cells produced in large numbers by mice homozygous for the gld mutation (C3H-gld/gld). These mice may be an important model for investigating processes controlling T cell development. Bone marrow transfers demonstrated that the gld defect was intrinsic to bone marrow-derived cells. Clonal deletion of potentially autoreactive cells was observed in peripheral gld CD4-CD8-, CD4+CD8-, and CD4-CD8+ T cells, as well as mature thymocytes. This suggests that gld CD4-CD8- T cells have passed through the thymus in ontogeny and that gld autoimmunity does not result from a general defect in elimination of self-reactive thymocytes. These observations, combined with demethylation of the CD8 gene in the CD4-CD8- population, support prior expression of CD4 and/or CD8 in gld CD4-CD8- T cell ontogeny, perhaps at a CD4+CD8+ stage. Steroid sensitivity of gld thymocytes and CD4-CD8- T cells was normal. Therefore, we found no gross abnormalities in two major mechanisms of inducible cell death in the gld thymus, the clonal deletion process associated with tolerance and the steroid-inducible endogenous endonuclease thought to be involved in apoptosis of unselected thymocytes. The data suggest that if gld CD4-CD8- T cells arise via escape from normal elimination in the thymus, they must do so by a novel defect in thymic selection (perhaps related to aberrant positive signals) and/or are expanded by an extrathymic process which allows clonal deletion to occur.  相似文献   

20.
CD28/B7 costimulation has been implicated in the induction and progression of autoimmune diseases. Experimentally induced models of autoimmunity have been shown to be prevented or reduced in intensity in mice rendered deficient for CD28 costimulation. In sharp contrast, spontaneous diabetes is exacerbated in both B7-1/B7-2-deficient and CD28-deficient NOD mice. These mice present a profound decrease of the immunoregulatory CD4+CD25+ T cells, which control diabetes in prediabetic NOD mice. These cells are absent from both CD28KO and B7-1/B7-2KO mice, and the transfer of this regulatory T cell subset from control NOD animals into CD28-deficient animals can delay/prevent diabetes. The results suggest that the CD28/ B7 costimulatory pathway is essential for the development and homeostasis of regulatory T cells that control spontaneous autoimmune diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号