首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have developed assays that distinguish tau protein incorporated into the core structure of the paired helical filament (PHF) from non-PHF tau protein in brain tissue, whether soluble or insoluble. The PHF content was 19-fold greater in Alzheimer's disease cases compared with cognitively intact controls, and in temporal cortex the difference was 40-fold. There was a threefold decrease in soluble tau protein in Alzheimer's disease cases compared with normal age-matched controls, the decrease being greatest in frontal cortex. The PHF content was closely correlated with the number of tau-immunoreactive dystrophic neurites in plaques and throughout the neuropil, whereas counts of neurofibrillary tangles were poorer predictors of PHF content. beta-Amyloid deposits correlated neither with PHF content nor with neurofibrillary pathology. These findings suggest that Alzheimer's disease is characterized by a substantial redistribution of available tau protein from free to PHF-incorporated fractions and that PHF accumulation may be important in neurites as well as tangles in predicting the extent of cognitive impairment in Alzheimer's disease.  相似文献   

2.
The 2 major types of neurodegeneration with brain iron accumulation (NBIA) are the pantothenate kinase type 2 (PANK2)-associated neurodegeneration (PKAN) and NBIA2 or infantile neuroaxonal dystrophy (INAD) due to mutations in the phospholipase A2, group VI (PLA2G6) gene. We have recently demonstrated clinical heterogeneity in patients with mutations in the PLA2G6 gene by identifying a poorly defined subgroup of patients who present late with dystonia and parkinsonism. We report the clinical and genetic features of 7 cases with PLA2G6 mutations. Brain was available in 5 cases with an age of death ranging from 8 to 36 years and showed widespread alpha-synuclein-positive Lewy pathology, which was particularly severe in the neocortex, indicating that the Lewy pathology spread corresponded to Braak stage 6 and was that of the “diffuse neocortical type”. In 3 cases there was hyperphosphorylated tau accumulation in both cellular processes as threads and neuronal perikarya as pretangles and neurofibrillary tangles. Later onset cases tended to have less tau involvement but still severe alpha-synuclein pathology. The clinical and neuropathological features clearly represent a link between PLA2G6 and parkinsonian disorders.  相似文献   

3.
The microtubule-associated protein tau is a major cytoskeletal protein involved in the neurofibrillary tangles of Alzheimer's disease. Although tau is predominantly a neuronal protein, it has been demonstrated in glia and other nonneuronal cells. We describe the presence of microtubule-associated protein tau epitopes in various muscle fiber lesions in oculopharyngeal and Becker muscular dystrophy, dermatomyositis, central core disease, neurogenic atrophy, and in the recovery phase of an attack of malignant hyperthermia. Western blot demonstrated a 100- to 110-kd tau-immunoreactive protein probably corresponding to 'big tau' as described in peripheral nerves. Tau immunoreactivity in muscle fiber lesions usually co-localized with tubulin, although electron microscopy failed to show an increase in microtubules. Tau and tubulin reactivity also correlated with the presence of desmin and vimentin epitopes. Possible explanations for the presence of tau are briefly discussed.  相似文献   

4.
Familial British dementia (FBD), pathologically characterized by cerebral amyloid angiopathy (CAA), amyloid plaques, and neurofibrillary degeneration, is associated with a stop codon mutation in the BRI gene resulting in the production of an amyloidogenic fragment, amyloid-Bri (ABri). The aim of this study was to assess the distribution of ABri fibrillar and nonfibrillar lesions and their relationship to neurofibrillary pathology, astroglial and microglial response using immunohistochemistry, confocal microscopy, and immunoelectron microscopy in five cases of FBD. Abnormal tau was studied with immunoblotting. We present evidence that ABri is deposited throughout the central nervous system in blood vessels and parenchyma where both amyloid (fibrillar) and pre-amyloid (nonfibrillar) lesions are formed. Ultrastructurally amyloid lesions appear as bundles of fibrils recognized by an antibody raised against ABri, whereas Thioflavin S-negative diffuse deposits consist of amorphous electron-dense material with sparse, dispersed fibrils. In contrast to nonfibrillar lesions, fibrillar ABri is associated with a marked astrocytic and microglial response. Neurofibrillary tangles and neuropil threads occurring mainly in limbic structures, are found in areas affected by all types of ABri lesions whereas abnormal neurites are present around amyloid lesions. Immunoblotting for tau revealed a triplet electrophoretic migration pattern. Our observations confirm a close link between ABri deposition and neurodegeneration in FBD.  相似文献   

5.
Alz-50 is a monoclonal antibody that stains the neurofibrillary pathology of Alzheimer's disease, as well as apparently normal nerve cells that are at risk of developing neurofibrillary tangles. On immunoblots it recognizes microtubule-associated protein tau and proteins of 60-68 kDa that are associated with Alzheimer's disease. We have used recombinant tau proteins expressed in E. coli to map the Alz-50 epitope to amino-terminal residues 2-10, a region common to all known human tau isoforms. A direct correspondence between immunoblots and histological staining was established by the abolition of Alz-50 staining following adsorption with recombinant tau proteins retaining amino-terminal sequences. This suggests that tau pathology represents an early event in the development of the neurofibrillary pathology of Alzheimer's disease.  相似文献   

6.
The pathological hallmarks of Alzheimer's disease include neurofibrillary tangles, neuropil threads and neuritic plaques. Neurofibrillary tangles and neuropil threads are comprised of paired helical filaments which are themselves composed of a hyperphosphorylated form of the microtubule-associated protein tau. Neuritic plaques are extracellular deposits of aggregated beta amyloid associated with neurites containing hyperphosphorylated tau. The mechanisms by which the neurofibrillary tangles and neuritic plaques develop in Alzhemier's disease are not clear but it is hypothesized that sulphated glycosaminoglycans are important in their formation. This impression is based on the finding that the glycosaminoglycan, heparan sulphate, is found associated with neurofibrillary tangles, neuritic plaques and neuropil threads while dermatan sulphate, chondroitin sulphate and keratan sulphate immunoreactivity is found around neuritic plaques in brains of Alzheimer's disease patients. Furthermore, in vitro studies demonstrate that sulphated glycosaminoglycans such as heparan sulphate and the closely related molecule heparin interact with tau and potentiate its phosphorylation by a number of serine/threonine kinases, reduce its ability to bind to microtubules and induce paired helical filament formation, all properties associated with tau isolated from Alzheimer's disease brain. Thus, we were interested to learn whether intracerebral injection of the sulphated glycosaminoglycan heparin would give rise to alterations in the cytoskeletal protein tau in the rat brain. Although no cytoskeletal changes were observed, to our considerable surprise we found that the intrahippocampal injection of heparin gave rise to seizures. We have investigated this unexpected effect further in vivo and by using in vitro electrophysiological techniques.  相似文献   

7.
Previously, we have shown that caspase-6 but not caspase-3 is activated by serum deprivation and induces a protracted cell death in primary cultures of human neurons (LeBlanc AC, Liu H, Goodyer C, Bergeron C, Hammond J: Caspase-6 role in apoptosis of human neurons, amyloidogenesis and Alzheimer's disease. J Biol Chem 1999, 274:23426-23436 and Zhang Y, Goodyer C, LeBlanc A: Selective and protracted apoptosis in human primary neurons microinjected with active caspase-3, -6, -7, and -8. J Neurosci 2000, 20:8384-8389). Here, we show with neoepitope antibodies that the p20 subunit of active caspase-6 increases twofold to threefold in the affected temporal and frontal cortex but not in the unaffected cerebellum of Alzheimer's disease brains and is present in neurofibrillary tangles, neuropil threads, and the neuritic plaques. Furthermore, a neoepitope antibody to caspase-6-cleaved Tau strongly detects intracellular tangles, extracellular tangles, pretangles, neuropil threads, and neuritic plaques. Immunoreactivity with both antibodies in pretangles indicates that the caspase-6 is active early in the pathogenesis of Alzheimer's disease. In contrast to the nuclear and cytosolic localization of active caspase-6 in apoptotic neurons of fetal and adult ischemic brains, the active caspase-6 in Alzheimer's disease brains is sequestered into the tangles or neurites. The localization of active caspase-6 may strongly jeopardize the structural integrity of the neuronal cytoskeletal system leading to inescapable neuronal dysfunction and eventual cell death in Alzheimer's disease neurons. Our results suggest that active caspase-6 is strongly implicated in human neuronal degeneration and apoptosis.  相似文献   

8.
Neurofibrillary tangles form in a specific spatial and temporal pattern in Alzheimer's disease. Although tangle formation correlates with dementia and neuronal loss, it remains unknown whether neurofibrillary pathology causes cell death. Recently, a mouse model of tauopathy was developed that reversibly expresses human tau with the dementia-associated P301L mutation. This model (rTg4510) exhibits progressive behavioral deficits that are ameliorated with transgene suppression. Using quantitative analysis of PHF1 immunostaining and neuronal counts, we estimated neuron number and accumulation of neurofibrillary pathology in five brain regions. Accumulation of PHF1-positive tau in neurons appeared between 2.5 and 7 months of age in a region-specific manner and increased with age. Neuron loss was dramatic and region-specific in these mice, reaching over 80% loss in hippocampal area CA1 and dentate gyrus by 8.5 months. We observed regional dissociation of neuronal loss and accumulation of neurofibrillary pathology, because there was loss of neurons before neurofibrillary lesions appeared in the dentate gyrus and, conversely, neurofibrillary pathology appeared without major cell loss in the striatum. Finally, suppressing the transgene prevented further neuronal loss without removing or preventing additional accumulation of neurofibrillary pathology. Together, these results imply that neurofibrillary tangles do not necessarily lead to neuronal death.  相似文献   

9.
Recapitulation of tau pathologies in an animal model has been a long-standing goal in neurodegenerative disease research. We generated transgenic (TgTauP301L) mice expressing a frontotemporal dementia with parkinsonism linked to chromosome 17 (FTPD-17) mutation within the longest form of tau (2N, 4R). TgTauP301L mice developed florid pathology including neuronal pretangles, numerous Gallyas-Braak-positive neurofibrillary tangles, and glial fibrillary tangles in the frontotemporal areas of the cerebrum, in the brainstem, and to a lesser extent in the spinal cord. These features were accompanied by gliosis, neuronal loss, and cerebral atrophy. Accumulated tau was hyperphosphorylated, conformationally changed, ubiquitinated, and sarkosyl-insoluble, with electron microscopy demonstrating wavy filaments. Aged TgTauP301L mice exhibited impairment in hippocampally dependent and independent behavioral paradigms, with impairments closely related to the presence of tau pathologies and levels of insoluble tau protein. We conclude that TgTauP301L mice recreate the substantial phenotypic variation and spectrum of pathologies seen in FTDP-17 patients. Identification of genetic and/or environmental factors modifying the tau phenotype in these mice may shed light on factors modulating human tauopathies. These transgenic mice may aid therapeutic development for FTDP-17 and other diseases featuring accumulations of four-repeat tau, such as Alzheimer's disease, corticobasal degeneration, and progressive supranuclear palsy.  相似文献   

10.
Alzheimer disease (AD) is characterized by numerous senile plaques (SP) in addition to widespread neocortical neurofibrillary tangles (NFT). Some elderly have pathologic aging (PA), which is characterized by numerous SP composed of diffuse amyloid deposits with few or no NFT confined to the limbic lobe. Both AD and PA represent a range of Alzheimer type pathology (ATP). Some cases of progressive supranuclear palsy (PSP) have concurrent ATP, but the relationship between ATP and PSP has not been addressed. In this study, a consecutive series of PSP cases were divided into three groups according to the degree of concurrent ATP – pure PSP, PSP/PA and PSP/AD. Braak NFT stage was significantly greater in PSP/AD compared with both PSP/PA and PSP. Among the pathologic variables studied in middle frontal, superior temporal and motor cortices, there were no differences between PSP and PSP/PA except for SP. In PSP/AD, there was greater neuronal tau pathology (pretangles, NFT and neuropil threads) in middle frontal and superior temporal cortices, probably a reflection of ATP since there was no comparable increase in PSP-related glial tau pathology in these regions. The APOEɛ4 allele frequency was significantly higher in PSP/PA and PSP/AD than in PSP. These results strongly argue that ATP in PSP represents independent disease processes even when present in the same brain.  相似文献   

11.
Heme oxygenase-1 is an important enzyme that degrades heme, a pro-oxidant, leading to the formation of antioxidant molecules. In this study we demonstrate by immunocytochemistry close association of heme oxygenase-1 with Alzheimer neurofibrillary pathology and with the neurofibrillary tangles found in progressive supranuclear palsy and subacute sclerosing panencephalitis. In Alzheimer's disease, using two different rabbit antisera against heme oxygenase-1 protein, we localized, using immunocytochemical methods, heme oxygenase-1 to neurofibrillary tangles, senile plaque neurites, granulovacuolar degeneration, and neuropil threads. Only light background staining was seen in young controls and sporadic lesion-related immunoreactivity in age-matched controls. The increase in heme oxygenase-1 protein in association with the neurofibrillary pathology of Alzheimer's disease and other diseases characterized by neurofibrillary tangles supports the notion that the generation of free radicals and oxidative stress plays a role in the pathogenesis of neurofibrillary pathology.  相似文献   

12.
Neurofibrillary degeneration induced by misfolded protein tau is considered to be one of the key pathological hallmarks of Alzheimer's disease (AD). In the present study, we have introduced a novel transgenic rat model expressing a human truncated tau that encompasses 3 microtubule binding domains (3R) and a proline-rich region (3R tau151-391). The transgenic rats developed progressive age-dependent neurofibrillary degeneration in the cortical brain areas. Neurofibrillary tangles (NFTs) satisfied several key histological criteria used to identify neurofibrillary degeneration in human Alzheimer's disease including argyrophilia, Congo red birefringence, and Thioflavin S reactivity. Neurofibrillary tangles were also identified with antibodies used to detect pathologic tau in the human brain, including DC11, recognizing an abnormal tau conformation and antibodies that are specific for hyperphosphorylated forms of tau protein. Moreover, neurofibrillary degeneration was characterized by extensive formation of sarkosyl insoluble tau protein complexes consisting of rat endogenous and truncated tau species. Interestingly, the transgenic rats did not show neuronal loss either in the cortex or in the hippocampus. We suggest that novel transgenic rat model for human tauopathy represents a valuable tool in preclinical drug discovery targeting neurofibrillary degeneration of Alzheimer's type.  相似文献   

13.
Transgenic mice expressing mutant (P301L) human tau develop neurofibrillary tangles, amyotrophy and progressive motor disturbance. We present ultrastructural features of neuronal degeneration in this model that suggests involvement of both neurofibrillary and autophagic processes in neurodegeneration. Neurons undergoing neurofibrillary degeneration contain tau-immunoreactive, 15-20 nm-wide straight or wavy filaments with no periodic twists. Tau filaments were found in two types of affected neurons. One type resembled neurons with neurofibrillary tangles (NFT) that were filled with numerous filaments that displaced sparse cytoplasmic organelles to the periphery. Microtubules were almost completely absent. The nucleus remained centrally located, but showed lobulations due to deep infoldings. The other type resembled ballooned neurons seen in some human tauopathies. The nucleus was peripherally placed, but normal appearing. The cytoplasmic organelles were dispersed throughout the swollen perikarya, the Golgi complex was fragmented and duplicated, while mitochondria and other organelles appeared normal. Tau filaments similar to those in NFT were sparse and not tightly packed. Microtubules were also sparse. Many autophagic vacuoles were present in these cells. Heterogeneous appearing axonal swellings resembling spheroids in human tauopathies were present in gray and white matter. Unlike normal appearing axons, axonal spheroids were filled with tau-immunoreactive filaments and autophagic vacuoles, in addition to normal appearing neurofilaments and microtubules. These P301L transgenic mice exhibit many features common to human tauopathies, making them a valuable model to study the pathogenesis of these uncommon disorders.  相似文献   

14.
Progression of neuritic and Abeta pathology in the cerebral cortex during aging and Alzheimer disease is well known, but the chronology of the various types of lesions (Abeta deposition, amyloid formation, inflammation, ubiquitination, tangle formation) within a given area has not been fully elucidated. We examined these lesions in the primary visual cortex (Brodmann area 17), correlating them with the severity of the disease (as evaluated by the cognitive status and the number of cortical samples that contained neurofibrillary tangles). Four 'grades' were identified. At grade 1, only deposits of Abeta peptide were noticed. At grade 2, Congo red positive deposits, and processes containing ubiquitin and cathepsin D immunoreactivity around plaque cores could also be found. At grade 3, neuritic plaques and neuropil threads were present, and at grade 4, neurofibrillary tangles. The density of all the lesions dramatically increased at grade 4. The sequence of isocortical lesions from grade 1 to grade 4 is compatible with a cascade of events beginning with deposition of Abeta peptide and ending with neurofibrillary tangle.  相似文献   

15.
A recent report has described the appearance of silver positive, tau-immunoreactive astrocytes in the brains of patients with progressive supranuclear palsy (PSP) (Neurosci. Lett., 135 (1992) 99-102). In this study we confirmed this finding in two cases of PSP by using Bodian silver staining and immunohistochemistry with antibody to human tau protein. By electron microscopy we demonstrated that fibrillary masses present in these unique astrocytes were made up of straight tubules that were indistinguishable from those of neurofibrillary tangles of PSP. The term 'glial fibrillary tangle' was proposed for these structures.  相似文献   

16.
Paired helical filaments, the dominant filamentous components of Alzheimer's disease (AD), neurofibrillary tangles (NFT), neuropil threads, and the dystrophic neurites associated with amyloid rich senile plaques, are composed of abnormally phosphorylated derivatives of tau known as A68 proteins. Indeed the inappropriate phosphorylation of Ser396, which is adjacent to the microtuble binding domain in tau, may contribute to the transformation of tau into A68 and prevent A68 from efficiently binding to microtubules. The reduced levels of normal soluble tau proteins in AD brains may be the consequence of a multi-step process whereby normal tau is converted into A68 and sequestered in paired helical filaments. To elucidate the events involved in this process, we compared the relative levels of binding-competent (BC) and binding-incompetent (BI) tau with the level of A68 in six different regions (hippocampus, fornix, frontal grey and white matter, and cerebellar grey and white matter) of fresh AD and control brains. When the AD brains were compared as a group with neurologically normal and diseased non-AD controls, quantitative immunoblot analysis demonstrated a selective reduction of BC tau in regions of the AD brains with abundant neurofibrillary lesions (NFTs, neuropil threads, and senile plaque neurites) and in their associated white matter areas. The level of BI tau was similar in both AD and control brains. In contrast, A68 was present only in the AD brains, but it was confined to those brain regions with abundant NFTs, neuropil threads, and senile plaques. We view the reductions in BC tau in fornix and frontal white matter to be a consequence of the reductions in their associated grey matter regions i.e., hippocampus and frontal grey matter. Although there is no strict relationship between the reduction of BC tau and the level of A68 within an individual brain, the comparison of the AD group with the control group suggests that the grey matter of the affected regions may be the site for the conversion of BC tau into A68. Further, this process may occur rapidly or via pathways that do not involve BI tau since the levels of BI tau were similar in AD and control brains. Although the complete sequence of events leading to the transformation of tau into A68 and paired helical filaments remains to be elucidated, our data provide compelling evidence that A68 proteins are generated from tau-proteins in selected regions of the AD brain where neurofibrillary lesions comprised of paired helical filaments accumulate.  相似文献   

17.
背景:阿尔茨海默病患者的痴呆症状严重程度与脑组织中的神经原纤维缠结数量呈正相关,神经原纤维缠结的主要蛋白成分为过度磷酸化的蛋白tau,tau蛋白的病理改变出现在痴呆症状之前并独立于?-淀粉样多肽的异常。  目的:构建tau基因的真核表达质粒,建立稳定表达tau的稳转细胞株。 方法:采用反转录-聚合酶链反应方法,从反转录反应合成的人成神经瘤细胞(SH-SY5Y)的总cDNA中,扩增出约1.0 kb的tau cDNA片段,用BamHⅠ和XhoⅠ双酶切后定向克隆到真核细胞表达载体pcDNA3.1中,用限制性内切酶酶切分析和DNA序列分析鉴定重组质粒;用脂质体介导法将质粒转染入培养的人胚肾细胞,并利用G418进行稳定表达tau的稳转细胞株的筛选,免疫印迹和免疫荧光细胞化学方法检测tau基因的表达。 结果与结论:人tau cDNA已克隆到真核细胞表达载体pcDNA3.1中;免疫印迹和免疫荧光细胞化学结果显示人tau基因在人胚肾细胞中获得表达,tau蛋白表达的阳性信号主要位于细胞胞质,说明成功构建了pcDNA3.1-tau的真核表达质粒,建立了稳定表达tau的稳转细胞株。  相似文献   

18.
19.
The biological basis for the selective vulnerability of neurons in Alzheimer's disease (AD) is elusive. Aggrecan-based perineuronal nets (PNs) of the extracellular matrix have been considered to contribute to neuroprotection in the cerebral cortex. In the present study, we investigated the organization of the aggrecan-based extracellular matrix in subcortical regions known to be preferentially affected by tau pathology in AD. Immunocytochemistry of aggrecan core protein was combined with detection of neurofibrillary degeneration. The results show that many regions affected by tau pathology in AD, such as the basal nucleus of Meynert, the dorsal thalamus, hypothalamic nuclei, raphe nuclei, and the locus coeruleus were devoid of a characteristic aggrecan-based extracellular matrix. Regions composed of nuclei with clearly different intensity of tau pathology, such as the amygdala, the thalamus and the oculomotor complex, showed largely complementary distribution patterns of neurofibrillary tangles and PNs. Quantification in the rostral interstitial nucleus of the longitudinal fascicle potentially affected by tau pathology in AD revealed that tau pathology was not accompanied by loss of aggrecan-based PNs. Neuro-fibrillary tangles in net-associated neurons extremely rarely occurred in the pontine reticular formation. We conclude that the low vulnerability of neurons ensheathed by PNs previously described for cortical areas in AD represents a more general phenomenon that also applies to subcortical regions. The aggrecan-based extracellular matrix of PNs may thus, be involved in neuroprotection.  相似文献   

20.
Immunizing transgenic PDAPP mice, which overexpress mutant APP and develop beta-amyloid deposition resembling plaques in Alzheimer's disease (AD), results in a decrease of amyloid burden when compared with non-treated transgenic animals. Immunization with amyloid-beta peptide has been initiated in a randomised pilot study in AD. Yet a minority of patients developed a neurological complication consistent with meningoencephalitis and one patient died; the trial has been stopped. Neuropathological examination in that patient showed meningoencephalitis, and focal atypically low numbers of diffuse and neuritic plaques but not of vascular amyloid, nor regression of tau pathology in neurofibrillary tangles and neuropil threads. The present neuropathological study reports the second case of meningoencephalitis following immunization with amyloid-beta peptide in AD, and has been directed toward exploring mechanisms underlying decreased tau pathology in relation with amyloid deposit regression, and possible molecular bases involved in the inflammatory response following immunization. Inflammatory infiltrates were composed of CD8+, CD4+, CD3+, CD5+ and, rarely, CD7+ lymphocytes, whereas B lymphocytes and T cytotoxic cells CD16, CD57, TIA and graenzyme were negative. Characteristic neuropathological findings were focal depletion of diffuse and neuritic plaques, but not of amyloid angiopathy, and the presence of small numbers of extremely dense (collapsed) plaques surrounded by active microglia, and multinucleated giant cells filled with dense Abeta42 and Abeta40, in addition to severe small cerebral blood vessel disease and multiple cortical hemorrhages. Reduced amyloid burden was accompanied by low amyloid-associated oxidative stress responses (reduced superoxide dismutase-1: SOD-1 expression) and by local inhibition of the stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and p38 kinase which are involved in tau phosphorylation. These results support the amyloid cascade of tau phosphorylation in AD regarding phosphorylation of tau dependent on beta-amyloid deposition in neuritic plaques, but not of tau in neurofibrillary tangles and threads. Furthermore, amyloid reduction was accompanied by increased expression of the PA28a/beta inductor, and of LMP7, LMP2 and MECL1 subunits of the immunoproteasome in microglial and inflammatory cells surrounding collapsed plaques, and in multinucleated giant cells. Immunoproteasome subunit expression was accompanied by local presentation of MHC class I molecules. Release of antigenic peptides derived from beta-amyloid processing may enhance T-cell inflammatory responses accounting for the meningoencephalitis following amyloid-beta peptide immunization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号