首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
White matter hyperintensities (WMH) in elderly individuals with vascular diseases are presumed to be due to ischemic small vessel diseases; however, their etiology is unknown. We examined the cross-sectional relationship between cerebrovascular hemodynamics and white matter structural integrity in elderly individuals with vascular risk factors. White matter hyperintensity volumes, fractional anisotropy (FA), and mean diffusivity (MD) were obtained from MRI in 48 subjects (75±7years). Pulsatility index (PI) and dynamic cerebral autoregulation (dCA) was assessed using transcranial Doppler ultrasound of the middle cerebral artery. Dynamic cerebral autoregulation was calculated from transfer function analysis (phase and gain) of spontaneous blood pressure and flow velocity oscillations in the low (LF, 0.03 to 0.15 Hz) and high (HF, 0.16 to 0.5 Hz) frequency ranges. Higher PI was associated with greater WMH (P<0.005). Higher phase across all frequency ranges was associated with greater FA and lower MD (P<0.005). Lower gain was associated with higher FA in the LF range (P=0.001). These relationships between phase and FA were significant in the territories limited to the middle cerebral artery as well as across the entire brain. Our results show a strong relationship between impaired cerebrovascular hemodynamics (PI and dCA) and loss of cerebral white matter structural integrity (WMH and DTI metrics) in elderly individuals.  相似文献   

2.
Central obesity and the aging brain   总被引:7,自引:0,他引:7  
BACKGROUND: Central adiposity as an indicator of visceral fat is linked to vascular and metabolic factors that in turn are related to cognitive decline and dementia. OBJECTIVE: To determine whether larger waist-hip ratio (WHR) is associated with structural brain changes that underlie cognitive decline and dementia. DESIGN: Cross-sectional analysis of an epidemiologic cohort study of cognitive and functional decline (Sacramento Area Latino Study on Aging). SETTING: California Central Valley. PARTICIPANTS: A total of 112 individuals selected from an ongoing cohort study of 1789 older Latino individuals. Baseline anthropomorphic measures (WHR) and measurements of fasting blood glucose, cholesterol, and insulin levels and blood pressure were obtained. MAIN OUTCOME MEASURES: Baseline magnetic resonance images were analyzed quantitatively to determine the hippocampal volumes in the right and left hemispheres and rated for the percentage of white matter hyperintensities. RESULTS: Greater WHR (P = .02) and older age (P<.001) were negatively related to hippocampal volumes. The WHR and age were positively related to white matter hyperintensities (P = .02 and P = .001, respectively). A 1-SD increase in WHR was associated with a 0.2-SD decrease in hippocampal volume and a 27% increase in white matter hyperintensities. These relationships were not affected by adjustment for body mass index, total cholesterol, fasting blood glucose, and insulin levels or systolic blood pressure in the models. CONCLUSION: A larger WHR may be related to neurodegenerative, vascular, or metabolic processes that affect brain structures underlying cognitive decline and dementia.  相似文献   

3.
In cerebral small vessel disease (CSVD), both white matter hyperintensities (WMH) of presumed vascular origin and the normal-appearing white matter (NAWM) contain microstructural brain alterations on diffusion-weighted MRI (DWI). Contamination of DWI-derived metrics by extracellular free-water can be corrected with free-water (FW) imaging. We investigated the alterations in FW and FW-corrected fractional anisotropy (FA-t) in WMH and surrounding tissue and their association with cerebrovascular risk factors. We analysed 1,000 MRI datasets from the Hamburg City Health Study. DWI was used to generate FW and FA-t maps. WMH masks were segmented on FLAIR and T1-weighted MRI and dilated repeatedly to create 8 NAWM masks representing increasing distance from WMH. Linear models were applied to compare FW and FA-t across WMH and NAWM masks and in association with cerebrovascular risk. Median age was 64 ± 14 years. FW and FA-t were altered 8 mm and 12 mm beyond WMH, respectively. Smoking was significantly associated with FW in NAWM (p = 0.008) and FA-t in WMH (p = 0.008) and in NAWM (p = 0.003) while diabetes and hypertension were not. Further research is necessary to examine whether FW and FA-t alterations in NAWM are predictors for developing WMH.  相似文献   

4.
OBJECTIVE: To determine the relationship between MRI periventricular white matter hyperintensities, cerebral white matter volumes, neuropathologic findings, and cognitive status in aged individuals. BACKGROUND: The significance of periventricular white matter hyperintensities seen on MR images in aged individuals remains controversial. The Nun Study is a longitudinal cohort aging study in which all 678 initially enrolled participants agreed to autopsy neuropathologic examination. METHODS: We used MRI to measure white matter volumes of the cerebral hemispheres in 52 formaldehyde-fixed brains for correlation with white matter and neocortical pathology, postmortem MRI observations, and cognitive measures. RESULTS: Reduced white matter volume is associated with dementia, but periventricular white matter hyperintensities were not related to white matter volume, stroke, or dementia. CONCLUSIONS: Our results do not support the hypothesis that periventricular hyperintensities seen on MR images have deleterious consequences in these aged individuals.  相似文献   

5.
To determine whether white matter network disruption mediates the association between MRI markers of cerebrovascular disease (CeVD) and cognitive impairment. Participants (n = 253, aged ≥60 years) from the Epidemiology of Dementia in Singapore study underwent neuropsychological assessments and MRI. CeVD markers were defined as lacunes, white matter hyperintensities (WMH), microbleeds, cortical microinfarcts, cortical infarcts and intracranial stenosis (ICS). White matter microstructure damage was measured as fractional anisotropy and mean diffusivity by tract based spatial statistics from diffusion tensor imaging. Cognitive function was summarized as domain-specific Z-scores.Lacunar counts, WMH volume and ICS were associated with worse performance in executive function, attention, language, verbal and visual memory. These three CeVD markers were also associated with white matter microstructural damage in the projection, commissural, association, and limbic fibers. Path analyses showed that lacunar counts, higher WMH volume and ICS were associated with executive and verbal memory impairment via white matter disruption in commissural fibers whereas impairment in the attention, visual memory and language were mediated through projection fibers.Our study shows that the abnormalities in white matter connectivity may underlie the relationship between CeVD and cognition. Further longitudinal studies are needed to understand the cause-effect relationship between CeVD, white matter damage and cognition.  相似文献   

6.
We characterize the associations of total cerebral small vessel disease (SVD) burden with brain structure, trajectories of vascular risk factors, and cognitive functions in mid-to-late life. Participants were 623 community-dwelling adults from the Whitehall II Imaging Sub-study with multi-modal MRI (mean age 69.96, SD = 5.18, 79% men). We used linear mixed-effects models to investigate associations of SVD burden with up to 25-year retrospective trajectories of vascular risk and cognitive performance. General linear modelling was used to investigate concurrent associations with grey matter (GM) density and white matter (WM) microstructure, and whether these associations were modified by cognitive status (Montreal Cognitive Asessment [MoCA] scores of < 26 vs. ≥ 26). Severe SVD burden in older age was associated with higher mean arterial pressure throughout midlife (β = 3.36, 95% CI [0.42-6.30]), and faster cognitive decline in letter fluency (β = −0.07, 95% CI [−0.13–−0.01]), and verbal reasoning (β = −0.05, 95% CI [−0.11–−0.001]). Moreover, SVD burden was related to lower GM volumes in 9.7% of total GM, and widespread WM microstructural decline (FWE-corrected p < 0.05). The latter association was most pronounced in individuals who demonstrated cognitive impairments on MoCA (MoCA < 26; F3,608 = 2.14, p = 0.007). These findings highlight the importance of managing midlife vascular health to preserve brain structure and cognitive function in old age.  相似文献   

7.
Microvascular damage in the hippocampus is emerging as a central cause of cognitive decline and dementia in aging. This could be a consequence of age-related decreases in vascular elasticity, exposing hippocampal capillaries to excessive cardiac-related pulsatile flow that disrupts the blood-brain barrier and the neurovascular unit. Previous studies have found altered intracranial hemodynamics in cognitive impairment and dementia, as well as negative associations between pulsatility and hippocampal volume. However, evidence linking features of the cerebral arterial flow waveform to hippocampal function is lacking. We used a high-resolution 4D flow MRI approach to estimate global representations of the time-resolved flow waveform in distal cortical arteries and in proximal arteries feeding the brain in healthy older adults. Waveform-based clustering revealed a group of individuals featuring steep systolic onset and high amplitude that had poorer hippocampus-sensitive episodic memory (p = 0.003), lower whole-brain perfusion (p = 0.001), and weaker microvascular low-frequency oscillations in the hippocampus (p = 0.035) and parahippocampal gyrus (p = 0.005), potentially indicating compromised neurovascular unit integrity. Our findings suggest that aberrant hemodynamic forces contribute to cerebral microvascular and hippocampal dysfunction in aging.  相似文献   

8.
Consistent cerebral blood flow (CBF) is fundamental to brain function. Cerebral autoregulation ensures CBF stability. Chronic hypertension can lead to disrupted cerebral autoregulation in older people, potentially leading to blood pressure levels interfering with CBF. This study tested whether low BP and AHD use are associated with contemporaneous low CBF, and whether longitudinal change in BP is associated with change in CBF, using arterial spin labelling (ASL) MRI, in a prospective longitudinal cohort of 186 community-dwelling older individuals with hypertension (77 ± 3 years, 53% female), 125 (67%) of whom with 3-year follow-up. Diastolic blood pressure, systolic blood pressure, mean arterial pressure, and pulse pressure were assessed as blood pressure parameters. As additional cerebrovascular marker, we evaluated the ASL signal spatial coefficient of variation (ASL SCoV), a measure of ASL signal heterogeneity that may reflect cerebrovascular health. We found no associations between any of the blood pressure measures and concurrent CBF nor between changes in blood pressure measures and CBF over three-year follow-up. Antihypertensive use was associated with lower grey matter CBF (−5.49 ml/100 g/min, 95%CI = −10.7|−0.27, p = 0.04) and higher ASL SCoV (0.32 SD, 95%CI = 0.12|0.52, p = 0.002). These results warrant future research on the potential relations between antihypertensive use and cerebral perfusion.  相似文献   

9.
Volumetric estimates of subcortical and cortical structures, extracted from T1‐weighted MRIs, are widely used in many clinical and research applications. Here, we investigate the impact of the presence of white matter hyperintensities (WMHs) on FreeSurfer gray matter (GM) structure volumes and its possible bias on functional relationships. T1‐weighted images from 1,077 participants (4,321 timepoints) from the Alzheimer''s Disease Neuroimaging Initiative were processed with FreeSurfer version 6.0.0. WMHs were segmented using a previously validated algorithm on either T2‐weighted or Fluid‐attenuated inversion recovery images. Mixed‐effects models were used to assess the relationships between overlapping WMHs and GM structure volumes and overall WMH burden, as well as to investigate whether such overlaps impact associations with age, diagnosis, and cognitive performance. Participants with higher WMH volumes had higher overlaps with GM volumes of bilateral caudate, cerebral cortex, putamen, thalamus, pallidum, and accumbens areas (p < .0001). When not corrected for WMHs, caudate volumes increased with age (p < .0001) and were not different between cognitively healthy individuals and age‐matched probable Alzheimer''s disease patients. After correcting for WMHs, caudate volumes decreased with age (p < .0001), and Alzheimer''s disease patients had lower caudate volumes than cognitively healthy individuals (p < .01). Uncorrected caudate volume was not associated with ADAS13 scores, whereas corrected lower caudate volumes were significantly associated with poorer cognitive performance (p < .0001). Presence of WMHs leads to systematic inaccuracies in GM segmentations, particularly for the caudate, which can also change clinical associations. While specifically measured for the Freesurfer toolkit, this problem likely affects other algorithms.  相似文献   

10.
Neuroanatomical substrates of age-related differences in working memory and perseverative behavior were examined in a sample of healthy adults (50–81 years old). The participants, who were screened for history of neurological, psychiatric, and medical conditions known to be linked to poor cognitive performance, underwent magnetic resonance imaging (MRI) and were administered tests of working memory and perseveration. Regional brain volumes and the volume of white matter hyperintensities (WMH) were measured on magnetic resonance images. The analyses indicate that the volume of the prefrontal cortex (PFC) and the volume of white matter hyperintensities in the prefrontal region are independently associated with age-related increases in perseverative errors on the Wisconsin Card Sorting Test (WCST). When participants taking antihypertensive medication were excluded from the analysis, both the volume of the prefrontal cortex and the frontal white matter hyperintensities (FWMH) still predicted increases in perseveration. Neither reduced volume of the prefrontal cortex nor the FWMH volume was linked to age-associated declines in working memory. The volumes of the fusiform gyrus (FG) and the temporal white matter hyperintensities (TWMH) were unrelated to cognitive performance.  相似文献   

11.

Introduction

The impact of prediabetes and diabetes on cognitive decline and the potential underlying mechanisms remain unclear. We investigated whether prediabetes and diabetes accelerate cognitive decline and brain aging, and the initial pathological changes linked to microvascular processes.

Methods

Nine-year longitudinal data from the Swedish National Study on Aging and Care-Kungsholmen (n = 2746, age ≥60 years) and the magnetic resonance imaging subsample (n = 455) were used. Cognitive function was assessed with Mini-Mental State Examination. Brain magnetic resonance imaging markers included total brain tissue, white matter, gray matter, white matter hyperintensities, and hippocampal volumes.

Results

Compared with diabetes-free status, prediabetes and diabetes were independently associated with accelerated cognitive decline. Prediabetes was cross-sectionally associated with smaller total brain tissue volume (P < .01), particularly smaller white matter volume. Diabetes was associated with larger white matter hyperintensities volume. Longitudinally, diabetes was associated with faster white matter hyperintensities accumulation. No associations between prediabetes or diabetes and hippocampal volume were found.

Discussion

Diabetes and prediabetes accelerate cognitive decline and might predict microvascular lesions among dementia-free older adults.  相似文献   

12.
High blood pressure accelerates normal aging stiffness process. Arterial stiffness (AS) has been previously associated with impaired cognitive function and dementia. Our aims are to study how cognitive function and status (mild cognitive impairment, MCI and normal cognitive aging, NCA) relate to AS in a community-based population of hypertensive participants assessed with office and 24-hour ambulatory blood pressure measurements. Six hundred ninety-nine participants were studied, 71 had MCI and the rest had NCA. Office pulse pressure (PP), carotid–femoral pulse wave velocity, and 24-hour ambulatory PP monitoring were collected. Also, participants underwent a brain magnetic resonance to study cerebral small–vessel disease (cSVD) lesions. Multivariate analysis–related cognitive function and cognitive status to AS measurements after adjusting for demographic, vascular risk factors, and cSVD. Carotid–femoral pulse wave velocity and PP at different periods were inversely correlated with several cognitive domains, but only awake PP measurements were associated with attention after correcting for confounders (beta = −0.22, 95% confidence interval (CI) −0.41, −0.03). All ambulatory PP measurements were related to MCI, which was independently associated with nocturnal PP (odds ratio (OR) = 2.552, 95% CI 1.137, 5.728) and also related to the presence of deep white matter hyperintensities (OR = 1.903, 1.096, 3.306). Therefore, higher day and night ambulatory PP measurements are associated with poor cognitive outcomes.  相似文献   

13.

Background

Autism and the fragile X syndrome (FXS) are related to each other genetically and symptomatically. A cardinal biological feature of both disorders is abnormalities of cerebral cortical brain volumes. We have previously shown that the monoamine oxidase A (MAOA) promoter polymorphism is associated with cerebral cortical volumes in children with autism, and we now sought to determine whether the association was also present in children with FXS.

Methods

Participants included 47 2-year-old Caucasian boys with FXS, some of whom also had autism, as well as 34 2-year-old boys with idiopathic autism analyzed in a previous study. The MAOA promoter polymorphism was genotyped and tested for relationships with gray and white matter volumes of the cerebral cortical lobes and cerebro-spinal fluid volume of the lateral ventricles.

Results

MAOA genotype effects in FXS children were the same as those previously observed in idiopathic autism: the low activity MAOA promoter polymorphism allele was associated with increased gray and white matter volumes in all cerebral lobes. The effect was most pronounced in frontal lobe gray matter and all three white matter regions: frontal gray, F = 4.39, P = 0.04; frontal white, F = 5.71, P = 0.02; temporal white, F = 4.73, P = 0.04; parieto-occipital white, F = 5.00, P = 0.03. Analysis of combined FXS and idiopathic autism samples produced P values for these regions <0.01 and effect sizes of approximately 0.10.

Conclusions

The MAOA promoter polymorphism is similarly associated with brain structure volumes in both idiopathic autism and FXS. These data illuminate a number of important aspects of autism and FXS heritability: a genetic effect on a core biological trait of illness, the specificity/generalizability of the genetic effect, and the utility of examining individual genetic effects on the background of a single gene disorder such as FXS.  相似文献   

14.
Asymptomatic low-grade carotid artery stenosis (LGCS) is a common finding in patients with manifest arterial disease, however its relationship with brain MRI changes and cognitive decline is unclear. We included 902 patients (58 ± 10 years; 81% male) enrolled in the Second Manifestations of Arterial Disease – Magnetic Resonance (SMART-MR) study without a history of cerebrovascular disease. LGCS was defined as 1–49% stenosis on baseline carotid ultrasound, whereas no LGCS (reference category) was defined as absence of carotid plaque. Brain and white matter hyperintensity (WMH) volumes and cognitive function were measured at baseline and after 4 (n = 480) and 12 years (n = 222) of follow-up. Using linear mixed-effects models, we investigated associations of LGCS with progression of brain atrophy, WMH, and cognitive decline. LGCS was associated with greater progression of global brain atrophy (estimate −0.03; 95%CI, −0.06 to −0.01; p = 0.002), and a greater decline in executive functioning (estimate −0.02; 95%CI, −0.031 to −0.01; p < 0.001) and memory (estimate −0.012; 95%CI, −0.02 to −0.001; p = 0.032), independent of demographics, cardiovascular risk factors, and incident brain infarcts on MRI. No association was observed between LGCS and progression of WMH. Our results indicate that LGCS may represent an early marker of greater future brain atrophy and cognitive decline.  相似文献   

15.
Proneness to specific moral sentiments (e.g. pride, gratitude, guilt, indignation) has been linked with individual variations in functional MRI (fMRI) response within anterior brain regions whose lesion leads to inappropriate behaviour. However, the role of structural anatomical differences in rendering individuals prone to particular moral sentiments relative to others is unknown. Here, we investigated grey matter volumes (VBM8) and proneness to specific moral sentiments on a well-controlled experimental task in healthy individuals. Individuals with smaller cuneus, and precuneus volumes were more pride-prone, whereas those with larger right inferior temporal volumes experienced gratitude more readily. Although the primary analysis detected no associations with guilt- or indignation-proneness, subgenual cingulate fMRI responses to guilt were negatively correlated with grey matter volumes in the left superior temporal sulcus and anterior dorsolateral prefrontal cortices (right >left). This shows that individual variations in functional activations within critical areas for moral sentiments were not due to grey matter volume differences in the same areas. Grey matter volume differences between healthy individuals may nevertheless play an important role by affecting posterior cortical brain systems that are non-critical but supportive for the experience of specific moral sentiments. This may be of particular relevance when their experience depends on visuo-spatial elaboration.  相似文献   

16.
The hippocampus consists of anatomically and functionally distinct subfields that may be differentially involved in the pathophysiology of bipolar disorder (BD). Here we, the Enhancing NeuroImaging Genetics through Meta‐Analysis Bipolar Disorder workinggroup, study hippocampal subfield volumetry in BD. T1‐weighted magnetic resonance imaging scans from 4,698 individuals (BD = 1,472, healthy controls [HC] = 3,226) from 23 sites worldwide were processed with FreeSurfer. We used linear mixed‐effects models and mega‐analysis to investigate differences in hippocampal subfield volumes between BD and HC, followed by analyses of clinical characteristics and medication use. BD showed significantly smaller volumes of the whole hippocampus (Cohen''s d = −0.20), cornu ammonis (CA)1 (d = −0.18), CA2/3 (d = −0.11), CA4 (d = −0.19), molecular layer (d = −0.21), granule cell layer of dentate gyrus (d = −0.21), hippocampal tail (d = −0.10), subiculum (d = −0.15), presubiculum (d = −0.18), and hippocampal amygdala transition area (d = −0.17) compared to HC. Lithium users did not show volume differences compared to HC, while non‐users did. Antipsychotics or antiepileptic use was associated with smaller volumes. In this largest study of hippocampal subfields in BD to date, we show widespread reductions in nine of 12 subfields studied. The associations were modulated by medication use and specifically the lack of differences between lithium users and HC supports a possible protective role of lithium in BD.  相似文献   

17.
Later‐life changes in brain tissue volumes—decreases in the volume of healthy grey and white matter and increases in the volume of white matter hyperintensities (WMH)—are strong candidates to explain some of the variation in ageing‐related cognitive decline. We assessed fluid intelligence, memory, processing speed, and brain volumes (from structural MRI) at mean age 73 years, and at mean age 76 in a narrow‐age sample of older individuals (n = 657 with brain volumetric data at the initial wave, n = 465 at follow‐up). We used latent variable modeling to extract error‐free cognitive levels and slopes. Initial levels of cognitive ability were predictive of subsequent brain tissue volume changes. Initial brain volumes were not predictive of subsequent cognitive changes. Brain volume changes, especially increases in WMH, were associated with declines in each of the cognitive abilities. All statistically significant results were modest in size (absolute r‐values ranged from 0.114 to 0.334). These results build a comprehensive picture of macrostructural brain volume changes and declines in important cognitive faculties during the eighth decade of life. Hum Brain Mapp 36:4910–4925, 2015. © 2015 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc  相似文献   

18.
Alcohol consumption during pregnancy can lead to a variety of cognitive and other birth defects, collectively termed fetal alcohol spectrum disorders (FASD), and including the Fetal Alcohol Syndrome (FAS). This study examined the impact of gestational alcohol exposure on the morphology of the cingulate gyrus, given this region's role in cognitive control, attention, and emotional regulation, all of which are affected in children with FASD. Thirty-one youth (ages 8–16) with histories of heavy prenatal alcohol exposure (n = 21) and demographically matched comparison subjects (n = 10) underwent structural magnetic resonance imaging. The cingulate gyrus was manually delineated, and parcellated volumes of grey and white matter were compared across groups. Alcohol-exposed individuals had significantly smaller raw cingulate grey matter, white matter, and tissue volumes compared with controls. After adjustment for respective cranial tissue constituents, only white matter volumes remained significantly reduced, and this held regardless of whether or not the child qualified for a diagnosis of FAS. A correlation between posterior cingulate grey matter volume and the WISC-III Freedom from Distractibility Index was also observed in alcohol-exposed children. These data suggest that cingulate white matter is compromised beyond global white matter hypoplasia in alcohol-exposed individuals, regardless of FAS diagnosis. The observed volumetric reductions in the cingulate gyrus may contribute to the disruptive and emotionally dysregulated behavioral profile commonly observed in this population.  相似文献   

19.
Suicidality is a major challenge for today's health care. Evidence suggests that there are differences in cognitive functioning of suicidal patients but the knowledge about the underlying neurobiology is limited. Brain imaging offers the advantage of a non-invasive in vivo direct estimation of detailed brain structure, regional brain functioning and estimation of molecular processes in the brain.We have reviewed the literature on neuroimaging studies of the suicidal brain. This article contains studies on structural imaging such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) and functional imaging, consisting of Positron Emission Tomography (PET), Single Photon Emission Tomography (SPECT) and functional MRI (fMRI). We classified the results of the different imaging modalities in structural and functional imaging.Within our research, we found no significant differences in the suicidal brain demonstrated by Computed Tomography. Magnetic Resonance Imaging studies in subjects with a history of suicide attempt on the other hand deliver differing results, mostly pointing at a higher prevalence of white (especially deep white matter and periventricular) and grey matter hyperintensities in the frontal, temporal and/or parietal lobe and decreased volumes in the frontal and temporal lobe. There seems to be a trend towards findings of reduced grey matter volume in the frontal lobe. Overall, there is no consensus of opinion on structural imaging of the suicidal brain.Research on functional imaging is further divided into studies in resting state, studies in activation conditions and studies on brain neurotransmitters, transporters and receptors.A common finding in functional neuroimaging in resting conditions is a decreased perfusion in the prefrontal cortex of suicidal patients. During cognitive activation, perfusion deficits in the prefrontal cortex have been observed. After fenfluramine challenge, the prefrontal cortex metabolism seems to be inversely correlated to the lethality of previous suicide attempt.The few studies that examined the serotonin transporter in suicide found no significant differences in binding potential. In suicide attempters there seems to be a negative correlation between impulsivity and SERT binding. Our group found a reduced 5-HT2A binding in the frontal cortex in patients with a recent suicide attempt. The binding index was significantly lower in the deliberate self injury patients compared to the deliberate self poisoning patients.The few authors that examined DAT binding in suicide found no significant DAT differences between patients and controls. However they demonstrated significant negative correlations between DAT binding potential and mental energy among suicide attempters, but not in healthy control subjects. We did not find studies measuring the binding potential of the noradrenalin or gamma amino butyric acid transporter or receptor in suicidal subjects. Several reports have suggested abnormalities of GABA neurotransmission in depression.During our literature search, we have focused on neuroimaging studies in suicidal populations, but in the absence of evidence in the literature on this group or when further collateral evidence is appropriate, this overview expands to results in impulsive aggressive or in depressed subjects.  相似文献   

20.
Cerebral white matter hyperintensities (WMH) are a consequence of cerebral small vessel disease. Statins have been shown to reduce recurrent stroke among patients with various stroke subtypes, including lacunar stroke, which also arises from small vessel disease. In this study, we investigated the hypothesis that prestroke statin use would reduce the progression of WMH and/or cognitive decline among stroke patients with confluent WMH. Patients (n = 100) were participants of the VITAmins To Prevent Stroke magnetic resonance imaging substudy. All patients had confluent WMH on magnetic resonance imaging at baseline. Eighty-one patients completed the 2-year follow-up. We assessed general cognition and executive function using the mini-mental state examination and Mattis dementia rating scale–initiation/perseveration subscale, respectively. We compared the change in volume of WMH and cognition between prestroke statin use and prestroke nonstatin use groups. We also evaluated the effects of prestroke statin use on incident lacunes and microbleeds. The prestroke statin use group (n = 51) had less WMH volume progression (1.54 ± 4.52 cm3vs 5.01 ± 6.00 cm3, p = 0.02) compared with the prestroke nonstatin use group (n = 30). Multivariate linear regression modeling identified prestroke statin use as an independent predictor of WMH progression (β = –0.31, p = 0.008). Prestroke statin use was also associated with less decline (Mattis dementia rating scale–initiation/perseveration subscale; β = 0.47, p = 0.001). No association was observed with changes in mini-mental state examination scores. There were no between group differences on incident lacunes or incident microbleeds. Prestroke statin use may reduce WMH progression and decline in executive function in stroke patients with confluent WMH.

Electronic supplementary material

The online version of this article (doi:10.1007/s13311-014-0270-5) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号