首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 178 毫秒
1.
Recently it has been reported that during insulin-induced hypoglycemia selective attention is directed to food stimuli suggesting an adaptive cognitive strategy to escape from this potentially dangerous metabolic state. Here, we tested this hypothesis using a short-term memory task. We also aimed to define a hypoglycemic threshold level at which such an adaptive cognitive strategy first occurs. Fifteen healthy men underwent stepwise hypoglycemic (plasma glucose: 4.1-3.6-3.1-2.6 mmol/l) and euglycemic clamp experiments. Clamps were performed in a single blind fashion within a cross-over design with the order balanced across subjects. During the clamps cognitive function tests (short-term recall of food-related and non-food-related words; Stroop task) were applied at baseline and each hypoglycemic plateau, and at the corresponding time intervals of the euglycemic clamp. Performance on all cognitive function tests applied deteriorated during the hypoglycemic as compared to the euglcemic clamp (all P<0.02). Separate analyses at each hypoglycemic plateau revealed that food and non-food related short-term memory was similar during baseline and mild hypoglycemia. However, at the hypoglycemic target level of 2.6 mmol/l recall of food related words was higher than non-food related words when compared to the euglycemic control clamp condition (p=0.024). Performance on the word-color conflict Stroop task became significantly impaired first at the lowest hypoglycemic plateau (2.6 mmol/l), while performance on the Stroop subtests 'color naming' and 'word reading' were already impaired at higher plasma glucose levels (3.6 and 3.1 mmol/l; respectively). Collectively, data of the Stroop task indicate that the control of attention via executive mechanisms is less sensitive to insulin-induced hypoglycemia than pre-attentive automated stimulus processing (reading, naming). If executive control of attention becomes affected by hypoglycemia, cognitive resources appear to be preferentially allocated to the processing of food stimuli.  相似文献   

2.
Although it is well established that recurrent hypoglycemia leads to hypoglycemia unawareness, the mechanisms responsible for this are unknown. One hypothesis is that recurrent hypoglycemia alters brain glucose transport or metabolism. We measured steady-state brain glucose concentrations during a glucose clamp to determine whether subjects with type 1 diabetes and hypoglycemia unawareness may have altered cerebral glucose transport or metabolism after exposure to recurrent hypoglycemia. We compared 14 subjects with diabetes and hypoglycemia unawareness to 27 healthy control subjects. Brain glucose concentrations were measured under similar metabolic conditions using in vivo (1)H nuclear magnetic resonance (NMR) spectroscopy at 4 Tesla during a hyperglycemic clamp (plasma glucose = 16.7 mmol/l) with somatostatin and insulin. Subjects with type 1 diabetes and hypoglycemia unawareness had significantly higher brain glucose concentrations compared to that in controls under the same conditions (5.5 +/- 0.3 vs. 4.7 +/- 0.1 micromol/g wet weight, P = 0.016). These data suggest that changes in brain glucose transport or metabolism may occur as a result of recurrent hypoglycemia.  相似文献   

3.
The present study was performed to elucidate the acute effect of insulin on levels of tissue plasminogen activator (t-PA) and plasminogen activator inhibitor of endothelial cell type (PAI-1). Nine middle-aged, non-obese and non-smoking men were studied during a hyperinsulinemic, euglycemic glucose clamp for 2 h. Plasma insulin level during the clamp averaged 84 +/- 12 mU/l and euglycemia was maintained at 4.9 +/- 0.6 mmol/l. The t-PA activity gradually increased (75% mean increase after 2 h, p less than 0.001) and the PAI-1 activity decreased (49% mean decrease after 2 h, p less than 0.001) during the clamp. t-PA activity decreased and PAI-1 activity increased after the insulin infusion was ceased, but they were still 48% higher and 38% lower, respectively, after 60 min. PAI-1 and t-PA activities were not affected by saline infusion for 2 h. Thus, acute changes in the insulin levels lead to rapid alterations in the fibrinolytic system even when euglycemia is maintained. These effects may be induced by insulin itself or by the concomitant activation of the sympatho-adrenal system during the euglycemic clamp.  相似文献   

4.
Glucose is the major substrate that sustains normal brain function. When the brain glucose concentration approaches zero, glucose transport across the blood-brain barrier becomes rate limiting for metabolism during, for example, increased metabolic activity and hypoglycemia. Steady-state brain glucose concentrations in alpha-chloralose anesthetized rats were measured noninvasively as a function of plasma glucose. The relation between brain and plasma glucose was linear at 4.5 to 30 mmol/L plasma glucose, which is consistent with the reversible Michaelis-Menten model. When the model was fitted to the brain glucose measurements, the apparent Michaelis-Menten constant, Kt, was 3.3 +/- 1.0 mmol/L, and the ratio of the maximal transport rate relative to CMRglc, Tmax/CMRglc, was 2.7 +/- 0.1. This Kt is comparable to the authors' previous human data, suggesting that glucose transport kinetics in humans and rats are similar. Cerebral blood flow (CBF) was simultaneously assessed and constant above 2 mmol/L plasma glucose at 73 +/- 6 mL 100 g(-1) min(-1). Extrapolation of the reversible Michaelis-Menten model to hypoglycemia correctly predicted the plasma glucose concentration (2.1 +/- 0.6 mmol/L) at which brain glucose concentrations approached zero. At this point, CBF increased sharply by 57% +/- 22%, suggesting that brain glucose concentration is the signal that triggers defense mechanisms aimed at improving glucose delivery to the brain during hypoglycemia.  相似文献   

5.
To determine whether acute hyperglycemia changes the hyperemic response to functional activation of brain, the area and magnitude of the activation were measured in healthy volunteers maintained at euglycemia and then at hyperglycemia using the hyperglycemic clamp technique. Activation of the visual cortex (8-16 Hz) was assessed by functional MRI with blood oxygenation level dependent (BOLD) contrast using a 4 Tesla magnet and a multi-slice echo-planar imaging sequence (TE = 30 msec, TR = 1.5 sec). At euglycemia (4.8 +/- 0.2 mM, mean +/- SEM, n = 6), the number of activated pixels in the occipital lobe was 79 +/- 10 and the intensity of activation was 4.5 +/- 0.5%. During hyperglycemia (plasma glucose 300% of control), the number of activated pixels was 90 +/- 20% of control and the BOLD activation was 3.5 +/- 0.3%, respectively. The change in BOLD signal was below 0.2%/mM plasma glucose. This study demonstrates that acute hyperglycemia is without substantial effect on the size and intensity of activation of the occipital cortex. The results further suggest that fluctuations in blood glucose within the physiologic range are without effect on the functional activation of the cerebral cortex measured by BOLD fMRI.  相似文献   

6.
Hypoglycemia can cause brain dysfunction, brain injury, and death. The present study seeks to broaden current information regarding mechanisms of hypoglycemic brain injury by investigating a novel etiology. The cat's high resistance to brain injury from hypoglycemia suggested that additional influences such as respiratory depression might play a facilitating role. Three groups of cats were exposed to fasting and insulin-induced hypoglycemia (HG; n = 6), euglycemic respiratory depression (RD; n = 5), and combined hypoglycemic respiratory depression (HG/RD; n = 10). The HG animals were maintained at <1.5 mmol (mean 1 mmol) serum glucose concentration for 2 to 6.6 hours. The respiratory depression was associated with PaO2 and PaCO2 values of approximately 50 mm Hg for 1 hour and of approximately 35 and approximately 75 mm Hg, respectively, for the second hour. Magnetic resonance diffusion-weighted imaging estimated brain energy state before, during, and after hypoglycemia. The hypoglycemic respiratory depression exposures were terminated either to euglycemia (n = 4) or to hyperglycemia (n = 6). Brain injury was assessed after 5 to 7 days of survival. Cats exposed to hypoglycemia alone maintained unchanged diffusion coefficients; that is, they lacked evidence of brain energy failure and all six remained brain-intact. Only 1 of 5 euglycemic RD but 10 of 10 HG/RD cats developed brain damage (HG and RD vs. HG/RD, P < 0.01). This difference in brain injury rates suggests injury potentiation by hypoglycemia and respiratory depression acting together. Three injury patterns emerged, including activation of microglia, selective neuronal necrosis, and laminar cortical necrosis. Widespread activation of microglia suggesting damage to neuronal cell processes affected all damaged brains. Selective neuronal necrosis affecting the cerebral cortex, hippocampus, and basal ganglia was observed in all but one case. Instances of laminar cortical necrosis were limited to cats exposed to hypoglycemic respiratory depression treated with hyperglycemia. Thus, treatment with hyperglycemia compared with euglycemia after hypoglycemic respiratory depression exposures significantly increased the brain injury scores (24 +/- 6 vs. 13 +/- 2 points; P < 0.05). This new experimental hypoglycemia model's contribution lies in recognizing additional factors that critically define the occurrence of hypoglycemic brain injury.  相似文献   

7.
In cross-sectional studies a positive correlation has been found between circulating insulin, triglycerides and plasminogen activator inhibitor (PAI-1) activity. To directly examine the effect of insulin on PAI-1 activity in vivo, we determined the response of PAI-1 activity in 17 normal subjects to acute hyperinsulinemia (serum free insulin 92 +/- 8 mU/l) during maintenance of normoglycemia (plasma glucose 5.1 +/- 0.1 mmol/l). In 12 matched control subjects PAI-1 activity was measured during infusion of saline (serum free insulin 3.6 +/- 0.3 mU/l, plasma glucose 5.2 +/- 0.1 mmol/l). Plasma PAI-1 activity decreased during the insulin infusion from 9.0 +/- 1.4 to 5.6 +/- 0.8 U/ml (p less than 0.01), and during saline infusion from 7.0 +/- 1.4 to 4.3 +/- 0.6 U/ml (p less than 0.05). Serum triglyceride concentrations decreased from 1.09 +/- 0.20 to 0.76 +/- 0.09 mmol/l (p less than 0.001) during hyperinsulinemia but remained unchanged during the saline infusion (1.04 +/- 0.11 vs. 1.02 +/- 0.12 mmol/l, NS). We conclude that insulin does not acutely change plasma PAI-1 activity, and that acute insulin-induced changes in serum triglycerides occur independently from those of PAI-1 activity.  相似文献   

8.
Mechanisms responsible for hypoglycemia unawareness remain unknown. Previously, we found that patients with type 1 diabetes and hypoglycemia unawareness had increased brain glucose concentrations as measured by (1)H-magnetic resonance spectroscopy (MRS) compared with controls measured under the same metabolic condition, suggesting that an alteration in brain glucose transport and/or metabolism may play a role in the pathogenesis of hypoglycemia unawareness. To determine whether the brain glucose concentration is altered in normal subjects subjected to recurrent hypoglycemia, we compared the brain glucose concentrations measured in healthy subjects after three episodes of hypoglycemia to blunt the counterregulatory response over 24 hr and compared this value with that measured at a time remote from the antecedent hypoglycemia protocol. Sixteen subjects (9 M/7 F, age 36 +/- 10 years, mean +/- SD) underwent three hypoglycemic clamps for 30 min at 8 AM (0 hr), 5 PM (9 hr), and 7 AM (24 hr). After the third hypoglycemic clamp, subjects underwent a hyperglycemic clamp during which brain glucose concentration was measured by MRS at 4 T. Brain glucose concentration after repeated hypoglycemia was not different from the brain glucose concentration measured in the same subjects during a control study (5.1 +/- 0.8 vs. 4.5 +/- 0.5 mumol/g wet weight, respectively, P = 0.05). These observations suggest that brain glucose transport or metabolism is not altered following short episodes of recurrent hypoglycemia in healthy human volunteers.  相似文献   

9.
Lactate: a preferred fuel for human brain metabolism in vivo.   总被引:14,自引:0,他引:14  
Recent in vitro studies suggest that lactate, rather than glucose, may be the preferred fuel for neuronal metabolism. The authors examined the effect of lactate on global brain glucose uptake in euglycemic human subjects using 18 fluoro-deoxyglucose (FDG) positron emission tomography (PET). Eight healthy men, aged 40 to 54 years, underwent a 60-minute FDG-PET scan on two occasions in random order. On one occasion, 6.72% sodium lactate was infused at a rate of 50 micro mol. kg-1. min-1 for 20 minutes and then reduced to 30 micro mol. kg-1. min-1; 1.4% sodium bicarbonate was infused as a control on the other occasion. Plasma glucose levels were not different between the two groups (5.3 +/- 0.23 and 5.3 +/- 0.24 mmol/L, P = 0.55). Plasma lactate was significantly elevated by lactate infusion (4.08 +/- 0.35 vs. 0.63 +/- 0.22 mmol/L, P < 0.0005. The whole-brain rate of glucose uptake was significantly reduced by approximately 17% during lactate infusion (0.195 +/- 0.022 vs. 0.234 +/- 0.020 micro mol. g-1. min-1, P = 0.001). The authors conclude that, in vivo in humans, circulating lactate is used by the brain at euglycemia, with sparing of glucose.  相似文献   

10.
Studies of the effects of hypoglycemia on the brain using neurocognitive testing have suggested that mainly complex functions subserved by secondary and tertiary cortex are affected by mild to moderate hypoglycemia and that intensively treated patients with Type I diabetes mellitus (T1DM) may have altered sensitivity to the central nervous system effects of hypoglycemia. Functional magnetic resonance imaging provides a sensitive, regionally-specific probe of possible neurophysiologic changes related to hypoglycemia in the brain. Eleven intensively-treated T1DM patients and 11 matched non-diabetic controls took part in a 2-day protocol in which functional magnetic resonance imaging (MRI) was used to measure changes in the patterns of brain activation produced by simple auditory and visual stimuli in different conditions. On one day, participants were euglycemic the entire time. On the other day, an initial 50-min euglycemic period was followed by a 50-min hypoglycemic period. Results indicated that hypoglycemia reduced the amplitude of the blood-oxygenation level dependent response in primary auditory and visual cortex to simple auditory and visual stimuli. The latency and duration of the transient hemodynamic response function were not affected. Responses to hypoglycemia were similar in diabetic and non-diabetic participants. These results suggest that mild to moderate hypoglycemia may alter the balance of blood flow and oxygen extraction when glucose levels are lowered. Intensively-treated T1DM, with its attendant frequent hypoglycemic episodes, did not seem to alter hypoglycemic responses in primary visual and auditory cortex.  相似文献   

11.
The applicability of the [14C]deoxyglucose method for measuring local cerebral glucose utilization (lCMRglc) has been extended for use in hypoglycemia by determination of the values of the lumped constant to be used in rats with plasma glucose concentrations ranging from approximately 2 to 6 mM. Lumped constant values were higher in hypoglycemia and declined from a value of 1.2 at the lowest arterial plasma glucose level (1.9 mM) to about 0.48 in normoglycemia. The distribution of glucose, and therefore also of the lumped constant, was found to remain relatively uniform throughout the brain at the lowest plasma glucose levels studied. lCMRglc in moderate, insulin-induced hypoglycemia (mean arterial plasma glucose concentration +/- SD of 2.4 +/- 0.3 mM) was determined with the appropriate lumped constant corresponding to the animal's plasma glucose concentration and compared with the results obtained in six normoglycemic rats. The weighted average rate of glucose utilization for the brain as a whole was significantly depressed by 14% in the hypoglycemic animals, i.e., 61 mumols/100 g/min in hypoglycemia compared to 71 mumols/100 g/min in the normoglycemic controls (p less than 0.05). lCMRglc was lower in 47 of 49 structures examined but statistically significantly below the rate in normoglycemic rats in only six structures (p less than 0.05) by multiple comparison statistics. Regions within the brainstem were most prominently affected. The greatest reductions, statistically significant or not, occurred in structures in which glucose utilization is normally high, suggesting that glucose delivery and transport to the tissue became rate-limiting first in those structures with the greatest metabolic demands for glucose.  相似文献   

12.
We have shown that acute insulin-induced hypoglycemia leads to specific changes in the cerebral NMDA receptor-associated ion channel in the newborn piglet. The present study tests the hypothesis that exposure to acute hypoglycemia in the newborn will alter the glutamate binding site of both NMDA and kainate receptors. Studies were performed in 3-6 days-old piglets randomized to control (n=6) or hypoglycemic (n=6) groups. Hypoglycemia was maintained for 120 min using insulin infusion. Saturation binding assays were performed in cerebral cell membranes using (3)H-glutamate or (3)H-kainate to determine the characteristics of the glutamate binding sites of the NMDA and kainate receptors, respectively. The concentration of glucose in cerebral cortex was 10-fold less in hypoglycemic piglets than in controls (P<0.05). Brain ATP was not significantly decreased during hypoglycemia, but phosphocreatine decreased from control of 6.6 +/- 1.3 micromoles/g brain to 3.2 +/- 1.9 micromoles/g brain in hypoglycemic piglets. The B(max) for NMDA-displaceable (3)H-glutamate binding was 992 +/- 64 fmol/mg protein in hypoglycemic animals, significantly higher than the control value of 746 +/- 42 fmol/mg protein. However, the dissociation constant for glutamate was unchanged during hypoglycemia. The (3)H-kainate binding studies demonstrated no change in B(max) of high-affinity kainate receptors during hypoglycemia. In contrast, the affinity of the kainate receptor glutamate binding site significantly increased compared to control. Thus, acute hypoglycemia in the newborn piglet had specific effects on the glutamate binding sites of the NMDA and kainate receptors that could be due to alterations in cell membrane lipids or modification of receptor proteins.  相似文献   

13.
The effects of acute insulin-induced hypoglycemia on the cerebral NMDA receptor in the newborn were examined by determining [3H]MK-801 binding as an index of NMDA receptor function in 6 control and 7 hypoglycemic piglets. In hypoglycemic animals, the glucose clamp technique with constant insulin infusion was used to maintain a blood glucose concentration of 1.2 mmol/l for 120 min before obtaining cerebral cortex for further analysis; controls received a saline infusion. Concentrations of glucose, lactate, ATP, and PCr were measured in cortex, and Na+,K+-ATPase activity was determined in a brain cell membrane preparation. [3H]MK-801 binding was evaluated by: (1) saturation binding assays over the range of 0.5–50 nM [3H]MK-801 in the presence of 100 μM glutamate and glycine; and (2) binding assays at 10 nM [3H]MK-801 in the presence of glutamate and/or glycine at 0, 10, or 100 μM. Blood and brain glucose concentrations were significantly lower in hypoglycemic animals than controls. There was no change in brain ATP with hypoglycemia, but PCr was decreased 80% compared to control (P < 0.05). Na+,K+-ATPase activity was 13% lower in hypoglycemic animals (P < 0.05). Based on saturation binding data, hypoglycemia had no effect on the number of functional receptors (Bmax), but the apparent affinity was significantly increased, as indicated by a decrease in the Kd (dissociation constant) from the control value of 8.1 ± 1.6 nM to 5.5 ± 2.1 nM (P < 0.05). Augmentation of [3H]MK-801 binding by glutamate and glycine alone or in combination was also significantly greater in the hypoglycemic animals. These data suggest that acute hypoglycemia may enhance the excitotoxic effects of glutamate in the newborn.  相似文献   

14.
Hypoglycemia-associated autonomic failure (HAAF) is a condition in which patients with type 1 diabetes (T1D) who experience frequent hypoglycemia develop defective glucose counter-regulation and become unable to sense hypoglycemia. Brain glutamate may be involved in the mechanism of HAAF. The goal of this study was to follow the human brain glutamate concentration during experimentally induced hypoglycemia in subjects with and without HAAF. 1H magnetic resonance spectroscopy was used to track the occipital cortex glutamate concentration throughout a euglycemic clamp followed immediately by a hypoglycemic clamp. T1D patients with HAAF were studied in comparison to two control groups, i.e., T1D patients without HAAF and healthy controls (n=5 per group). Human brain glutamate concentration decreased (P⩽0.01) after the initiation of hypoglycemia in the two control groups, but a smaller trend toward a decrease in patients with HAAF did not reach significance (P>0.05). These findings are consistent with a metabolic adaptation in HAAF to provide higher glucose and/or alternative fuel to the brain, eliminating the need to oxidize glutamate. In an exploratory analysis, we detected additional metabolite changes in response to hypoglycemia in the T1D patient without HAAF control group, namely, increased aspartate and decreased lactate.  相似文献   

15.
目的 探讨新生儿低血糖脑损伤的高危因素及其对预后的影响.方法 回顾性分析2015年1 月至2018 年12 月贵州医科大学附属医院新生儿科收治的235 例新生儿低血糖患儿的临床资料,根据是否发生脑损伤分为脑损伤组和无脑损伤组,比较两组患儿的基本情况、母孕期及新生儿疾病情况、血糖相关资料,经SPSS 24.0统计软件处理...  相似文献   

16.
The cerebral metabolic responses to perinatal hypoglycemia and anoxia were studied in newborn rats given regular insulin (30 units per kilogram of body weight). Animals were observed for up to 2 hours with no apparent ill effects in spite of blood glucose concentrations of 0.75 mmol per liter. When exposed to 100% nitrogen at 37°C, hypoglycemic animal survived only one-tenth as long as littermate controls with normal blood glucose levels (4.7 mmol/L). Pretreatment of hypoglycemic rats with glucose (10 mmol/kg) 10 and 30 minutes prior to nitrogen exposure nearly completely reversed the anoxic vulnerability. Hypoglycemia led to progressive reductions in crebral glycogen and glucose; however, only glucose reverted to normal levels 20 minutes after systemic glucose administration. The glycolytic intermediates glucose 6-phosphate and lactate were also lower during hypoglycemia. Brain glucose levels below 0.1 mmol per kilogram were associated with a disrupted cerebral energy state, reflected by declines in phosphocreatine (33%) and adenosine triphosphate (ATP) (10%). Cerebral energy utilization (metabolic rate) was minimally reduced (?7.2%) by hypoglycemia and returned to the control value (2.36 mmol ~ P/kg/min) with glucose treatment. The cerebral energy reserves ATP, adenosine diphosphate, and phosphocreatine delined more rapidly and to a lower level in hypoglycemic rats subjected to 2 1/2 minutes of anoxia than in normoglycemic animals rendered similarly hypoxic. The findings suggest that decreased anoxic resistance of hypoglycemic newborn rats is not primarily a function of reduced brain glycogen or altered cerebral metabolic rate. The presence of endogenous cerebral glucose stores combined with continued circulating glucose (cerebrovascular perfusion) appear to be critical factors for maintaining perinatal hypoxic survival.  相似文献   

17.
Antecedent hypoglycemia is known to attenuate hormonal and symptomatic responses to subsequent hypoglycemia. Whether this pertains also to hypoglycemia-induced cognitive dysfunction is controversially discussed. Neurocognitive adaptation might essentially depend on the type of function. Here, we compared the influence of recurrent hypoglycemia in 15 healthy men on counterregulatory hormones, subjective symptoms of hypoglycemia, short-term memory performance (word recall), and performance on an auditory attention task (oddball). The attention task was also used to record event-related brain potential (ERP) indicators of stimulus processing. In each subject, three consecutive hypoglycemic clamps were performed, two on day 1 and the third on day 2. Neurocognitive testing was performed during baseline and at two different hypoglycemic plateaus (2.8 and 2.5 mmol/l) during the first and last clamp. As expected, hormonal responses were significantly reduced to the last as compared to the first hypoglycemia indicating adaptation. Subjective symptoms also decreased in response to recurrent hypoglycemia. Short-term memory performance deteriorated distinctly on the first hypoglycemic clamp, but maintained the normal level on the last clamp (P=0.006). Likewise, the impairment in reaction time (P=0.022) and response accuracy (P=0.005) was distinctly smaller on the last than first hypoglycemia. In parallel, the hypoglycemia-induced decrease in P3 amplitude (P=0.019) and the increase in P3 latency (P=0.049) were diminished with recurrent hypoglycemia, indicating that late stages of controlled stimulus processing likewise adapted. In contrast, the distinct decrease in amplitudes of the N1 and P2 components of the ERP (preceding the P3) was closely comparable in response to the first and last hypoglycemia (P>0.3). Together results indicate an adaptation to recurrent hypoglycemia for signs of controlled stimulus processing presumably involving hippocampo-prefrontocortical circuitry, while earlier automatic stages of processing appear to be spared.  相似文献   

18.
S Yasaki  P J Dyck 《Brain research》1990,531(1-2):8-15
The duration and severity of hypoglycemia needed to induce neuropathy is not known. To test these variables, the percentage of teased fibers of peroneal and tibial nerves showing graded pathologic abnormalities was estimated in groups of rats that had been made hypoglycemic for various times and severities one week earlier. The techniques used maintained core temperature, pO2, pCO2, and hematocrit within physiologic limits. A control group was anesthetized and mechanically ventilated but insulin was not given. A second control group underwent no experimental manipulation. Life could not be sustained with hypoglycemia below 1 mmol/l. In 23 rats that were hypoglycemic (1.4 +/- 0.2 mmol/l, mean +/- S.E.M.) for various times less than 11 h, the frequency of axonal degeneration of teased myelinated fibers (0%-1%) was not different than in controls. In 9 young rats that were hypoglycemic (1.4 +/- 0.0 mmol/l) for various times of 12 or more hours, the frequency of fiber degeneration was significantly higher than in controls (P less than 0.01) and increased to as high as 26%. By contrast, in 5 older rats that were hypoglycemic (1.5 +/- 0.1 mmol/l) for various times of 12 or more hours, the frequency of degeneration was not different from that of controls. Both duration and severity of hypoglycemia are risk factors for fiber degeneration. The peripheral nerves are more vulnerable to prolonged severe hypoglycemia in younger rats than in older rats.  相似文献   

19.
Insulin sensitivity was studied using the euglycemic insulin clamp technique in 5 female patients with anorexia nervosa and 4 females with bulimia. The results were compared with those of 15 male patients with non-insulin-dependent diabetes mellitus. Euglycemic insulin clamp is performed for 2 h using the Biostator, during which time insulin was infused at a rate of 0.77 mU kg-1 min-1. Fasting plasma glucose and immunoreactive insulin tended to be lower in patients with anorexia nervosa than in those with bulimia (69.8 +/- 6.7 vs 75.9 +/- 7.7 mg/dl, and 5.9 +/- 2.0 vs 9.8 +/- 3.4 U/ml). The mean metabolic clearance rate (MCR) was 9.2 +/- 3.9 ml kg-1 min-1 for patients with anorexia nervosa, 5.1 +/- 2.2 ml kg-1 min-1 for patients with bulimia, and 3.8 +/- 0.3 ml kg-1 min-1 for patients with diabetes mellitus. However, one anorectic had a significantly high MCR. One anorectic and 3 bulimics had a significantly low MCR. These results suggest that insulin sensitivity varied in patients with anorexia nervosa, whereas it tended to decrease in some patients with bulimia but not to the same degree as in patients with diabetes mellitus.  相似文献   

20.
The present study was designed to clarify the effect of blood glucose level on cerebral blood flow and metabolism during and after acute cerebral ischemia induced by bilateral carotid ligation (BCL) in spontaneously hypertensive rats (SHR). Blood glucose levels were varied by intraperitoneal infusion of 50% of glucose (hyperglycemia), insulin with hypertonic saline (hypoglycemia) or hypertonic saline (normoglycemia). Cerebral blood flow (CBF) in the parietal cortex and thalamus was measured by hydrogen clearance technique, and the supratentorial metabolites of the brain frozen in situ were determined by the enzymatic method. In non-ischemic animals, blood glucose levels had no influence on the supratentorial lactate, pyruvate or adenosine triphosphate (ATP) concentrations. In ischemic animals, however, cortical CBF was reduced to less than 1% of the resting value at 3 hours after BCL. However, there were no substantial differences of CBF during and after ischemia among 3 glycemic groups. Cerebral lactate in the ischemic brain greatly increased in hyperglycemia (34.97 +/- 1.29 mmol/kg), moderately in normoglycemia (23.43 +/- 3.13 mmol/kg) and less in hypoglycemia (7.20 +/- 1.54 mmol/kg). In contrast, cerebral ATP decreased in hyperglycemia (0.93 +/- 0.19 mmol/kg) as much as it did in normoglycemia (1.04 +/- 0.25 mmol/kg), while ATP reduction was much greater in hypoglycemia (0.45 +/- 0.05 mmol/kg). At 1-hour recirculation after 3-hour ischemia, ATP tended to increase in all groups of animals, indicating the recovery of energy metabolism. Such metabolic recovery after recirculation was good in hypo- and normoglycemia, and was also evident in hyperglycemia. Our results suggest that hyperglycemia is not necessarily an unfavorable condition in acute incomplete cerebral ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号