首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The bile salt export pump (BSEP/Bsep/ABCB11) and multidrug resistance-associated protein 2 (MRP2/Mrp2/ABCC2) are involved in bile acid-dependent and -independent bile secretion, respectively. It has been reported that bosentan, an endothelin receptor antagonist, inhibits Bsep, which may lead to cholestatic liver injury due to the intracellular accumulation of bile salts, while increasing bile salt-independent bile flow. Thus, in this study, the effects of bosentan on BSEP/Bsep and MRP2/Mrp2 were evaluated using membrane vesicles derived from Spodoptera frugiperda (Sf) 9 cells, which express these transporters. The adenosine 5'-triphosphate (ATP)-dependent uptake of (3)H-taurocholic acid into membrane vesicles for BSEP/Bsep was inhibited by bosentan, and its IC(50) values were 76.8 and 101 microM for BSEP and Bsep, respectively. In contrast, bosentan stimulated the MRP2/Mrp2-mediated ATP-dependent vesicular transport of (3)H-estradiol 17beta-glucuronide by shifting the sigmoidal dependence of transport rate on substrate concentration to a more hyperbolic one. Collectively, these results suggest that bosentan inhibits BSEP in humans with a similar potency to rats, and that increased bile salt-independent flow in rats by bosentan is at least partly attributable to the activation of Mrp2.  相似文献   

2.
The mechanisms involved in spironolactone (SL, 200 micromol/kg body weight, 3 days i.p.)-induced choleresis were explored in vivo by evaluating bile salt export pump (Bsep)-, multidrug resistance-associated protein 2 (Mrp2)-, and anion exchanger 2 (AE2)-mediated secretory processes in rat liver. Hepatic bile salt metabolism was also analyzed. Total bile flow was significantly increased by SL, primarily due to an increase in bile salt-independent bile flow, whereas bile salt secretion was decreased. SL did not produce any choleresis in TR(-) rats. SL decreased the de novo bile salt synthesis rate in concordance with impaired microsomal cholesterol 7 alpha-hydroxylase activity, thus leading to a decrease in endogenous bile salt pool size. In contrast, the maximum secretory rate of tauroursodeoxycholate as well as expression of Bsep protein detected by Western blotting were not affected. Thus, decreased bile salt availability for canalicular transport rather than transport capability itself likely explains reduced biliary secretion of bile salts. Biliary secretion of glutathione, an endogenous substrate of Mrp2, and HCO(3)(-), the AE2 substrate, were increased by SL, as a main factor explaining enhanced bile salt-independent bile flow. Western blot studies revealed increased expression of Mrp2 in response to SL whereas AE2 content remained unchanged. Enhanced activity and expression of Mrp2 was confirmed by analyzing the excretion rate of dinitrophenyl S-glutathione, an exogenous substrate of Mrp2, in isolated hepatocytes and by immunofluorescence microscopy, respectively. We conclude that SL increased bile flow mainly by increasing the biliary secretion of glutathione species and HCO(3)(-); increased expression of Mrp2 is also involved.  相似文献   

3.
In the present study, we aimed to investigate the underlying mechanism of acetaminophen (APAP)-induced hepatotoxicityby measuring the expression levels of liver transporters and concentrations of bile acids (BAs) in rat plasma and liver. SD rats (42)were randomly assigned into six groups, including 6-h control group, APAP 6-h group, 12-h control group, APAP 12-h group, 24-h control group and APAP 24-h group. The estimation study of BAs in plasma and liver was performed on LC-MS/MS.The levels of bile salt export pump (Bsep), multidrug resistant protein 2 (Mrp2), multidrug resistant protein 4 (Mrp4), Na+/taurocholate cotransporting polypeptide (Ntcp) and organic anion transporting polypeptide 2 (Oatp2) in the liver were analyzed by Western blotting analysis. Compared with the corresponding control groups, no difference was found in the BA levels and the expressions of BA transporters in the plasma and liver after 6 h of APAP administration. While BA levels were significantly decreased in the plasma and increased in the liver after 12 h of APAP administration (P<0.05); and the expressions of Bsep and Mrp2 were significantly reduced (P<0.05). After 24 h of APAP administration, BA levels were both greatly increased in the plasma and liver (P<0.05); and the expressions of Mrp4 and Oatp2 were significantly decreased (P<0.05). In response to over-dose APAP, Bsep, Mrp2, Mrp4 and Oatp2 levels were reduced at different time points, causing the accumulation of BAs, and such accumulation may ultimately lead to the severe liver injury, which could be an underlying mechanism of the APAP-induced hepatotoxicity.  相似文献   

4.
Bilirubin is an endogenous antioxidant with cytoprotective properties, and several studies highlight its potential in the treatment of pro-oxidant diseases. We demonstrated that oxidative stress (OS), a key feature in most hepatopathies, induces cholestasis by actin cytoskeleton disarrangement and further endocytic internalization of key canalicular transporters, such as the bile salt export pump (Bsep) and the multidrug resistance-associated protein 2 (Mrp2) . Here, we evaluated the capability of physiological concentrations of unconjugated bilirubin (UB) to limit OS and the impairment in biliary secretory function induced by the model pro-oxidant agent, tert-butylhydroperoxide (tBuOOH). UB fully prevented the formation of reactive oxygen species and membrane lipid peroxidation induced by tBuOOH in isolated rat hepatocytes. In the isolated rat hepatocyte couplet model, UB (17.1 μM) prevented the endocytic internalization of Bsep and Mrp2 and the impairment in their secretory function induced by tBuOOH. UB also prevented actin disarrangement, as evaluated by both plasma membrane bleb formation and actin fluorescent staining. Finally, UB prevented tBuOOH-induced cPKC activation. Experiments in isolated perfused rat livers showed that UB prevents the increase in oxidized glutathione biliary excretion and the drop in bile flow and the biliary excretion of specific Bsep and Mrp2 substrates. We conclude that physiological concentrations of UB are sufficient to prevent the biliary secretory failure induced by OS, by counteracting actin disarrangement and the consequent internalization of canalicular transporters relevant to normal bile formation. This reveals an important role for UB in preserving biliary secretory function under OS conditions.  相似文献   

5.
Hyperbilirubinemia is a frequent side effect induced by long-term therapy with the antibiotic fusidate. The aim of this study was to elucidate the molecular mechanisms of fusidate-induced hyperbilirubinemia by investigating its influence on hepatic transport systems in the canalicular membrane. Using canalicular membrane vesicles from rat liver, we determined the effect of fusidate on the adenosine 5'-triphosphate (ATP)-dependent transport of substrates of the apical conjugate export pump, multi-drug resistance protein 2 (Mrp2, symbol Abcc2) and the bile salt export pump (Bsep, symbol Abcb11). Fusidate inhibited the ATP-dependent transport of the Mrp2 substrates 17beta-glucuronosyl estradiol and leukotriene C4, and the transport of cholyltaurine by Bsep with Ki values of 2.2+/-0.3, 7.6+/-1.3, and 5.5+/-0.8 microM, respectively. To elucidate the in vivo implication of these findings, the effect of fusidate treatment on the elimination of intravenously administered tracer doses of 17beta-glucuronosyl estradiol and cholyltaurine into bile was studied in rats. Treatment with fusidate (100 micromol/kg body weight) reduced the biliary excretion rate of 17beta-glucuronosyl [3H]estradiol and [3H]cholyltaurine by 75 and 80%, respectively. Extended treatment of rats with fusidate (100 micromol/kg body weight, three times daily i.p. for 3 days) reduced hepatic Mrp2 protein levels by 61% (P<0.001). Our data suggest that there are at least two different mechanisms involved in the impairment of transport processes and hepatobiliary elimination by fusidate, direct inhibition of transport of Mrp2 and Bsep substrates by competitive interaction and impairment by a decreased level of hepatic Mrp2.  相似文献   

6.
Troglitazone is a thiazolidinedione insulin sensitizer drug for the treatment of type 2 non-insulin-dependent diabetes mellitus (NIDDM). Based on an increasing number of reports on troglitazone-associated liver toxicity, the cholestatic potential of troglitazone has been investigated. Rapid and dose-dependent increases in the plasma bile acid concentrations were observed in rats after a single intravenous administration of troglitazone. A radiolabeled taurocholic acid tracer accumulated in liver tissue, indicating an interference with the hepatobiliary export of bile acids. In isolated canalicular rat liver plasma membrane preparations, troglitazone competitively inhibited the ATP-dependent taurocholate transport (apparent K(i) value, 1.3 microM), mediated by the canalicular bile salt export pump (Bsep). Troglitazone sulfate, the main troglitazone metabolite eliminated into bile, also showed competitive Bsep inhibition with an apparent K(i) value of 0.23 microM. A comparable inhibition was observed for both compounds in canalicular plasma membrane vesicles prepared from Mrp2-deficient (TR(-)) rats, suggesting a direct (cis-) inhibition of Bsep by troglitazone and troglitazone sulfate. A high accumulation potential was observed for troglitazone sulfate in rat liver tissue, indicating that the hepatobiliary export of this conjugated metabolite might represent a rate-limiting step in the overall elimination process of troglitazone. This accumulation in combination with the high Bsep inhibition potential suggested that mainly troglitazone sulfate was responsible for the interaction with the hepatobiliary export of bile acids at the level of the canalicular Bsep in rats. Such an interaction might lead to a troglitazone-induced intrahepatic cholestasis in humans as well, contributing to the formation of a troglitazone-induced liver toxicity.  相似文献   

7.
Many studies have demonstrated that Mrp2 is highly regulated in some physiopathological situations. The aim of this study was to investigate effects of diabetes mellitus on function and expression of multidrug resistance-associated protein 2 (Mrp2) in rat liver, kidney and intestine. Diabetic rats were induced by an intraperitoneal administration of streptozotocin (65?mg/kg) and randomly divided into diabetic (DM) rats and insulin-treated diabetic rats. Sulfobromophthalein (BSP), a substrate of Mrp2, was used to evaluate Mrp2 function in vivo. Data from excretion experiments demonstrated that compared with normal rats, diabetes markedly enhanced BSP excretion via bile, urine and intestinal perfusate, which contributed to the elevated plasma clearance of BSP after intravenous administration of 45 μmol/kg BSP. Western blot results showed higher levels of hepatic, renal and intestinal Mrp2 protein in DM rats, although no difference was observed in renal Mrp2. Insulin treatment partly reversed these alterations. Induction of Mrp2 by diabetes was in parallel with the increase in bile flow, levels of biliary and plasma total bile acid (TBA), and plasma conjugated bilirubin in DM rats. Diabetes may enhance Mrp2 function and expression in liver, kidney and intestine, which might be due to insulin deficiency, increased TBA and conjugated bilirubin.  相似文献   

8.
The non-steroidal antiandrogen flutamide is widely used for treatment of prostatic cancer, but causes side effects, including cholestatic hepatitis and fulminant hepatitis. We investigated the pathogenesis of flutamide-induced cholestatic hepatitis, focusing on the bile salt export pump (BSEP; ABCB11), which exports bile salts to the bile. We examined the inhibitory effects of flutamide and its active metabolite, hydroxyflutamide, on the transport of taurocholic acid (TCA) by membrane vesicles derived from hBSEP-expressing Sf9 cells. Flutamide inhibited the transport of TCA by hBSEP (IC50 value, about 50 microM), while hydroxyflutamide had no effect at up to 100 microM. When flutamide was administered to rats as a single oral dose of 100 mg/kg, the biliary excretion rate of bolus-injected [3H]TCA was decreased and the liver tissue concentration of flutamide exceeded 50 microM. Repeated doses of flutamide for 5 d (10 mg/kg/d) also decreased the biliary excretion rate of bolus-injected [3H]TCA. In this case, the liver tissue concentration of flutamide was below 0.1 microM. In both cases, no change in the mRNA level of rat Bsep was detected by RT-PCR. These results suggest that flutamide itself, but not its major metabolite, may cause cholestasis by inhibiting BSEP-mediated bile salt excretion.  相似文献   

9.
Fexofenadine (FEX) is mainly eliminated from the liver into bile in unchanged form. We demonstrated previously that organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 are involved in the hepatic uptake of FEX. However, little is known about the mechanisms controlling the hepatic efflux of FEX from the liver to bile and blood. In the present study, the involvement of hepatic efflux transporters in the pharmacokinetics of FEX was investigated in both in vitro and in vivo studies. Vectorial transport of FEX was observed in OATP1B3/human bile salt export pump (hBSEP) double transfectants but not in OATP1B3/human breast cancer resistance protein double transfectants, which indicates the possible contribution of hBSEP to the biliary excretion of FEX in humans. In multidrug resistance-associated protein 2 (Mrp2)(-/-) mice, the biliary excretion clearance based on the plasma concentration and the liver-to-plasma concentration ratio significantly decreased, whereas the biliary excretion clearance based on the liver concentration decreased only with 20%, suggesting the minimum contribution of Mrp2 to its biliary excretion. ATP-dependent transport of FEX was observed in hMRP3-enriched membrane vesicles but not hMRP4. In Mrp3(-/-) mice, the biliary excretion clearance based on both the plasma and liver concentration and the liver-to-plasma concentration ratio increased, suggesting the significant contribution of Mrp3 to its sinusoidal efflux and the up-regulation of its biliary excretion in Mrp3(-/-) mice. On the other hand, pharmacokinetics of FEX remained unchanged in Mrp4(-/-) mice. This information provides a novel insight into the transporters important for FEX disposition.  相似文献   

10.
《Toxicology in vitro》2010,24(2):605-610
Rosuvastatin (a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor) has been shown to be excreted mostly unchanged into the bile; interactions on the level of hepatic apical efflux transporters may represent a risk of liver toxicity. So far, controversial and insufficient data are available concerning transporters involved in the elimination process. This study was designed to elucidate, which transporters take part in the biliary clearance of rosuvastatin using sandwich-cultured primary rat hepatocytes. The canalicular efflux of rosuvastatin was measured in the presence of inhibitors: Ko 134, mitoxanthrone, novobiocin for breast cancer resistance protein (Bcrp); verapamil for multidrug resistance protein (Mdr1); benzbromarone, sulfasalazine, probenecid for multidrug resistance associated protein (Mrp 2); and cyclosporine A, glibenclamide, troglitazone for bile salt export pump (Bsep). Mrp2 inhibitors decreased the biliary efflux of rosuvastatin most potently by 78.9%, 35%, 54.1%; benzbromarone, probenecid, sulfasalazine, respectively, while Bcrp and Bsep inhibitors showed much less effect (29.1%, 23.0% ,30.0%; Ko 134, mitoxanthrone, novobiocin, respectively, and 32.6%, 29.3%, 20.6%, glibenclamide, cyclosporine A, troglitazone, respectively). The marked decline of canalicular transport by Mrp2 inhibitors suggests major role of Mrp2 in this process; however, Bcrp and Bsep might also contribute to the biliary elimination of rosuvatatin in sandwich-cultured rat hepatocytes.  相似文献   

11.
Glutathione (GSH) is an important cellular constituent for normal liver homeostasis. Certain drug-metabolizing enzyme inducers (i.e., phenobarbital [PB] and pregnenolone-16alpha-carbonitrile [PCN]) increase biliary excretion of GSH-derived sulfhydryls (SH) as well as bile flow, whereas other drug-metabolizing enzyme inducers (i.e., 3-methylcholanthrene [3MC] and benzo(a)pyrene [BaP]), do not. The purpose of the study was to determine whether rat multidrug resistance protein 2 (Mrp2) is the inducible transporter responsible for increasing biliary SH excretion and bile flow. Sprague-Dawley (SD) rats were injected ip daily for 4 days with PB, PCN, 3MC, BaP, or vehicle; Mrp2-null Eisai hyperbilirubinemic (EHBR) rats were injected ip daily for 4 days with PCN or vehicle. Although no drug-metabolizing enzyme inducer altered hepatic GSH in SD rats, PB and PCN significantly increased the rate of biliary SH excretion and bile flow. Neither 3MC nor BaP affected the biliary SH excretion rate or bile flow. In control EHBR rats, despite elevated hepatic GSH, the rate of biliary SH excretion was almost completely eliminated and bile flow was dramatically reduced compared with SD rats. Furthermore, PCN treatment did not affect bile flow or the biliary SH excretion rate in EHBR rats. PB and PCN also increased Mrp2 protein levels, but 3MC and BaP did not. None of the drug-metabolizing enzyme inducers tested significantly increased Mrp2 mRNA levels. PCN increased Mrp2 protein, but not Mrp2 mRNA, in a time-dependent manner. In conclusion, Mrp2 is the inducible efflux transporter responsible for increased biliary SH excretion and bile flow after administration of some drug-metabolizing enzyme inducers.  相似文献   

12.
13.
14.
Purpose. This study assesses the impact of rat multidrug resistance-associated protein 2 (Mrp2) on the biliary excretion and oral absorption of furosemide, probenecid, and methotrexate using Eisai hyperbilirubinemic rats (EHBR). Methods. To assess Mrp2-mediated biliary excretion, rats received a 2-h intravenous infusion of furosemide, probenecid, or methotrexate. Blood and bile samples were collected at specified intervals. To assess Mrp2's impact on oral absorption, rats received furosemide, probenecid, or methotrexate orally at 5 mg/kg. Jugular and portal blood samples were obtained at timed intervals. All samples were analyzed by LC-MS/MS. Pharmacokinetic parameters were estimated using WinNonlin and standard pharmacokinetic equations. Results. Thirty seven- and 39-fold reductions in biliary clearance were observed in EHBR as compared to control rats for probenecid and methotrexate, respectively. Biliary clearance was comparable between EHBR and control rats for furosemide. In all cases, no significant difference in absorption was observed between EHBR and control rats. Conclusions. This study provides the first evidence that Mrp2 mediates the biliary excretion of probenecid but not furosemide. Additionally, Mrp2 apparently has a less profound impact on intestinal absorption than biliary excretion of its substrates. Furthermore, alteration in systemic clearance in EHBR indicates that a potential compensatory mechanism may occur in EHBR.  相似文献   

15.
Phenolsulfonphthalein (PSP) has been selected as a model drug that is eliminated from both the kidney and liver in rats. Although the renal PSP transport system has been studied, few details of the biliary excretion of PSP have been reported. We investigated the biliary excretion system for PSP in rats. It has been reported that the biliary excretion of many organic anions from hepatocytes into bile is mediated by a primary active transporter, referred to as multidrug resistance-associated protein 2 (Mrp2/abcc2). The biliary excretion of PSP in SD rats was significantly decreased in the presence of Mrp2 inhibitors. The biliary excretion of PSP in Eisai hyperbilirubinemic rats (EHBR), hereditarily Mrp2-defective rats, was significantly lower than that in SD rats. Moreover, an efflux experiment using Caco-2 cells was carried out to confirm Mrp2-mediated PSP transport. Mrp2 inhibitors significantly decreased PSP efflux from Caco-2 cells. These results suggest that Mrp2 contributes to the biliary excretion of PSP in SD rats.  相似文献   

16.
The purpose of the current study was to determine whether glycyrrhizin (GL) maintains hepatic glutathione (GSH) levels by inhibiting GSH biliary secretion in normal rats. The effects of glycyrrhizin on hepatic glutathione content, bile flow and biliary secretion of glutathione were examined. Because glutathione is a substrate for multidrug resistance associated protein‐2 (Mrp2/ABCC2), the inhibitory effects of GL on Mrp2 in isolated perfused rat liver and in Mrp2‐expressing Sf9 membrane vesicles were also examined using the Mrp2 substrate methotrexate (MTX) and estradiol‐17‐β‐glucuronide (E217G). The hepatic content of glutathione in rats following GL perfusion (43.7 µmol/l) in isolated liver perfusion and GL intravenous treatment (25 mg/kg) was significantly higher than that for the control. A marked and dose‐dependent decrease in the excretion of glutathione was observed. In addition, the secretion rate of MTX was decreased by 57% in isolated liver perfusion in GL‐treated rats. Moreover the ATP‐dependent uptake of E217G by Mrp2 membrane vesicles was decreased by 75.9% in the 20 µm GL group and by 60.5% in the 2 µm GL group. In conclusion, glycyrrhizin increases hepatic glutathione content possibly through inhibition of Mrp2 which then reduces the biliary excretion of glutathione. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Sodium-taurocholate cotransporting polypeptide (Ntcp) and bile salt export pump (Bsep) are two key transporters for hepatic bile acid uptake and excretion. Alterations in Ntcp and Bsep expression have been reported in pathophysiological conditions. In the present study, the effects of age, gender, and various chemicals on the regulation of these two transporters were characterized in mice. Ntcp and Bsep mRNA levels in mouse liver were low in the fetus, but increased to its highest expression at parturition. After birth, mouse Ntcp and Bsep mRNA decreased by more than 50%, and then gradually increased to adult levels by day 30. Expression of mouse Ntcp mRNA and protein exhibit higher levels in female than male livers. No gender difference exists in BSEP/Bsep expression in human and mouse livers. Hormone replacements conducted in gonadectomized, hypophysectomized, and lit/lit mice indicate that female-predominant Ntcp expression in mouse liver is due to the inhibitory effect of male-pattern GH secretion, but not sex hormones. Ntcp and Bsep expression are in general resistant to induction by a large battery of microsomal enzyme inducers. Administration of cholestyramine increased Ntcp, whereas chenodeoxycholic acid (CDCA) increased Bsep mRNA expression. In conclusion, mouse Ntcp and Bsep are regulated by age, gender, cholestyramine, and bile acid, but resistant to induction by most microsomal enzyme inducers.  相似文献   

18.
Moxifloxacin is a novel antibacterial agent that undergoes extensive metabolism in the liver to the glucuronide M1 and the sulfate M2, which are eliminated via the bile. To investigate the role of the multidrug resistance-associated protein (Mrp2) as the hepatic transport system for moxifloxacin and its conjugates, livers of Wistar and Mrp2-deficient TR- rats were perfused with moxifloxacin (10 microM) in a single-pass system. Values for the hepatic extraction ratio (E) and clearance (Cl) were insignificantly higher in TR- rats than Wistar rats (0.193+/-0.050 vs 0.245+/-0.050 for E; 6.85+/-1.96 vs 8.73+/-1.82 mL min(-1) for Cl), whereas biliary excretion and efflux into perfusate over 60 min were significantly lower in the mutant rat strain. Cumulative biliary excretion of M1, M2 and moxifloxacin was significantly reduced to 0.027%, 19.1%, and 29.6% in the TR- rats compared with Wistar rats, indicating that the biliary elimination of M1 is mediated exclusively by Mrp2, whereas that of M2 and moxifloxacin seems to depend mostly on Mrp2 and, to a smaller extent, a further unidentified canalicular transporter. Moxifloxacin stimulates bile flow by up to 11% in Wistar rats, but not in TR- rats, further supporting an efficient transport of this drug and its glucuronidated and sulfated metabolites by Mrp2. Moxifloxacin (10 microM) also reversibly inhibited the Mrp2-mediated biliary elimination of bromsulphthalein in Wistar rats by 34%, indicating competition with the elimination of Mrp2-specific substrates. In conclusion, we found that Mrp2 mediates the biliary elimination of moxifloxacin and its glucuronidated and sulfated metabolites in rats. MRP2 may therefore play a key role in the transport of moxifloxacin and its conjugates into bile in humans.  相似文献   

19.
The present study aims to investigate whether azithromycin reverses P-glycoprotein-dependent anticancer drug resistance in vitro and modifies the hepatobiliary excretion of doxorubicin, a substrate for P-glycoprotein in vivo. Azithromycin increased dose-dependently the intracellular accumulation of doxorubicin in adriamycin-resistant human myelogenous leukemia cells (K562/ADR) with no effect on the expression of P-glycoprotein in the cells. However, the inhibitory effect was much weaker than that of cyclosporin A and was comparable to that of erythromycin. When Sprague-Dawley (SD) rats, which have drug transporting P-glycoprotein and multidrug resistance-associated protein 2 (Mrp2) in the bile canalicular membrane of hepatocytes, received an infusion of doxorubicin, the steady-state biliary clearance of doxorubicin was significantly decreased for 40 min after a single intravenous injection of azithromycin. However, azithromycin did not increase the plasma concentration of doxorubicin. The biliary clearance of doxorubicin in Eisai hyperbilirubinemic rats (EHBRs), which have a hereditary deficiency in Mrp2, was significantly decreased compared with that in Sprague-Dawley rats, suggesting the involvement of Mrp2 in the biliary excretion of doxorubicin. The present findings suggest that azithromycin overcomes P-glycoprotein-dependent anticancer drug resistance of tumors by inhibiting the binding of doxorubicin to P-glycoprotein in K562/ADR cells and inhibits the hepatobiliary excretion of drugs that are substrates for P-glycoprotein and Mrp2.  相似文献   

20.
Hepatic multidrug resistance‐associated protein 2 (Mrp2) is responsible for the majority of the biliary elimination of endogenous and exogenous substances, therefore it is important to evaluate possible functional changes in Mrp2 activity under conditions of hyperlipidemia (HL). Thus, the present study assessed the protein expression and transporting activity of hepatic Mrp2 based on the in vivo biliary excretion of phenolsulfonphthalein (PSP) as a model anionic substrate for Mrp2 in poloxamer 407‐induced hyperlipidemic rats (HL rats) and compared these values with those for control rats. The pharmacokinetics of mycophenolic acid (MPA) and mycophenolic acid‐7‐O‐glucuronide (MPAG) were evaluated after the intravenous (5 mg/kg) and oral (10 mg/kg) administration of MPA to control and HL rats. In HL rats, the protein expression of hepatic Mrp2 and its biliary transporting activity exhibited significant reductions (by 24.3% and 24.6%, respectively) in the absence of a change in bile flow rate. Unexpectedly, HL and control rats showed comparable biliary excretion rates of MPAG due to the counter effects of the reduced expression and activity of Mrp2 and a 484% increase in the free fraction of MPAG in HL rats. The estimated biliary clearance value of free MPAG in HL rats was considerably slower (by 77.1%) than that in control rats. Although significant pharmacokinetic changes in total MPA and MPAG levels were not observed in HL rats, there was a marked increase in free MPA and MPAG levels. Clinically relevant pharmacokinetic changes in subjects with HL that are related to MRP2 could not be ruled out. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号