首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Niger, the epidemiological situation regarding foot‐and‐mouth disease is unclear as many outbreaks are unreported. This study aimed (i) to identify Foot‐and‐mouth disease virus (FMDV ) strains currently circulating in cattle herds, and (ii) to identify risk factors associated with Foot‐and‐mouth disease (FMD )‐seropositive animals in clinical outbreaks. Epithelial tissues (n  = 25) and sera (n  = 227) were collected from cattle in eight districts of the south‐western part of Niger. Testing of clinical material revealed the presence of FMDV serotype O that was characterized within the O/WEST AFRICA topotype. The antigenic relationship between one of the FMDV isolates from Niger (O/NGR /4/2015) and three reference vaccine strains was determined by the two‐dimensional virus neutralization test (2dmVNT ), revealing a close antigenic match between the field isolate from Niger and three FMDV serotype O vaccine strains. Serological analyses using a non‐structural protein (NSP ) test provided evidence for previous FMDV infection in 70% (158/227) of the sera tested. Multivariate logistic regression analysis revealed that only the herd composition (presence of both cattle and small ruminants) was significantly associated with FMDV seropositivity as defined by NSP ‐positive results (p ‐value = .006). Of these positive sera, subsequent testing by liquid‐phase blocking ELISA (LPBE ) showed that 86% (136/158) were positive for one (or more) of four FMDV serotypes (A, O, Southern African Territories (SAT ) 1 and SAT 2). This study provides epidemiological information about FMD in the south‐western part of Niger and highlights the complex transboundary nature of FMD in Africa. These findings may help to develop effective control and preventive strategies for FMD in Niger as well, as other countries in West Africa.  相似文献   

2.
The goal of this study was to characterize the properties and duration of the foot‐and‐mouth disease (FMD ) carrier state and associated serological responses subsequent to vaccination and naturally occurring infection at two farms in northern India. Despite previous vaccination of cattle in these herds, clinical signs of FMD occurred in October 2013 within a subset of animals at the farms containing juvenile‐yearling heifers and steers (Farm A) and adult dairy cattle (Farm B). Subsequent to the outbreak, FMD virus (FMDV ) asymptomatic carriers were identified in both herds by seroreactivity to FMDV non‐structural proteins and detection of FMDV genomic RNA in oropharyngeal fluid. Carriers’ seroreactivity and FMDV genome detection status were subsequently monitored monthly for 23 months. The mean extinction time of the carrier state was 13.1 ± 0.2 months, with extinction having occurred significantly faster amongst adult dairy cattle at Farm B compared to younger animals at Farm A. The rate of decrease in the proportion of carrier animals was calculated to be 0.07 per month. Seroprevalence against FMDV non‐structural proteins decreased over the course of the study period, but was found to increase transiently following repeated vaccinations. These data provide novel insights into viral and host factors associated with the FMDV carrier state under natural conditions. The findings reported herein may be relevant to field veterinarians and governmental regulatory entities engaged in FMD response and control measures.  相似文献   

3.
Foot‐and‐mouth disease (FMD) is a highly contagious livestock disease of high economic impact. Early detection of FMD virus (FMDV) is fundamental for rapid outbreak control. Air sampling collection has been demonstrated as a useful technique for detection of FMDV RNA in infected animals, related to the aerogenous nature of the virus. In the current study, air from rooms housing individual (n = 17) or two groups (n = 4) of cattle experimentally infected with FDMV A24 Cruzeiro of different virulence levels was sampled to assess the feasibility of applying air sampling as a non‐invasive, screening tool to identify sources of FMDV infection. Detection of FMDV RNA in air was compared with first detection of clinical signs and FMDV RNA levels in serum and oral fluid. FMDV RNA was detected in room air samples 1–3 days prior (seven animals) or on the same day (four animals) as the appearance of clinical signs in 11 of 12 individually housed cattle. Only in one case clinical signs preceded detection in air samples by one day. Overall, viral RNA in oral fluid or serum preceded detection in air samples by 1–2 days. Six individually housed animals inoculated with attenuated strains did not show clinical signs, but virus was detected in air in one of these cases 3 days prior to first detection in oral fluid. In groups of four cattle housed together, air detection always preceded appearance of clinical signs by 1–2 days and coincided more often with viral shedding in oral fluid than virus in blood. These data confirm that air sampling is an effective non‐invasive screening method for detecting FMDV infection in confined to enclosed spaces (e.g. auction barns, milking parlours). This technology could be a useful tool as part of a surveillance strategy during FMD prevention, control or eradication efforts.  相似文献   

4.
Foot‐and‐mouth disease (FMD ) is an important transboundary disease with substantial economic impacts. Although between‐herd transmission of the disease has been well studied, studies focusing on within‐herd transmission using farm‐level outbreak data are rare. The aim of this study was to estimate parameters associated with within‐herd transmission, host physiological factors and FMD virus (FMDV ) persistence using data collected from an outbreak that occurred at a large, organized dairy farm in India. Of 1,836 regularly vaccinated, adult dairy cattle, 222 had clinical signs of FMD over a 39‐day period. Assuming homogenous mixing, a frequency‐dependent compartmental model of disease transmission was built. The transmission coefficient and basic reproductive number were estimated to be between 16.2–18.4 and 67–88, respectively. Non‐pregnant animals were more likely to manifest clinical signs of FMD as compared to pregnant cattle. Based on oropharyngeal fluid (probang) sampling and FMDV ‐specific RT ‐PCR , four of 36 longitudinally sampled animals (14%) were persistently infected carriers 10.5 months post‐outbreak. There was no statistical difference between subclinical and clinically infected animals in the duration of the carrier state. However, prevalence of NSP ‐ELISA antibodies differed significantly between subclinical and clinically infected animals 12 months after the outbreak with 83% seroprevalence amongst clinically infected cattle compared to 69% of subclinical animals. This study further elucidates within‐herd FMD transmission dynamics during the acute‐phase and characterizes duration of FMDV persistence and seroprevalence of FMD under natural conditions in an endemic setting.  相似文献   

5.
Effective control and monitoring of foot‐and‐mouth disease (FMD ) relies upon rapid and accurate disease confirmation. Currently, clinical samples are usually tested in reference laboratories using standardized assays recommended by The World Organisation for Animal Health (OIE ). However, the requirements for prompt and serotype‐specific diagnosis during FMD outbreaks, and the need to establish robust laboratory testing capacity in FMD ‐endemic countries have motivated the development of simple diagnostic platforms to support local decision‐making. Using a portable thermocycler, the T‐COR ™ 8, this study describes the laboratory and field evaluation of a commercially available, lyophilized pan‐serotype‐specific real‐time RT ‐PCR (rRT ‐PCR ) assay and a newly available FMD virus (FMDV) typing assay (East Africa‐specific for serotypes: O, A, Southern African Territories [SAT ] 1 and 2). Analytical sensitivity, diagnostic sensitivity and specificity of the pan‐serotype‐specific lyophilized assay were comparable to that of an OIE ‐recommended laboratory‐based rRT ‐PCR (determined using a panel of 57 FMDV ‐positive samples and six non‐FMDV vesicular disease samples for differential diagnosis). The FMDV ‐typing assay was able to correctly identify the serotype of 33/36 FMDV ‐positive samples (no cross‐reactivity between serotypes was evident). Furthermore, the assays were able to accurately detect and type FMDV RNA in multiple sample types, including epithelial tissue suspensions, serum, oesophageal–pharyngeal (OP ) fluid and oral swabs, both with and without the use of nucleic acid extraction. When deployed in laboratory and field settings in Tanzania, Kenya and Ethiopia, both assays reliably detected and serotyped FMDV RNA in samples (n  = 144) collected from pre‐clinical, clinical and clinically recovered cattle. These data support the use of field‐ready rRT ‐PCR platforms in endemic settings for simple, highly sensitive and rapid detection and/or characterization of FMDV.  相似文献   

6.
We report the laboratory analysis of 125 clinical samples from suspected cases of foot‐and‐mouth disease (FMD ) in cattle and Asian buffalo collected in Pakistan between 2008 and 2012. Of these samples, 89 were found to contain viral RNA by rRT ‐PCR , of which 88 were also found to contain infectious FMD virus (FMDV ) by virus isolation (VI ), with strong correlation between these tests (κ = 0.96). Samples that were VI ‐positive were serotyped by antigen detection ELISA (Ag‐ELISA ) and VP 1 sequence acquisition and analysis. Sequence data identified FMDV serotypes A (n  = 13), O (n  = 36) and Asia‐1 (n  = 41), including three samples from which both serotypes Asia‐1 and O were detected. Serotype A viruses were classified within three different Iran‐05 sublineages: HER ‐10, FAR ‐11 and ESF ‐10. All serotype Asia‐1 were within Group VII (Sindh‐08 lineage), in a genetic clade that differs from viruses isolated prior to 2010. All serotypes O were classified as PanAsia‐2 within two different sublineages: ANT ‐10 and BAL ‐09. Using VP 1 sequencing as the gold standard for serotype determination, the overall sensitivity of Ag‐ELISA to correctly determine serotype was 74%, and serotype‐specific sensitivity was 8% for serotype A, 88% for Asia‐1 and 89% for O. Serotype‐specific specificity was 100% for serotype A, 93% for Asia‐1 and 94% for O. Interestingly, 12 of 13 serotype A viruses were not detected by Ag‐ELISA . This study confirms earlier accounts of regional genetic diversity of FMDV in Pakistan and highlights the importance of continued validation of diagnostic tests for rapidly evolving pathogens such as FMDV .  相似文献   

7.
8.
Foot‐and‐mouth disease (FMD) is endemic in Iran. It is essential to timely evaluate the current disease control programme in Iran. Here, we report the frequency of FMD virus (FMDV) carrier state in cattle slaughtered in Mashhad abattoir, Mashhad, Khorasan Razavi, north–east of Iran, which contains long common borders with Afghanistan and Turkmenistan. Soft palate samples were collected immediately after slaughter for the detection of FMDV by RT‐PCR. The results show that 37.7% of cattle (96 of 255) were carriers of the virus. Among positive samples (96), 58 (60.4%) belonged to serotype O. No evidence was detected for the presence of Asia 1 and A serotypes. Nucleotide sequencing and phylogenic dendogram showed close similarity and common lineage between our samples and viruses isolated in Pakistan. With an approximate more than 80% of cattle population vaccination coverage such a high rate of carrier state may show an extensive FMDV exposure. Therefore, limiting control programmes to timely prophylactic vaccination may be insufficient. This is also true when meat market instabilities act as a temptation to import livestock, legally or illegally, through the eastern frontiers. It is recommended to change the current prophylactic vaccination strategy to a well‐developed regional control programme, with close monitoring of animal movement through eastern frontiers, supported by government commitment and educational programmes. Timely estimation of the frequency of carrier state both in cattle and small ruminants is also advocated as a gauge to monitor the virus status in the region.  相似文献   

9.
In January 2010, foot‐and‐mouth disease (FMD) occurred for the first time in 8 years in Korea. The outbreaks were because of A serotype, different from the O type, which had occurred previously in 2000 and 2002. The FMD outbreaks were identified in seven farms, consisting of six cattle farms where viruses were detected and one deer farm where only FMDV antibody was detected. The seven farms were within 9.3 km of each other. All susceptible animals within 10 km radius of the outbreak farms were placed under movement restrictions for 3–11 weeks. No vaccination took place to facilitate the clinical observation of infected animals and virus detection. After clinical observations and serological tests within the control zones showed no evidence of FMD infection, the movement restrictions were lifted, followed by FMD‐free declaration (23 March) at 80 days after the first outbreak on 2 January. This communication describes the outbreak of FMD A serotype, and control measures applied to eradicate the disease in Korea.  相似文献   

10.
Uganda had an unusually large number of foot‐and‐mouth disease (FMD) outbreaks in 2006, and all clinical reports were in cattle. A serological investigation was carried out to confirm circulating antibodies against foot‐and‐mouth disease virus (FMDV) by ELISA for antibodies against non‐structural proteins and structural proteins. Three hundred and forty‐nine cattle sera were collected from seven districts in Uganda, and 65% of these were found positive for antibodies against the non‐structural proteins of FMDV. A subset of these samples were analysed for serotype specificity of the identified antibodies. High prevalences of antibodies against non‐structural proteins and structural proteins of FMDV serotype O were demonstrated in herds with typical visible clinical signs of FMD, while prevalences were low in herds without clinical signs of FMD. Antibody titres were higher against serotype O than against serotypes SAT 1, SAT 2 and SAT 3 in the sera investigated for serotype‐specific antibodies. Only FMDV serotype O virus was isolated from one probang sample. This study shows that the majority of the FMD outbreaks in 2006 in the region studied were caused by FMDV serotype O; however, there was also evidence of antibodies to both SAT 1 and SAT 3 in one outbreak in a herd inside Queen Elizabeth national park area.  相似文献   

11.
The O/Middle East‐South Asia (ME ‐SA )/Ind‐2001 lineage of foot‐and‐mouth disease virus (FMDV ) is endemic in the Indian subcontinent and has been reported in the Middle East and North Africa, but it had not been detected in South‐East Asia (SEA ) before 2015. This study reports the recent incursions of this viral lineage into SEA , which caused outbreaks in Vientiane Capital of Lao People's Democratic Republic (PDR ) in April 2015, in Dak Nong, Dak Lak and Ninh Thuan Provinces of Vietnam from May to October 2015, and in Rakhine State of Myanmar in October 2015. Disease investigations were conducted during the outbreaks and followed up after laboratory results confirmed the involvement of FMDV O/ME ‐SA /Ind‐2001 sublineage d (O/ME‐SA/Ind‐2001d). Affected host species included cattle, buffalo and pig, and all the outbreaks resolved within 2 months. Animals with clinical signs were separated, and affected premises were disinfected. However, strict movement restrictions were not enforced, and emergency vaccinations were only implemented in Vientiane Capital of Lao PDR and Dak Nong and Ninh Thuan Provinces of Vietnam. Clinical samples were collected from each outbreak and examined by nucleotide sequencing of the FMDV viral protein 1 coding region. Sequence analysis revealed that the O/ME ‐SA /Ind‐2001d isolates from Lao PDR and Vietnam were closely related to each other and similar to viruses previously circulating in India in 2013. Viruses collected from Myanmar were divergent from viruses of the same sublineage recovered from Lao PDR and Vietnam but were closely related to viruses present in Bangladesh in 2015. These findings imply that at least two independent introductions of O/ME ‐SA /Ind‐2001d into SEA have occurred. Our study highlights the transboundary nature of foot‐and‐mouth disease (FMD ) and reinforces the importance of improved FMD surveillance and promotion of safer cross‐border trade in SEA to control the risk of introduction and spread of exotic FMDV strains.  相似文献   

12.
A longitudinal study has been conducted in the provinces of Sindh, Punjab and Islamabad Capital Territory area, Pakistan, to evaluate the impact of foot‐and‐mouth disease on milk yield in a sample of farmers owning cattle and buffaloes. The sample consisted of 50 farms where the presence of foot‐and‐mouth disease (FMD) virus was initially suspected on the basis of clinical signs and subsequently confirmed through either a field test or laboratory confirmation. In each farm, the total number of clinical cases was registered, and clinically diseased milking cattle and buffaloes were followed up for the next 60 days from the onset of clinical signs and the amount of milk yield measured. The average milk yield, estimated to be around 10 l per animal before the onset of FMD, decreased significantly in the 2 months following the onset of acute clinical disease. The loss of milk production in the 60 days following the onset of clinical signs was estimated to be around 220 and 201 l for cattle and buffaloes, respectively. Under the assumption that the administration of a good‐quality vaccine matching circulating FMD strains could protect against clinical disease, the benefit/cost ratio for having all animals vaccinated in all 50 farms was estimated to be 5.7.  相似文献   

13.
The knowledge of foot‐and‐mouth disease virus (FMDV) dynamics and epidemiology in Nigeria and the West Africa subregion is important to support local and regional control plans and international risk assessment. Foot‐and‐mouth disease virus serotype South African territories (SAT)1 was isolated, identified and characterized from an FMD outbreak in cattle in Nigeria in 2015, 35 years after the last report of FMDV SAT1 in West Africa. The VP1 coding sequence of the Nigerian 2015 SAT1 isolates diverges from reported SAT1 topotypes resulting in a separate topotype. The reporting of a novel FMDV SAT1 strain in the virus pool 5 (West and Central Africa) highlights the dynamic and complex nature of FMDV in this region of Africa. Sustained surveillance is needed to understand the origin, the extent and distribution of this novel SAT1 topotype in the region as well as to detect and monitor the occurrence of (re‐)emerging FMDV strains.  相似文献   

14.
The Kachia Grazing Reserve (KGR) is located in Kaduna state in north‐western Nigeria and consists of 6 contiguous blocks housing 744 defined households (HH), all engaged in livestock keeping. It is considered as a homogenous epidemiological unit and a defined study area. In 2012, all cattle and sheep of 40 selected HH were sampled to determine sero‐prevalence of antibodies to foot‐and‐mouth disease virus (FMDV) and of FMDV. The overall sero‐prevalence of antibodies to the non‐structural 3ABC protein (NSP‐3ABC ELISA) was 28.9% (380/1,315) (30.6% cattle; 16.3% sheep), and in 4.5% (62/1,380) (5% cattle; 0.6% sheep) of the examined sera FMD viral RNA could be detected by real‐time RT‐PCR (rRT‐PCR). Additionally, in 2012 and 2014 serum, epithelium and probang samples were collected from cattle in reported FMD outbreaks and the causative FMDVs were molecularly characterized. Approximately half (28/59) of the outbreak sera reacted positive in NSP‐3ABC ELISA, and 88% (52/59) of the outbreak sera contained detectable viral RNA. Overall, antibodies against five FMDV serotypes (O, A, SAT1, SAT2 and SAT3) were detected by solid phase competitive ELISA with combinations of two or more serotypes being common. Of the 21 FMDVs that could be isolated 19 were sequenced and 18 were confirmed as SAT2 (lineage VII) while one was characterized as serotype O (EA‐3 topotype). Phylogenetic analysis revealed a close relationship between Nigerian FMDV strains and strains in this region and even with strains in North‐Africa. Our findings indicate that FMD constitutes an endemic health problem to cattle rearing in the agro‐pastoralist community in the KGR and that the KGR is not a closed epidemiological unit. Insight into the local FMDV epidemiology and in the circulating FMDV serotypes/strains is of support to the relevant authorities in Nigeria when considering the need for an FMD control policy to improve animal production in grazing reserves.  相似文献   

15.
Control of foot‐and‐mouth disease (FMD) in Uganda by ring vaccination largely depends on costly trivalent vaccines, and use of monovalent vaccines could improve the cost effectiveness. This, however, requires application of highly specific diagnostic tests. This study investigated outbreaks of FMD in seven Ugandan districts, during 2011, using the PrioCHECK® FMDV NS ELISA, solid‐phase blocking ELISAs (SPBEs) and virus neutralization tests (VNTs), together with virological analyses for characterization of the responsible viruses. Two hundred and eighteen (218) cattle and 23 goat sera as well as 82 oropharyngeal fluid/epithelial tissue samples were collected. Some 50% of the cattle and 17% of the goat sera were positive by the PrioCHECK® FMDV NS ELISA, while SPBEs identified titres ≥80 for antibodies against serotype O FMD virus (FMDV) in 51% of the anti‐NSP positive cattle sera. However, 35% of the anti‐NSP positive cattle sera had SPBE titres ≥80 against multiple serotypes, primarily against serotypes O, SAT 1 and SAT 3. Comparison of SPBEs and VNTs for the detection of antibodies against serotypes O, SAT 1 and SAT 3 in 72 NSP positive cattle sera showed comparable results against serotype O (= 0.181), while VNTs detected significantly fewer samples positive for antibodies against SAT 1 and SAT 3 than the SPBEs (< 0.001). Detection of antibodies against serotype O was consistent with the isolation of serotype O FMDVs from 13 samples. Four of these viruses were sequenced and belonged to two distinct lineages within the East Africa‐2 (EA‐2) topotype, each differing from the currently used vaccine strain (EA‐1 topotype). The relationships of these lineages to other serotype O viruses in the Eastern Africa region are discussed. To enhance the control of FMD in Uganda, there is need to improve the specificity of the SAT‐SPBEs, perform vaccine matching and implement improved regional FMD control.  相似文献   

16.
Recent European contingency plans envisage emergency vaccination as an animal‐friendly control strategy for foot‐and‐mouth disease (FMD). Anti‐viral drugs may be used as an alternative or complementary measure. We here demonstrate that the nucleoside analogue 2′‐C‐methylcytidine (2′CMC) protects severe combined immunodeficient (SCID) mice against lethal FMD virus infection. In brief, SCID mice were inoculated with serotype A FMD virus and treated for five consecutive days with 2′CMC. All 15 treated mice remained healthy until the end of the study at 14 days post‐infection (dpi). At that time, viral RNA was no longer detected in 13 of 15 treated mice. All eight untreated mice suffered from an acute generalized disease and were euthanized for ethical reasons on average at 4 dpi. These results illustrate the potential of small molecules to control FMD.  相似文献   

17.
Foot‐and‐mouth disease (FMD) inflicts severe economic losses within infected countries and is arguably the most important trade‐restricting livestock disease in the world. In southern Africa, infected African buffaloes (Syncerus caffer) are the major reservoir of the South African Territories (SAT) types of the virus. With the progressive expansion of transfrontier conservation areas (TFCAs), the risk of FMD outbreaks is expected to increase due to a higher probability of buffalo/livestock contacts. To investigate the dynamics of FMD within and around the Great Limpopo TFCA (GLTFCA), 5 herds of buffaloes were sampled in June 2010 to characterize circulating viruses in South Africa and Zimbabwe. Three SAT‐2 and three SAT‐3 viral strains were isolated in both countries, including one that was genetically linked with a recent SAT‐2 outbreak in Mozambique in 2011. In addition, two groups of unvaccinated cattle (= 192) were serologically monitored for 1 year at the wildlife/livestock interface of Gonarezhou National Park (GNP) in Zimbabwe between April 2009 and January 2010, using the liquid‐phase blocking ELISA (LPBE) and a test for antibodies directed against non‐structural proteins (NSP). Neither clinical signs nor vaccination of cattle were reported during the study, yet a high proportion of the monitored cattle showed antibody responses against SAT‐3 and SAT‐1. Antibodies against NSP were also detected in 10% of the monitored cattle. The results of this study suggest that cattle grazing in areas adjacent to the GLTFCA can be infected by buffalo or other infected livestock and that cattle trade movements can act as efficient disseminators of FMD viruses to areas several hundred kilometres from the virus source. Current methods of surveillance of FMD at the GLTFCA interface seem insufficient to control for FMD emergence and dissemination and require urgent reassessment and regional coordination.  相似文献   

18.
Foot‐and‐mouth disease (FMD) vaccines are routinely used as effective control tools in large regions worldwide and to limit outbreaks during epidemics. Vaccine‐induced protection in cattle has been largely correlated with the FMD virus (FMDV)‐specific antibodies. Genetic control of cattle immune adaptive responses has been demonstrated only for peptide antigens derived from FMDV structural proteins. Here, we quantify the heterogeneity in the antibody response of cattle primo‐vaccinated against FMD and study its association with the genetic background in Holstein and Jersey sires. A total of 377 FMDV‐seronegative calves (122 and 255 calves from 16 and 15 Holstein and Jersey sires, respectively) were included in the study. Samples were taken the day prior to primo‐vaccination and 45 days post‐vaccination (dpv). Animals received commercial tetravalent FMD single emulsion oil vaccines formulated with inactivated FMDV. Total FMDV‐specific antibody responses were studied against three viral strains included in the vaccine, and antibody titres were determined by liquid‐phase blocking ELISA. Three linear hierarchical mixed regression models, one for each strain, were formulated to assess the heterogeneity in the immune responses to vaccination. The dependent variables were the antibody titres induced against each FMDV strain at 45 dpv, whereas sire's ‘breed’ was included as a fixed effect, ‘sire’ was included as a random effect, and ‘farm’ was considered as a hierarchical factor to account for lack of independence of within herd measurements. A significant association was found between anti‐FMDV antibody responses and sire's breed, with lower immune responses found in the Jersey sires’ offspring compared with those from Holstein sires. No significant intrabreed variation was detected. In addition, farm management practices were similar in this study, and results of the serological assays were shown to be repeatable. It therefore seems plausible that differences in the immune response may be expected in the event of a mass vaccination campaigns.  相似文献   

19.
Foot and mouth disease (FMD) is an endemic transboundary disease in the Mekong region, and FMD records of reports to animal health authorities in Lao PDR between 2009 and 2011 were reviewed. FMD outbreaks occurred in 2 of 3 years in eight districts in three of the eight northern Lao PDR provinces, locations suggested as FMD ‘hotspots’. The relatively higher risk of recurrence of FMD in these districts was likely due to the presence of a dense large ruminant population, extensive animal trading including transboundary movements and ineffective animal movement controls. As an understanding of the epidemiology of FMD in these ‘hotspots’ may offer insights into improved FMD control in the region, a study of an outbreak of FMD occurring in early 2010 following failure to vaccinate was conducted in the endemic ‘hotspot’ area of Paek district in Xiengkhoung province where in early 2009, a major outbreak of FMD in the district had been prevented in two villages by vaccination. The 2010 outbreak included collection of tissue samples 1 week after the onset of FMD that confirmed infection with FMD virus serotype O (Myanmar topotype) in a population of 239 large ruminants, comprising 167 cattle and 72 buffalo. A survey by interview of 30 farmers conducted in July 2010 documented high morbidity in cattle and buffalo (>90%) and identified disease risk factors, including increased trading of animals at the end of the rice harvest, plus several failures of biosecurity. In late 2010 and early 2011, a total of 40 and 72 serum samples were collected from large ruminants prior to and post‐FMD vaccination respectively and tested by LPB‐ELISA. Antibodies were present in the pre‐vaccination samples attributable to previous exposure to FMD virus and significantly rising post‐vaccination titres indicated likely temporary protection against future FMDV infection. It was concluded that to provide sufficient control of FMD in this ‘hotspot’, regular vaccination, particularly prior to the peak risk period in December‐February, plus improved farmer knowledge of disease transmission risk and biosecurity, is required. Although low rural education standards and language barriers because of multiple ethnic groups pose a challenge for the successful delivery of extension programmes in northern Lao PDR, training to improve disease recognition and reporting plus village‐level biosecurity practices is considered important in FMD ‘hotspots’ if sustainable regional initiatives directed at FMD control are to be achieved.  相似文献   

20.
Foot‐and‐mouth disease (FMD) is endemic in Bangladesh and is predominantly due to FMDV serotype O. In 2012, FMD outbreaks were identified in five different districts of Bangladesh. Of 56 symptomatic cattle epithelial tissue samples, diagnostic PCR assay based on 5′‐URT detected 38 FMDV infections. Viral genotyping targeting VP1‐encoding region confirmed emergence of two distinct serotypes, A and O with an abundance of serotype A in Chittagong and Gazipur districts and serotype O in Pabna and Faridpur. Only single lineage of both A and O was retrieved from samples of five different regions. Sequencing and phylogenetic analysis of VP1 sequences revealed that serotype O sequences were closely related to the Ind 2001 sublineage of Middle East–South Asia (ME‐SA) topotype that was previously circulating in Bangladesh, and serotype A sequences belonging to the genotype VII that was dominant in India during the last decade. The results suggest that extensive cross‐border animal movement from neighbouring countries is the most likely source of FMDV serotypes in Bangladesh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号