首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The effect of granulocyte colony-stimulating factor (G-CSF) on human neutrophil motility was studied using videomicroscopy. Stimulation of neutrophils with G-CSF resulted in enhanced motility with morphological change and increased adherence. Enhanced neutrophil motility was detected within 3-5 min after G-CSF stimulation, reached a maximum at 10 min, and was sustained for approximately 35 min. The maximum migration rate was 84.4 +/- 2.9 microm/5 min. A study using the Boyden chamber method revealed that G-CSF-stimulated neutrophils exhibited random migration but not chemotaxis. Enhanced neutrophil motility and morphological change were inhibited by MEK [mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase] inhibitors (PD98059 and U0126), and a phosphatidylinositol 3-kinase (PI3K) inhibitor (wortmannin), but not by a p38 MAPK inhibitor (SB203580). These findings are consistent with the fact that G-CSF selectively activates MEK/ERK and PI3K, but not p38, in neutrophils. MEK/ERK activation was associated with G-CSF-induced redistribution of F-actin and phosphorylated myosin light chain. Enhanced neutrophil motility was observed even in the presence of neutralizing anti-CD18 antibody, which prevented cell adherence. These findings indicate that G-CSF induces human neutrophil migration via activation of MEK/ERK and PI3K.  相似文献   

3.
The mitogen-activated protein kinase-extracellular signal-regulated kinase signaling element (MAPK-ERK) plays a critical role in natural killer (NK) cell lysis of tumor cells, but its upstream effectors were previously unknown. We show that inhibition of phosphoinositide-3 kinase (PI3K) in NK cells blocks p21-activated kinase 1 (PAK1), MAPK kinase (MEK) and ERK activation by target cell ligation, interferes with perforin and granzyme B movement toward target cells and suppresses NK cytotoxicity. Dominant-negative N17Rac1 and PAK1 mimic the suppressive effects of PI3K inhibitors, whereas constitutively active V12Rac1 has the opposite effect. V12Rac1 restores the activity of downstream effectors and lytic function in LY294002- or wortmannin-treated, but not PD98059-treated, NK cells. These results document a specific PI3K-->Rac1-->PAK1-->MEK-->ERK pathway in NK cells that effects lysis.  相似文献   

4.
Small GTP-binding proteins of the Rho-family, Rho, Rac, and Cdc42, have been traditionally linked to the regulation of the cellular actin-based cytoskeleton. Rac and Cdc42 can also control the activity of JNK, thus acting in a molecular pathway transmitting extracellular signals to the nucleus. Interestingly, Rho can also regulate gene expression, albeit by a not fully understood mechanism. Here, we found that activated RhoA can stimulate c-jun expression and the activity of the c-jun promoter. As the complexity of the signaling pathways controlling the expression of c-jun has begun to be unraveled, this finding provided a unique opportunity to elucidate the biochemical routes whereby RhoA regulates nuclear events. We found that RhoA can initiate a linear kinase cascade leading to the activation of ERK6 (p38 gamma), a recently identified member of the p38 family of MAPKs. Furthermore, we present evidence that RhoA, PKN, MKK3/MKK6, and ERK6 (p38 gamma) are components of a novel signal transduction pathway involved in the regulation of gene expression and cellular transformation.  相似文献   

5.
In the present study, we investigated the signalling pathways involved in diosgenin-induced apoptosis in human rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) in vitro with particular interest on Akt and MAPKs activation in relation to arachidonic acid metabolism via COX-2 pathway. MAPK activation was measured by ELISA quantification in diosgenin-treated human RA FLS. Expression of Akt and phospho-Akt was analyzed by Western blot analysis. Nuclear factor-kappaB (NF-kappaB) translocation was evaluated by electromobility shift assay. The prostanoid production (COX-2 activity) was measured by quantitative ELISA. Diosgenin-induced apoptosis in the presence of MAPK or Akt inhibitors was detected by a quantitative determination of DNA fragmentation. Treatment of human RA FLS with 40 microM diosgenin caused an activation of p38 and JNK and an inhibition of ERK phosphorylation. Akt and NF-kappaB are potentially required for diosgenin-induced apoptosis in human RA FLS because 40 microM diosgenin abrogated Akt phosphorylation which correlated with an inhibition of NF-kappaB nuclear translocation. SB203580 and SP600125 (p38 and JNK inhibitors) reduced diosgenin-induced DNA fragmentation whereas U0126 and LY294002 (MEK and PI3 kinase/Akt inhibitors) caused an amplification of proapoptotic effect of diosgenin. Diosgenin increased COX-2 activity resulting in PGE2 and 6-keto-PGF1alpha overproduction in human RA FLS. All MAPK inhibitors markedly reduced diosgenin-induced PGE2 and 6-keto-PGF1alpha synthesis except for SP600125 on 6-keto-PGF1alpha production. These results provide, for the first time, strong evidence that a combined association implicating a MEK inhibitor (U0126) and diosgenin is the most effective in inducing very strong apoptosis with down-regulation of COX-2 expression and activity in human RA FLS.  相似文献   

6.
As reported previously, stimulation of astrocytes with plasminogen (PLGn) remarkably enhances their production/release of plasminogen activator inhibitor-1 (PAI-1). In addition, both p38 mitogen-activated protein kinase (p38MAPK) and c-Jun N-terminal kinase (JNK) are activated in these astrocytes. However, it remains to be determined whether the MAPK activation is associated with the PAI-1 induction in PLGn-stimulated astrocytes. In the present study, we investigated the relationship between MAPK activity and PAI-1 induction in PLGn-stimulated astrocytes. PLGn stimulation led to definitive phosphorylation of three MAPKs: external signal regulated kinase (ERK), JNK and p38. These results suggest that all of these MAPKs, either alone or in combination, are involved in PAI-1 induction. To verify this association, an inhibition experiment was carried out by using inhibitors specific for each MAPK. The results of the immunoblotting analysis indicated that 20 μM SB203580 (the p38 inhibitor) or SP600125 (the JNK inhibitor) suppressed approximately 85% or 40% of PLGn-inducible PAI-1, respectively. Only 20% inhibition was achieved by pretreatment of astrocytes with 20 μM PD98059 (the inhibitor of MEK1/2, an upstream kinase of ERK). In conclusion, p38 and JNK were shown to be the major MAPKs involved in the signaling cascade leading to PAI-1 induction in astrocytes stimulated with PLGn.  相似文献   

7.
8.
Patients with myelodysplasia suffer from recurrent bacterial infections as a result of differentiation defects of the myeloid lineage and a disturbed functioning of neutrophilic granulocytes. Important physiological activators of neutrophils are the cytokines interleukin-8/CXC chemokine ligand 8 (IL-8/CXCL8), which activates CXC chemokine receptor 1 and 2 (CXCR1 and CXCR2), and growth-related oncogene (GROalpha)/CXCL1, which stimulates only CXCR2. In this study, we show that migration toward IL-8/GROalpha gradients is decreased in myelodysplastic syndrome (MDS) neutrophils compared with healthy donors. We investigated the signal transduction pathways involved in IL-8/GROalpha-induced migration and showed that specific inhibitors for extracellular signal-regulated kinase (ERK)1/2 and phosphatidylinositol-3 kinase (PI-3K) abrogated neutrophil migration toward IL-8/GROalpha. In accordance with these results, we subsequently showed that IL-8/GROalpha-stimulated activation of ERK1/2 was substantially diminished in MDS neutrophils. Activation of the PI-3K downstream target protein kinase B/Akt was disturbed in MDS neutrophils when cells were activated with IL-8 but normal upon GROalpha stimulation. IL-8 stimulation resulted in higher migratory behavior and ERK1/2 activation than GROalpha stimulation, suggesting a greater importance of CXCR1. We then investigated IL-8-induced activation of the small GTPase Rac implicated in ERK1/2-dependent migration and found that it was less efficient in neutrophils from MDS patients compared with healthy donors. In contrast, IL-8 triggered a normal activation of the GTPases Ras and Ral, indicating that the observed defects were not a result of a general disturbance in CXCR1/2 signaling. In conclusion, our results demonstrate a disturbed CXCR1- and CXCR2-induced neutrophil chemotaxis in MDS patients, which might be the consequence of decreased Rac-ERK1/2 and PI-3K activation within these cells.  相似文献   

9.
Epidermal growth factor (EGF) may increase cell motility,an event implicated in cancer cell invasion and metastasis.However,the underlying mechanisms for EGF-induced cell motility remain elusive.In this study,we found that EGF treatment could activate Ras-related C3 botulinum toxin substrate 1 (Rac1),PI3K/Akt and p21actived kinase (PAK1) along with cell migration.Ectopic expression of PAK1 K299R,a dominant negative PAK1 mutant,could largely abolish EGF-induced cell migration.Blocking PI3K/Akt signalling with LY294002 or Akt siRNA remarkably inhibited both EGF-induced PAK1 activation and cell migration.Furthermore,expression of dominant-negative Rac1 (T17N) could largely block EGF-induced PI3K/Akt-PAK1 activation and cell migration.Interestingly,EGF could induce a significant production of ROS,and N-acetyl-L-cysteine,a scavenger of ROS which abolished the EGF-induced ROS generation,cell migration,as well as activation of PI3K/Akt and PAK,but not Rac1.Our study demonstrated that EGF-induced cell migration involves a cascade of signalling events,including activation of Rac1,generation of ROS and subsequent activation of PI3K/Akt and PAK1.  相似文献   

10.
11.
12.
To characterize molecular mechanisms regulating snail cellular immune responses, the contributions of mitogen-activated protein kinases (MAPKs) and phosphatidylinositol 3-kinase (PI3-K) were examined in hemocytes of the trematode intermediate host snails Biomphalaria glabrata and Lymnaea stagnalis. Simultaneous measurement of phagocytosis/encapsulation and H2O2 production by hemocytes in the presence or absence of specific signal transduction inhibitors was used to assess the role of extracellular-signal regulated kinases 1 and 2 (ERK1/2), p38, JNK and PI3-K. Hemocyte spreading was significantly reduced in a dose-dependent manner by the ERK inhibitor, PD098059, and by wortmannin, a potent PI3-K inhibitor. The JNK inhibitor, SP600125, and the p38 kinase inhibitor, SB203580, had no effect on hemocyte spreading. Sheep red blood cell phagocytosis was significantly impaired by PD098059, SP600125, and SB203580. Hydrogen peroxide production during phagocytosis was severely inhibited by PD098059. Additionally, PD098059, but not the other inhibitors, significantly impaired the cellular encapsulation of trematode larvae and H2O2 production during encapsulation. These results suggest that MAPK and PI3-K signal transduction pathways play a pivotal role in the immune responses of snail hemocytes. PI3-K and ERK appear to strongly regulate cell motility. ERK, JNK and p38 contribute to phagocytosis-mediated signal transduction. ERK also play a major role in oxidative burst activation and the encapsulation of trematode larvae by snail hemocytes.  相似文献   

13.
H4/ICOS is a costimulatory molecule related to CD28. Its effects on early TCR signals have been analyzed in mouse CD4(+) Th2 cells, expressing H4/ICOS at higher levels than Th1 clones. Anti-H4/ICOS antibodies strongly enhanced CD3-mediated tyrosine phosphorylation of ZAP-70, zeta, or Vav, as well as extracellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK) and p38 MAP kinase activation in these cells. The association of phosphoinositide 3-kinase (PI-3K) to H4/ICOS was enhanced by H4/ICOS cross-linking, and PI-3K inhibitors inhibited ERK and JNK activation and IL-4/IL-10 secretion, but not p38 MAP kinase or ZAP-70 activation. H4/ICOS-mediated activation of JNK, but not ERK or p38, is partially dependent on the expression of CD4 by the cells, whereas H4/ICOS costimulation is partially independent on CD28 expression. Cytochalasin D, an inhibitor of actin polymerization, inhibited ZAP-70, MAP kinase activation, or IL-4/IL-10 secretion. Neither cyclosporin A nor inhibitors of PKC produced detectable inhibition of ZAP-70 phosphorylation or MAP kinase activation in these Th2 cells. Cyclosporin A strongly inhibited IL-4, but not IL-10 secretion. ERK or JNKinhibitors partially inhibited IL-4 and IL-10 secretion, while PKC or p38 inhibitors had no significant effects on IL-4 or IL-10 secretion. Taken together, our data show clear similarities of costimulation mechanisms between H4/ICOS and CD28 during the early steps of TCR activation.  相似文献   

14.
It has been known that growth factors such as fibroblast growth factor (FGF) and platelet-derived growth factor (PDGF) can promote proliferation and migration in a variety of cell types including osteoblastic cells. However, the mechanism underlying their action has not been clearly defined. The present study was undertaken to examine the effect of FGF and PDGF on cell proliferation and migration and to determine the role of extracellular signal-regulated kinase (ERK) and Akt in action of FGF and PDGF in osteoblastic cells. FGF enhanced proliferation in a dose- and time-dependent manner, whereas it did not affect cell migration. FGF induced a transient activation of ERK, but not Akt, which was inhibited by an inhibitor of MEK, the upstream kinase of ERK, but not by inhibitors of PI3K/Akt (LY294002), epidermal growth factor receptor (EGFR, AG1478), and Src (PP2). FGF-induced proliferation was inhibited by inhibitors of MEK/ERK and Src pathways. Exposure of cells to FGF stimulated transition of cell cycle from the G1 phase to S phase and increased phosphorylation of Rb. FGF-induced phosphorylation of Rb was attenuated by inhibitors of MEK/ERK and Src pathways. Cell migration studies indicated that PDGF stimulated migration, but it had no effect on cell proliferation. PDGF induced activation of ERK and Akt. The ERK activatin was inhibited by the Src inhibitor and the Akt activation was inhibited by inhibitors of EGFR and Src. PDGF-induced migration was inhibited by inhibitors of MEK/ERK, PI3K/Akt, EGFR and Src pathways. Taken together, these findings suggest that the MEK/ERK and Src pathways play an important role in the FGF-induced proliferation and signaling pathways involving MEK/ERK, EGFR, Src and PI3K/Akt mediate the PDGF-induced migration. These data are of importance in understanding the roles of these growth factors in osteoblastic cell proliferation and migration.  相似文献   

15.
Mouse bone marrow-derived macrophages proliferate in the presence of macrophage colony-stimulating factor (M-CSF), granulocyte-macrophage colony-stimulating factor, or IL-3, but undergo apoptosis in their absence. Inhibition of extracellular signal-regulated kinases (ERK)-1/2 blocks growth factor-dependent proliferation but not survival, indicating that the two processes require independent signaling pathways. Although M-CSF induces the activation of other kinase pathways, such as c-Jun N-terminal kinase, p38, and phosphatidylinositol 3-kinase (PI-3K), these pathways are not required for proliferation. However, PI-3K is the only one necessary for the induction of survival, as demonstrated using the inhibitors LY294002 and Wortmannin. Growth factors also activate Akt kinase and a transient expression of the cdk inhibitor p21(Waf1), which inhibits apoptosis but is not required for proliferation. PI-3K inhibitors also block growth factor-dependent expression of p21(Waf1) and the activation of Akt. Moreover, the survival induced by cyclosporin A or decorin is also dependent on the PI-3K/Akt kinases and p21(Waf1). These findings demonstrate that the induction of p21(Waf1) through the PI-3K/Akt pathway is a general survival response of macrophages. Our results show that growth factors in macrophages use two pathways: one for proliferation, mediated by ERK, and the other for survival, which requires the PI-3K/Akt kinases and p21(Waf1).  相似文献   

16.
Abstract

Cinobufagin (CBG) is a cardiotoxic bufanolide steroid secreted by the skin and parotid venom glands of the Asiatic toad Bufo bufo gargarizans (called Chan-Su). Although CBG is known to exhibit anti-cancer activities, very little is known about its potential mechanism(s) of action. In this study, we investigated whether CBG mediates its effect through the modulation of the mitogen-activated protein kinases (MAPKs) signaling pathway in human multiple myeloma (MM) U266 cells. We found that CBG caused the significant activation of ERK, JNK and p38 MAPK in U266 cells. CBG showed much higher cytotoxicity against U266 cells as compared to peripheral blood mononuclear cells (PBMC). Induction of CBG increased reactive oxygen species (ROS) generation from mitochondria, which is associated with the induction of apoptosis as characterized by increased sub-G1 DNA contents of cell cycle, positive Annexin V binding, activation of caspase-3 and cleavage of PARP. Inhibition of ROS generation by N-acetyl-l-cysteine (NAC) significantly prevented CBG-induced ERK, JNK and p38 MAPK activation and apoptosis. CBG also down-regulated the expression of various downstream gene products that mediate cell proliferation, survival, angiogenesis and metastasis. Interestingly, ERK, JNK and p38MAPK pharmacological inhibitors blocked CBG-induced MAPKs activation and ERK inhibitor (PD98059) also prevented the CBG-induced caspase-3 activation and PARP cleavage in U266 cells. Taken together, these findings suggest that CBG can act as a potent anticancer agent against MM and possibly exerts its effects through the ROS-mediated activation of ERK, JNK and p38 MAPK leading to the activation of caspase-3 in U266 cells.  相似文献   

17.
Curcuminoids are the major active components extracted from Curcuma longa and are well known for their antioxidant effects. Previous studies have reported that the antioxidant properties of curcuminoids are mainly attributed to their free radical scavenging abilities. However, whether there are other mechanisms besides the non-enzymatic process and how they are involved, still remains unknown. In the present study, we explored the protective effects of bisdemethoxycurcumin (Cur3) against tert-butyl hydroperoxide (t-BHP)-induced cytotoxicity in human umbilical vein endothelial cells (HUVECs), focusing on the effect of Cur3 on the regulation of the phosphatidylinositol 3-kinase (PI3K)/Akt and the mitogen-activated protein kinase (MAPK) pathways. The pre-treatment with Cur3 inhibited t-BHP-induced cell damage dose-dependently, which was evident by the increased cell viability and the corresponding decrease in lactate dehydrogenase release. The pre-treatment with Cur3 also attenuated t-BHP-induced cell morphological changes and apoptosis. MAPKs, including p38, c-Jun N-terminal kinase (JNK), extracellular signal-regulated protein kinase 1/2 (ERK1/2), as well as PI3K/Akt have been reported to be involved in proliferation, apoptosis and differentiation under various stress stimulations. The pre-treatment with Cur3 decreased t-BHP-induced ERK1/2 phosphorylation and increased t-BHP-induced Akt phosporylation but did not affect the phosphorylation of p38 or JNK. In addition, the Cur3-induced increase in cell viability was attenuated by the treatment with wortmannin or LY294002, the upstream inhibitors of Akt, and was enhanced by the treatment with 2-[2'-amino-3'-methoxyphenyl]-oxanaphthalen-4-one (PD98059), an upstream inhibitor of ERK1/2. These results suggest that the ERK1/2 and PI3K/Akt signaling pathways could be involved in the protective effects of Cur3 against t-BHP-induced damage in HUVECs.  相似文献   

18.
19.
20.
In human B cells, antigen receptor ligation and CD40 ligation are known to activate the extracellular-regulated kinases (ERK) and c-Jun N-terminal kinase (JNK) pathways, which in turn regulate many important B cell functions. We previously reported that antigen receptor ligation activated the ERK pathway whereas CD40 ligation activated the JNK/stress-activated protein kinase (SAPK) pathway. Here, we demonstrate that another SAPK, p38/Hog1, is activated by both antigen receptor ligation or CD40 ligation in a human B-lymphoblastoid cell line and tonsillar B cells. Wortmannin, an inhibitor of phosphatidylinositol 3-kinase, partially inhibited ERK2 and p38 activation triggered through the B cell receptor whereas activation of JNK1 and p38 through CD40 was not affected. PD98059, a specific inhibitor of mitogen-activated extracellular response kinase kinase (MEK), significantly inhibited ERK2 activation and partially inhibited p38 activation triggered by anti-IgM antibody treatment, but did not affect CD40-dependent signaling events. In addition, anti-IgM antibody-induced signaling pathways were shown to be PKC-dependent in contrast to the CD40-induced signaling pathways. Thus, the B cell receptor and CD40 recruit the ERK, JNK and p38 pathways by using different upstream effectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号