首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mefloquine is a quinoline antimalarial drug that is structurally related to the antiarrhythmic agent quinidine. Mefloquine is widely used in both the treatment and prophylaxis of Plasmodium falciparum malaria. Mefloquine can prolong cardiac repolarization, especially when coadministered with halofantrine, an antagonist of the human ether-a-go-go-related gene (HERG) cardiac K+ channel. For these reasons we examined the effects of mefloquine on the slow delayed rectifier K+ channel (KvQT1/minK) and HERG, the K+ channels that underlie the slow (I(Ks)) and rapid (I(Kr)) components of repolarization in the human myocardium, respectively. Using patch-clamp electrophysiology we found that mefloquine inhibited KvLQT1/minK channel currents with an IC50 value of approximately 1 microM. Mefloquine slowed the activation rate of KvLQT1/minK and more block was evident at lower membrane potentials compared with higher ones. When channels were held in the closed state during drug application, block was immediate and complete with the first depolarizing step. HERG channel currents were about 6-fold less sensitive to block by mefloquine (IC50 = 5.6 microM). Block of HERG displayed a positive voltage dependence with maximal inhibition obtained at more depolarized potentials. In contrast to structurally related drugs such as quinidine, mefloquine is a more effective antagonist of KvLQT1/minK compared with HERG. Block of KvLQT1/minK by mefloquine may involve an interaction with the closed state of the channel. Inhibition by mefloquine of KvLQT1/minK in the human heart may in part explain the synergistic prolongation of QT interval observed when this drug is coadministered with the HERG antagonist halofantrine.  相似文献   

2.
We studied the effects of irbesartan, a selective angiotensin II type 1 receptor antagonist, on human ether-a-go-go-related gene (HERG), KvLQT1+minK, hKv1.5, and Kv4.3 channels using the patch-clamp technique. Irbesartan exhibited a low affinity for HERG and KvLQT1+minK channels (IC(50) = 193.0 +/- 49.8 and 314.6 +/- 85.4 microM, respectively). In hKv1.5 channels, irbesartan produced two types of block, depending on the concentration tested. At 0.1 microM, irbesartan inhibited the current in a time-dependent manner (22 +/- 3.9% at +60 mV). The blockade increased steeply with channel activation increasing at more positive potentials. However, at 10 microM, irbesartan induced a time-independent blockade that occurred in the range of potentials of channel opening, reaching its maximum at approximately 0 mV, and remaining unchanged at more positive potentials (24.0 +/- 1.0% at +60 mV). In Kv4.3 currents, irbesartan produced a concentration-dependent block, which resulted in two IC(50) values (1.0 +/- 0.1 nM and 7.2 +/- 0.6 microM). At 1 microM, it inhibited the peak current and accelerated the time course of inactivation, decreasing the total charge crossing the membrane (36.6 +/- 7.8% at +50 mV). Irbesartan shifted the inactivation curve of Kv4.3 channels, the blockade increasing as the amount of inactivated channels increased. Molecular modeling was used to define energy-minimized dockings of irbesartan to hKv1.5 and HERG channels. In conclusion, irbesartan blocks Kv4.3 and hKv1.5 channels at therapeutic concentrations, whereas the blockade of HERG and KvLQT1+minK channels occurred only at supratherapeutic levels. In hKv1.5, a receptor site is apparent on each alpha-subunit of the channel, whereas in HERG channels a common binding site is present at the pore.  相似文献   

3.
Vesnarinone, a phosphodiesterase inhibitor, prolongs cardiac action potential duration by inhibiting the delayed rectifier K(+) current, I(K). We examined the effect of this agent on human ether-a-go-go related gene (HERG) and KvLQT1/minK K(+) channels heterologously expressed in human embryonic kidney 293T cells with the whole-cell patch-clamp technique. HERG channel current was inhibited by vesnarinone in a concentration-dependent manner, whereas KvLQT1/minK current was hardly affected by the drug. The inhibition of HERG current by vesnarinone became more prominent and faster as the membrane potential was more depolarized. The properties of inhibition could be described by a first order reaction between the drug and the channel that was apparently independent of HERG channel gating. Although the unbinding rate constant of the drug was constant, the apparent binding rate constant increased as the membrane was more depolarized and the drug concentration was raised. This model also could explain the fast recovery from the drug's effect at hyperpolarized potentials and its rate-dependent inhibition of HERG. Therefore, the effect of vesnarinone on the HERG-K(+) current could be adequately described by a simple kinetic model of drug-channel interaction.  相似文献   

4.
Trifluoperazine, a commonly used antipsychotic drug, has been known to induce QT prolongation and torsades de pointes, which can cause sudden death. We studied the effects of trifluoperazine on the human ether-a-go-go-related gene (HERG) channel expressed in Xenopus oocytes and on the delayed rectifier K(+) current of guinea pig cardiomyocytes. The application of trifluoperazine showed a dose-dependent decrease in current amplitudes at the end of voltage steps and tail currents of HERG. The IC(50) for a trifluoperazine block of HERG current progressively decreased according to depolarization: IC(50) values at -40, 0, and +40 mV were 21.6, 16.6, and 9.29 microM, respectively. The voltage dependence of the block could be fitted with a monoexponential function, and the fractional electrical distance was estimated to be delta = 0.65. The block of HERG by trifluoperazine was use-dependent, exhibiting more rapid onset and greater steady-state block at higher frequencies of activation; there was partial relief of the block with decreasing frequency. In guinea pig ventricular myocytes, bath applications of 0.5 and 2 microM trifluoperazine at 36 degrees C blocked the rapidly activating delayed rectifier K(+) current by 32.4 and 72.9%, respectively; however, the same concentrations of trifluoperazine failed to significantly block the slowly activating delayed rectifier K(+) current. Our findings suggest the arrhythmogenic side effect of trifluoperazine is caused by a blockade of HERG and the rapid component of the delayed rectifier K(+) current rather than by the blockade of the slow component.  相似文献   

5.
Selective inhibitors of the slow component of the cardiac delayed rectifier K(+) current, I(Ks), are of interest as novel class III antiarrhythmic agents and as tools for studying the physiologic roles of the I(Ks) current. Racemic chromanol 293B is an inhibitor of both native I(Ks) and its putative molecular counterpart, the KvLQT1+minK ion channel complex. We synthesized the (+)-[3S,4R] and (-)-[3R,4S] enantiomers of chromanol 293B using chiral intermediates of known absolute configuration and determined their relative potency to block recombinant human K(+) channels that form the basis for the major repolarizing K(+) currents in human heart, including KvLQT1+minK, human ether-a-go-go-related gene product (hERG), Kv1.5, and Kv4.3, corresponding to the slow (I(Ks)), rapid (I(Kr)), and ultrarapid (I(Kur)) delayed rectifier currents and the transient outward current (I(To)), respectively. K(+) channels were expressed in mammalian cells and currents were recorded using the whole-cell patch-clamp technique. We found that the physicochemical properties and relative potency of the enantiomers differed from those reported previously, with (-)-[3R,4S]293B nearly 7-fold more potent in block of KvLQT1+minK than (+)-[3S,4R]293B, indicating that the original stereochemical assignments were reversed. K(+) current inhibition by (-)-293B was selective for KvLQT1+minK over hERG, whereas the stereospecificity of block for KvLQT1+minK and Kv1.5 was preserved, with (-)-293B more potent than (+)-293B for both channel complexes. We conclude that the (-)-[3R,4S] enantiomer of chromanol 293B is a selective inhibitor of KvLQT1+minK and therefore a useful tool for studying I(Ks).  相似文献   

6.
KCB-328 [1-(2-amino-4-methanesulfonamidophenoxy)-2-[N-(3,4-dimethoxyphenethyl)-N-methylamino]ethane hydrochloride] is a newly synthesized class III antiarrhythmic drug and is known to be highly effective against various types of arrhythmias induced by coronary artery ligation, reperfusion, and programmed electrical stimulation. To understand the potential ionic mechanisms, we examined the effects of KCB-328, which encodes the rapidly activating delayed rectifier K(+) current in cardiac tissues, on human ether-a-go-go-related gene (HERG) channels expressed in Xenopus oocytes. The amplitudes of steady-state currents and tail currents of HERG were decreased by KCB-328 dose dependently. The decrease became more pronounced at more positive potential, suggesting that the block of HERG by KCB-328 is voltage-dependent. IC(50) values at -30, -20, -10, 0, +10, +20, +30, and +40 mV were 7.6 +/- 0.5, 4.8 +/- 0.4, 3.2 +/- 0.3, 2.1 +/- 0.3, 1.7 +/- 0.2, 1.4 +/- 0.2, 1.3 +/- 0.1, and 1.2 +/- 0.1 microM, respectively. Induction of block depended on depolarization beyond the threshold for channel opening. In addition, time-dependent block developed slowly, with tau = 1.7 +/- 0.3 s (100 microM) at 0 mV, and was delayed by a stronger depolarization to +80 mV, at which HERG channel is inactivated. We can conclude that KCB-328 preferentially blocks open (or activated) HERG channels. The block of HERG current might in part explain the underlying ionic mechanism for the antiarrhythmic and proarrhythmic effect of KCB-328.  相似文献   

7.
Chouabe C  Drici MD  Romey G  Barhanin J 《Thérapie》2000,55(1):195-202
Cloned HERG and KvLQT1-IsK K+ channels have been expressed in mammalian cells and assayed as a target for calcium channel blockers. These channels generate the rapid and slow components of the cardiac delayed rectifier K+ current, and mutations can affect them that lead to long QT syndromes. HERG is blocked by bepridil (EC50 = 0.55 microM), verapamil (EC50 = 0.83 microM) and mibefradil (EC50 = 1.43 microM), whereas nitrendipine and diltiazem have negligible effects. Steady-state activation and inactivation parameters are shifted to more negative values in the presence of the blockers. Similarly, KvLQT1-IsK is inhibited by bepridil (EC50 = 10.0 microM) and mibefradil (EC50 = 11.8 microM), whilst being insensitive to nitrendipine, diltiazem or verapamil. This work may help to understand the mechanisms of action of verapamil in certain ventricular tachycardias as well as some of the deleterious adverse cardiac events associated with bepridil and mibefradil.  相似文献   

8.
Tolterodine is a muscarinic antagonist widely used in the treatment of urinary incontinence. Although tolterodine has not been reported to alter cardiac repolarization, it is chemically related to other muscarinic antagonists known to prolong cardiac repolarization. For this reason, we studied the effects of tolterodine on cardiac ion channels and action potential recordings. Using patch-clamp electrophysiology, we found that tolterodine was a potent antagonist of the human ether-a-go-go-related gene (HERG) K(+) channel, displaying an IC(50) value of 17 nM. This potency was similar to that observed for the antiarrhythmic drug dofetilide (IC(50) of 11 nM). Tolterodine block of HERG displayed a positive voltage dependence, suggesting an interaction with an activated state. Tolterodine had little effect on the human cardiac Na(+) channel at concentrations of up to 1 microM. Inhibition of L-type Ca(2+) currents by tolterodine was frequency-dependent with IC(50) values measuring 143 and 1084 nM at 1 and 0.1 Hz, respectively. Both tolterodine and dofetilide prolonged action potential duration in single guinea pig myocytes over the concentration range of 3 to 100 nM. However, prolongation was significantly larger for dofetilide compared with tolterodine. Tolterodine seems to be an unusual drug in that it blocks HERG with high affinity, but produces little QT prolongation clinically. Low plasma levels after therapeutic doses combined with mixed ion channel effects, most notably Ca(2+) channel blockade, may serve to attenuate the QT prolonging effects of this potent HERG channel antagonist.  相似文献   

9.
Recently, there has been considerable attention focused on drugs that prolong the QT interval of the electrocardiogram, with the H(1)-receptor antagonist class of drugs figuring prominently. Albeit rare, incidences of QT prolongation and ventricular arrhythmias, in particular torsade de pointes, have been reported with the antihistamines astemizole and terfenadine and more recently with loratadine. The most likely mechanism for these drug-related arrhythmias is blockage of one or more ion channels involved in cardiac repolarization. Several studies have demonstrated block of multiple cardiac K(+) channels by terfenadine, including I(to), I(sus), I(K1), and I(Kr) or human ether-a-go-go-related gene (HERG). In contrast to terfenadine, previous studies have shown the antihistamine loratadine to be virtually free of cardiac ion channel-blocking effects. This disparity in the lack of any significant cardiac ion channel-blocking effect and the existence of numerous adverse cardiac event reports for loratadine prompted the comparison of the human cardiac K(+) channel-blocking profile for loratadine and terfenadine under physiological conditions [37 degrees C, holding potential (V(hold)) = -75 mV] with the whole-cell patch-clamp method. Isolated human atrial myocytes were used to examine drug effects on I(to), I(sus), and I(K1), whereas HERG was studied in stably transfected HEK cells. In contrast to previous studies in nonhuman systems and/or under nonphysiological conditions, terfenadine (1 microM) had no effect on I(to), I(sus), or I(K1) at pacing rates up to 3 Hz. Similar results were found for 1 microM loratadine. However, both drugs potently blocked HERG current amplitude, with a mean IC(50) of 173 nM for loratadine and 204 nM for terfenadine (pacing rate, 0.1 Hz). Neither drug exhibited any significant use-dependent blockage of HERG (pacing rates = 0.1-3 Hz). These results point to a similarity in the human cardiac K(+) channel-blocking effects of loratadine and terfenadine and provide a possible mechanism for the arrhythmias associated with the use of either drug.  相似文献   

10.
The effects of bepridil, a potent antiarrhythmic drug, on the activity of ATP-sensitive K(+) (K(ATP)) channels and Na(+)-activated K(+) (K(Na)) channels were examined in isolated patches from guinea pig ventricular myocytes. In inside-out membrane patches, K(ATP) channel currents were recorded with 140 mM [K(+)](i) and 140 mM [K(+)](o) solutions, and K(Na) channel currents were recorded by increasing [Na(+)](i) to 100 mM with 40 mM [K(+)](i), respectively. Bepridil (1-100 microM) inhibited the K(ATP) channel current in a concentration-dependent manner. The IC(50) value of bepridil was estimated to be 10.5 microM for outward K(ATP) channel currents (holding potential, +60 mV) and 6.6 microM for inward K(ATP) channel currents (holding potential, -60 mV). Bepridil (0.1-30 microM) also inhibited K(Na) channel currents measured at the holding potential of -60 mV, in a concentration-dependent manner with an IC(50) value of 2.2 microM. In coronary-perfused guinea pig right ventricular preparations, the metabolic inhibition (MI) achieved with the application of 0.1 microM carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone shortened the action potential duration (APD) in a time-dependent manner. When bepridil (10 microM) was applied 5 min after the introduction of MI, the APD shortening was significantly blunted. The concomitant application of a K(ATP) channel antagonist (glibenclamide, 1 microM) and a K(Na) channel antagonist (R56865, 10 microM) could mimic the effect of bepridil and attenuated the shortening otherwise produced by MI. These results suggest that bepridil inhibits both K(ATP) channels and K(Na) channels and blunts the shortening of APD during MI. These effects of bepridil may partly account for the alleged antiarrhythmic action of this drug during ischemia.  相似文献   

11.
Pentamidine-induced long QT syndrome and block of hERG trafficking   总被引:9,自引:0,他引:9  
The diamidine pentamidine is used to treat leishmaniasis, trypanosomiasis, and Pneumocystis carinii pneumonia. Treatment may be accompanied by prolongation of the QT interval of the electrocardiogram and torsades de pointes tachycardias. Up to now, it has been thought that therapeutic compounds causing QT prolongation are associated with direct block of the cardiac potassium channel human ether a-go-go-related gene (hERG), which encodes the alpha subunit of cardiac I(Kr) currents. We show that pentamidine has no acute effects on currents produced by hERG, KvLQT1/mink, Kv4.3, or SCNA5. Cardiac calcium currents and the guinea pig cardiac action potential were also not affected. After overnight exposure, however, pentamidine reduced hERG currents and inhibited trafficking and maturation of hERG with IC(50) values of 5 to 8 microM similar to therapeutic concentrations. Surface expression determined in a chemiluminescence assay was reduced on exposure to 10, 30, and 100 microM pentamidine by about 30, 40, and 70%, respectively. These effects were specific for hERG since expression of hKv1.5, KvLQT1/minK, and Kv4.3 was not altered. In isolated guinea pig ventricular myocytes, 10 microM pentamidine prolonged action potential duration APD(90) from 374.3 +/- 57.1 to 893.9 +/- 86.2 ms on overnight incubation. I(Kr) tail current density was reduced from 0.61 +/- 0.09 to 0.39 +/- 0.04 pA/pF. We conclude that pentamidine prolongs the cardiac action potential by block of hERG trafficking and reduction of the number of functional hERG channels at the cell surface. We propose that pentamidine, like arsenic trioxide, produces QT prolongation and torsades de pointes in patients by inhibition of hERG trafficking.  相似文献   

12.
Cocaine abuse has been reported to result in QT prolongation in humans; however, the mechanisms underlying this effect are still poorly understood. In this study we compared the direct effects of cocaine and its major metabolites in human embryonic kidney 293 cells stably transfected with human ether-a-go-go-related gene (HERG). Cocaine blocked HERG-encoded potassium channels with an IC50 of 4.4 +/- 1.1 microM (22 degrees C). Cocaethylene (a metabolite formed in the presence of ethanol) had a significantly lower IC50 of 1.2 +/- 1.1 microM (P < 0.0001), and cocaine's primary pyrolysis metabolite methylecgonidine blocked HERG with a higher IC50 of 171.7 +/- 1.2 microM. In contrast, 1 mM ecgonine methylester or benzoylecgonine produced only a minimal block (21 +/- 4 and 15 +/- 8%, respectively). Blockade of HERG by cocaine, cocaethylene, and methylecgonidine increased significantly over the voltage range where HERG activates, but became constant at voltages where HERG activation was maximal, indicating that all three drugs block open channels, but by a mechanism that is not highly sensitive to voltage per se. Cocaine and cocaethylene also significantly slowed the time course of deactivation at -60 mV, an effect consistent with open channel block. We conclude that cocaethylene is slightly more potent than cocaine as a blocker of HERG, whereas methylecgonidine has much lower potency, and both benzoylecgonine and ecgonine methyl ester are essentially inactive at clinically relevant concentrations.  相似文献   

13.
Patients with LQTS (long QT syndrome) with a mutation in a cardiac ion channel gene, leading to mild-to-moderate channel dysfunction, may manifest marked QT prolongation or torsade de pointes only upon an additional stressor. A 59-year-old woman had marked QT prolongation and repeated torsade de pointes 3 months after initiation of probucol, a cholesterol-lowering drug. We identified a single base substitution in the HERG gene by genetic analysis. This novel missense mutation is predicted to cause an amino acid substitution of Met(124)-->Thr (M124T) in the N-terminus. Three other relatives with this mutation also had QT prolongation and one of them had a prolonged QT interval and torsade de pointes accompanied by syncope after taking probucol. We expressed wild-type HERG and HERG with M124T in Xenopus oocytes and characterized the electrophysiological properties of these HERG channels and the action of probucol on the channels. Injection of the M124T mutant cRNA into Xenopus oocytes resulted in expression of functional channels with markedly smaller amplitude. In both HERG channels, probucol decreased the amplitude of the HERG tail current, decelerated the rate of channel activation, accelerated the rate of channel deactivation and shifted the reversal potential to a more positive value. The electrophysiological study indicated that QT lengthening and cardiac arrhythmia in the two present patients were due to inhibition of I(Kr) (rapidly activating delayed rectifier K(+) current) by probucol, in addition to the significant suppression of HERG current in HERG channels with the M124T mutation.  相似文献   

14.
Direct block of the cardiac potassium channel human ether-a-go-go-related gene (hERG) by a large, structurally diverse group of therapeutic compounds causes drug-induced QT prolongation and torsades de pointes arrhythmias. In addition, several therapeutic compounds have been identified more recently that prolong the QT interval by inhibition of hERG trafficking to the cell surface. We used a surface expression assay to identify novel compounds that interfere with hERG trafficking and found that cardiac glycosides are potent inhibitors of hERG expression at the cell surface. Further investigation of digitoxin, ouabain, and digoxin revealed that all three cardiac glycosides reduced expression of the fully glycosylated cell surface form of hERG on Western blots, indicating that channel exit from the endoplasmic reticulum is blocked. Likewise, hERG currents were reduced with nanomolar affinity on long-term exposure. hERG trafficking inhibition was initiated by cardiac glycosides through direct block of Na(+)/K(+) pumps and not via off-target interactions with hERG or another closely associated protein in its processing or export pathway. In isolated guinea pig myocytes, long-term exposure to 30 nM of the clinically used drugs digoxin or digitoxin reduced hERG/rapidly activating delayed rectifier K(+) current (I(Kr)) currents by approximately 50%, whereas three other cardiac membrane currents--inward rectifier current, slowly activating delayed rectifier K(+) current, and calcium current--were not affected. Importantly, 100 nM digitoxin prolonged action potential duration on long-term exposure consistent with a reduction in hERG/I(Kr) channel number. Thus, cardiac glycosides are able to delay cardiac repolarization at nanomolar concentrations via hERG trafficking inhibition, and this may contribute to the complex electrocardiographic changes seen with compounds such as digitoxin.  相似文献   

15.
Papaverine, 1-[(3,4-dimethoxyphenyl)methyl]-6,-7-dimethoxyisoquinoline, has been used as a vasodilator agent and a therapeutic agent for cerebral vasospasm, renal colic, and penile impotence. We examined the effects of papaverine on a rapidly activating delayed rectifier K(+) channel (hKv1.5) cloned from human heart and stably expressed in Ltk(-) cells as well as a corresponding K(+) current (the ultrarapid delayed rectifier, I(Kur)) in human atrial myocytes. Using the whole cell configuration of the patch-clamp technique, we found that papaverine inhibited hKv1.5 current in a time- and voltage-dependent manner with an IC(50) value of 43.4 microM at +60 mV. Papaverine accelerated the kinetics of the channel inactivation, suggesting the blockade of open channels. Papaverine (100 microM) also blocked I(Kur) in human atrial myocytes. These results indicate that papaverine blocks hKv1.5 channels and native hKv1.5 channels in a concentration-, voltage-, state-, and time-dependent manner. This interaction suggests that papaverine could alter cardiac excitability in vivo.  相似文献   

16.
We studied the effects of (m-trifluoromethyl-phenyl)piperazine (TFMPP) and quipazine on the K(+)-evoked [3H]GABA release from guinea-pig hippocampal synaptosomes loaded with [3H]GABA.TFMPP and quipazine inhibited the K(+)-evoked release of [3H]GABA dose-dependently (IC50 = 153 and 123 microM, respectively). Serotonergic antagonists such as methiothepin (0.1, 0.3 and 1 microM), ketanserin (0.1, 0.3 and 1 microM), dihydroergotamine (0.1 microM), metergoline (0.1 and 0.3 microM), methysergide (0.3 microM), propranolol (1 microM) and yohimbine (1 microM) did not significantly alter the inhibitory effect of TFMPP on [3H]GABA release suggesting that neither 5-HT1 nor 5-HT2 receptors are involved in this process. By contrast, the effect of TFMPP was diminished by selective 5-HT3 receptor antagonist: MDL 72222 (0.3 microM), tropisetron (0.3 and 1 microM), ondansetron (0.3 microM) and metoclopramide (1 microM). Tropisetron (1 microM) and ondansetron (0.3 microM) also inhibited significantly the quipazine effect whereas methiothepin (1 microM), dihydroergotamine (0.1 microM), yohimbine (1 microM) and ketanserin (1 microM) were ineffective on the quipazine inhibition of [3H]GABA release. Our results show a serotonergic modulatory effect on the K(+)-evoked [3H]GABA release from guinea-pig hippocampal synaptosomes by receptors which are neither 5-HT1, 5-HT2 or 5-HT4. They appear to be pharmacologically related to the 5-HT3 type but different from the 5-HT3 ionic channel receptors.  相似文献   

17.
Many drugs are proarrhythmic by inhibiting the cardiac rapid delayed rectifier potassium channel (IKr). In this study, we use quinidine as an example of highly proarrhythmic agent to investigate the risk factors that may facilitate the proarrhythmic effects of drugs. We studied the influence of pacing, extracellular potassium, and pH on quinidine's IKr blocking effect, all potential factors influencing quinidine's cardiac toxicity. Since the HERG gene encodes IKr, we studied quinidine's effect on HERG expressed in Xenopus oocytes by the 2-electrode voltage clamp technique. When extracellular K+ was 5 mmol/L, quinidine blocked the HERG current dose dependently, with an IC50 of 6.3 +/- 0.2 micromol/L. The blockade was much more prominent at more positive membrane potentials. The inhibition of HERG by quinidine was not use dependent. There was no significant difference between block with or without pacing. When extracellular K+ was lowered to 2.5 mmol/L, the current inhibition by quinidine was enhanced, and IC50 decreased to 4.6 +/- 0.5 micromol/L. At 10 mmol/L extracellular K+, there was less inhibition by quinidine and the IC50 was 11.2 +/- 3.1 micromol/L. Extracellular acidification decreased both steady state and tail currents of HERG. We conclude that the inhibitory effect of quinidine on IKr was decreased with extracellular acidification, which may produce heterogeneity in the repolarization between normal and ischemic cardiac tissue. Thus, the use-independent blockade of IKr by QT-prolonging agents such as quinidine may contribute to cardiac toxicity with bradycardia, hypokalemia, and acidosis further exaggerating the proarrhythmic potential of these agents.  相似文献   

18.
Wang GK  Russell C  Wang SY 《Pain》2004,110(1-2):166-174
Amitriptyline is a tricyclic antidepressant, which also alleviates various pain syndromes at its therapeutic plasma concentration (0.36-0.90 microM). Accumulated evidence suggests that such efficacy may be due to block of voltage-gated Na(+) channels. The Na(+) channel alpha-subunit protein consists of four homologous domains (D1-D4), each with six transmembrane segments (S1-S6). The aims of this study were to locate the amitriptyline receptor in the Na(+) channel alpha-subunit and to compare the amitriptyline affinity in open, inactivated, and resting states of the Na(+) channel. Wild-type and mutant rat skeletal muscle alpha-subunit Na(+) channels were expressed in human embryonic kidney cells and assayed under whole-cell voltage clamp conditions. Our results indicate that the amitriptyline receptor overlaps with the local anesthetic receptor to a great extent in Na(+) channels. Residues N434 (at D1-S6), L1280 (D3-S6), and F1579 (D4-S6) may jointly form parts of the amitriptyline/local anesthetic receptor, with residue L1280 being most critical for amitriptyline binding. Open-channel block by amitriptyline was assessed in inactivation-deficient Na(+) channels and compared with the resting- and inactivated-channel block in wild-type channels. The open-channel block by amitriptyline has the highest affinity, with a 50% inhibitory concentration (IC(50)) of 0.26 microM. The inactivated-channel block by amitriptyline had a weaker affinity (0.51 microM), whereas the resting-channel displayed the weakest affinity (33 microM). We hypothesize that selective block of both persistent late openings and the inactivated state of neuronal Na(+) channel isoforms by amitriptyline also occurs at its therapeutic concentration and likely contributes to its efficacy in pain syndromes.  相似文献   

19.
Repolarization of cardiomyocytes is mainly performed by the rapid component of the delayed rectifier potassium current, I(Kr), which is encoded by the human ether-a-go-go-related gene (HERG). Inhibition of HERG potassium currents by class III antiarrhythmic drugs causes lengthening of the cardiac action potential, which produces a beneficial antiarrhythmic effect. Conversely, excessive prolongation of the action potential by a wide variety of antiarrhythmic and non-antiarrhythmic drugs may lead to acquired long-QT syndrome, which is associated with a risk for 'torsade de pointes'-arrhythmias and sudden cardiac death. As a result, this undesirable side effect has prompted the withdrawal of several drugs from the market. Recent studies on HERG channel inhibition provide significant insights into the molecular factors that determine state-, voltage-, and use-dependency of HERG current block. In addition, crucial properties of the putative drug binding site in HERG have been identified. The broad diversity in response to pharmacologic treatment among individuals is likely to depend on a combination of multiple factors from the fields of arrhythmia genetics, physiology and pharmacology. In conclusion, the increasing understanding of the molecular mechanisms that underlie HERG channel block by antiarrhythmic and non-antiarrhythmic drugs may improve prevention and treatment of drug-induced long-QT syndrome.  相似文献   

20.
Block of human heart hH1 sodium channels by amitriptyline   总被引:8,自引:0,他引:8  
Amitriptyline is a tricyclic antidepressant used to treat major depression and various neuropathic pain syndromes. This drug also causes cardiac toxicity in patients with overdose. We characterized the tonic and use-dependent amitriptyline block of human cardiac (hH1) Na(+) channels expressed in human embryonic kidney cells under voltage-clamp conditions. Our results show that, near the therapeutic plasma concentration of 1 microM, amitriptyline is an effective use-dependent blocker of hH1 Na(+) channels during repetitive pulses (approximately 55% block at 5 Hz). The tonic block for resting and for inactivated hH1 channels by amitriptyline (0.1-100 microM) yielded IC(50) values (50% inhibitory concentration) of 24.8 +/- 2.0 (n = 9) and 0.58 +/- 0.03 microM (n = 7), respectively. Substitution of phenylalanine with lysine at the hH1-F1760 position, a putative binding site for local anesthetics, eliminates the use-dependent block by amitriptyline at 1 microM. The time constants of recovery from the inactivated-state amitriptyline block in hH1 wild-type and hH1-F1760K mutant channels are 8.0 +/- 0. 5 (n = 6) and 0.45 +/- 0.07 s (n = 6), respectively. A substitution at either hH1-F1760K or hH1-Y1767K significantly increases the IC(50) values for resting and inactivated states of amitriptyline, but the increase is much more pronounced with the hH1-F1760K mutation. Because these two residues were proposed to form a part of the local anesthetic binding site, we conclude that amitriptyline and local anesthetics interact with a common binding site. Furthermore, at therapeutic concentrations, the ability of amitriptyline to act as a potent use-dependent blocker of Na(+) channels may, in part, explain its analgesic actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号