首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The importance of Notch signaling pathway in the regulation of vascular development and angiogenesis is suggested by the expression of Notch receptors and ligands in vascular endothelial cells (ECs) and the observed vascular phenotypes in mutants of Notch receptors or ligands, especially Dll4. DLL4 is specifically expressed in arterial ECs during development, and haplo-insufficiency is embryonically lethal in mice. To address the role of Dll4 in vascular development, we produced mDll4 conditionally overexpressed transgenic mice that were crossed with constitutive recombinase cre lines. Double transgenic embryos displayed grossly enlarged dorsal aortae (DA) and died before embryonic day 10.5 (E10.5), showing a variable degree of premature arteriovenous fusion. Veins displayed ectopic expression of arterial markers. Other defects included reduced vascular sprouting, EC proliferation, and migration. mDll4 overexpression also inhibited VEGF signaling and increased fibronectin accumulation around the vessels. In vitro and in vivo studies of DLL4-FL (Dll4-full-length) in ECs recapitulate many of the mDll4 transgenics findings, including decreased tube formation, reduced vascular branching, fewer vessels, increased pericyte recruitment, and increased fibronectin expression. These results establish the role of Dll4 in arterial identity determination, and regulation of angiogenesis subject to dose and location.  相似文献   

2.
Notch signaling plays a central role in cell-fate determination, and its role in lateral inhibition in angiogenic sprouting is well established. However, the role of Notch signaling in lymphangiogenesis, the growth of lymphatic vessels, is poorly understood. Here we demonstrate Notch pathway activity in lymphatic endothelial cells (LECs), as well as induction of delta-like ligand 4 (Dll4) and Notch target genes on stimulation with VEGF or VEGF-C. Suppression of Notch signaling by a soluble form of Dll4 (Dll4-Fc) synergized with VEGF in inducing LEC sprouting in 3-dimensional (3D) fibrin gel assays. Expression of Dll4-Fc in adult mouse ears promoted lymphangiogenesis, which was augmented by coexpressing VEGF. Lymphangiogenesis triggered by Notch inhibition was suppressed by a monoclonal VEGFR-2 Ab as well as soluble VEGF and VEGF-C/VEGF-D ligand traps. LECs transduced with Dll4 preferentially adopted the tip cell position over nontransduced cells in 3D sprouting assays, suggesting an analogous role for Dll4/Notch in lymphatic and blood vessel sprouting. These results indicate that the Notch pathway controls lymphatic endothelial quiescence, and explain why LECs are poorly responsive to VEGF compared with VEGF-C. Understanding the role of the Notch pathway in lymphangiogenesis provides further insight for the therapeutic manipulation of the lymphatic vessels.  相似文献   

3.
Genetic deletion studies have shown that haploinsufficiency of Delta-like ligand (Dll) 4, a transmembrane ligand for the Notch family of receptors, results in major vascular defects and embryonic lethality. To better define the role of Dll4 during vascular growth and differentiation, we selected the postnatal retina as a model because its vasculature develops shortly after birth in a highly stereotypic manner, during which time it is accessible to experimental manipulation. We report that Dll4 expression is dynamically regulated by VEGF in the retinal vasculature, where it is most prominently expressed at the leading front of actively growing vessels. Deletion of a single Dll4 allele or pharmacologic inhibition of Dll4/Notch signaling by intraocular administration of either soluble Dll4-Fc or a blocking antibody against Dll4 all produced the same set of characteristic abnormalities in the developing retinal vasculature, most notably enhanced angiogenic sprouting and increased endothelial cell proliferation, resulting in the formation of a denser and more highly interconnected superficial capillary plexus. In a model of ischemic retinopathy, Dll4 blockade also enhanced angiogenic sprouting and regrowth of lost retinal vessels while suppressing ectopic pathological neovascularization. Our data demonstrate that Dll4 is induced by VEGF as a negative feedback regulator and acts to prevent overexuberant angiogenic sprouting, promoting the timely formation of a well differentiated vascular network.  相似文献   

4.
Delta-like 4 (Dll4) is a transmembrane ligand for Notch receptors that is expressed in arterial blood vessels and sprouting endothelial cells. Here we show that Dll4 regulates vessel branching during development by inhibiting endothelial tip cell formation. Heterozygous deletion of dll4 or pharmacological inhibition of Notch signaling using gamma-secretase inhibitor revealed a striking vascular phenotype, with greatly increased numbers of filopodia-extending endothelial tip cells and increased expression of tip cell marker genes compared with controls. Filopodia extension in dll4(+/-) retinal vessels required the vascular growth factor VEGF and was inhibited when VEGF signaling was blocked. Although VEGF expression was not significantly altered in dll4(+/-) retinas, dll4(+/-) vessels showed increased expression of VEGF receptor 2 and decreased expression of VEGF receptor 1 compared with wild-type, suggesting they could be more responsive to VEGF stimulation. In addition, expression of dll4 in wild-type tip cells was itself decreased when VEGF signaling was blocked, indicating that dll4 may act downstream of VEGF as a "brake" on VEGF-mediated angiogenic sprouting. Taken together, these data reveal Dll4 as a negative regulator of vascular sprouting and vessel branching that is required for normal vascular network formation during development.  相似文献   

5.
6.
Gene targeting experiments have shown that Delta-like 4 (Dll4) is a vascular-specific Notch ligand critical to normal vascular development. Recent studies have demonstrated that inhibition of Dll4/Notch signaling in tumor-bearing mice resulted in excessive, yet nonproductive tumor neovascularization and unexpectedly reduced tumor growth. Because nonfunctional blood vessels have the potential to normalize, we explored the alternative approach of stimulating Notch signaling in the tumor vasculature to inhibit tumor growth. Here we show that retrovirus-induced over-expression of Dll4 in tumor cells activates Notch signaling in cocultured endothelial cells and limits vascular endothelial growth factor (VEGF)-induced endothelial cell growth. Tumors produced in mice by injection of human and murine tumor cells transduced with Dll4 were significantly smaller, less vascularized and more hypoxic than controls, and displayed evidence of Notch activation. In addition, tumor blood perfusion was reduced as documented by vascular imaging. These results demonstrate that Notch activation in the tumor microenvironment reduces tumor neovascularization and blood perfusion, and suggest that Dll4-induced Notch activation may represent an effective therapeutic approach for the treatment of solid tumors.  相似文献   

7.
Notch is a critical regulator of angiogenesis, vascular differentiation, and vascular integrity. We investigated whether Notch signaling affects macrophage function during retinal angiogenesis in mice. Retinal macrophage recruitment and localization in mice with myeloid-specific loss of Notch1 was altered, as these macrophages failed to localize at the leading edge of the vascular plexus and at vascular branchpoints. Furthermore, these retinas were characterized by elongated endothelial cell sprouts that failed to anastomose with neighboring sprouts. Using Notch reporter mice, we demonstrate that retinal macrophages localize between Dll4-positive tip cells and at vascular branchpoints, and that these macrophages had activated Notch signaling. Taken together, these data demonstrate that Notch signaling in macrophages is important for their localization and interaction with endothelial cells during sprouting angiogenesis.  相似文献   

8.
Atherosclerosis and insulin resistance are major components of the cardiometabolic syndrome, a global health threat associated with a systemic inflammatory state. Notch signaling regulates tissue development and participates in innate and adaptive immunity in adults. The role of Notch signaling in cardiometabolic inflammation, however, remains obscure. We noted that a high-fat, high-cholesterol diet increased expression of the Notch ligand Delta-like 4 (Dll4) in atheromata and fat tissue in LDL-receptor-deficient mice. Blockade of Dll4-Notch signaling using neutralizing anti-Dll4 antibody attenuated the development of atherosclerosis, diminished plaque calcification, improved insulin resistance, and decreased fat accumulation. These changes were accompanied by decreased macrophage accumulation, diminished expression of monocyte chemoattractant protein-1 (MCP-1), and lower levels of nuclear factor-κB (NF-κB) activation. In vitro cell culture experiments revealed that Dll4-mediated Notch signaling increases MCP-1 expression via NF-κB, providing a possible mechanism for in vivo effects. Furthermore, Dll4 skewed macrophages toward a proinflammatory phenotype ("M1"). These results suggest that Dll4-Notch signaling plays a central role in the shared mechanism for the pathogenesis of cardiometabolic disorders.  相似文献   

9.
10.
Angiogenic homeostasis is maintained by a balance between vascular endothelial growth factor (VEGF) and Notch signaling in endothelial cells (ECs). We screened for molecules that might mediate the coupling of VEGF signal transduction with down-regulation of Notch signaling, and identified B-cell chronic lymphocytic leukemia/lymphoma6-associated zinc finger protein (BAZF). BAZF was induced by VEGF-A in ECs to bind to the Notch signaling factor C-promoter binding factor 1 (CBF1), and to promote the degradation of CBF1 through polyubiquitination in a CBF1-cullin3 (CUL3) E3 ligase complex. BAZF disruption in vivo decreased endothelial tip cell number and filopodia protrusion, and markedly abrogated vascular plexus formation in the mouse retina, overlapping the retinal phenotype seen in response to Notch activation. Further, impaired angiogenesis and capillary remodeling were observed in skin-wounded BAZF(-/-) mice. We therefore propose that BAZF supports angiogenic sprouting via BAZF-CUL3-based polyubiquitination-dependent degradation of CBF1 to down-regulate Notch signaling.  相似文献   

11.
NOTCH signalling is an evolutionarily conserved juxtacrine signalling pathway that is essential in development. Jagged1 (JAG1) and Delta-like ligand 4 (DLL4) are transmembrane NOTCH ligands that regulate angiogenesis by controlling endothelial cell (EC) differentiation, vascular development and maturation. In addition, DLL4 could bypass its canonical cell–cell contact-dependent signalling to influence NOTCH signalling and angiogenesis at a distance when it is packaged into extracellular vesicles (EVs). However, it is not clear whether JAG1 could also be packaged into EVs to influence NOTCH signalling and angiogenesis. In this work, we demonstrate that JAG1 is also packaged into EVs. We present evidence that JAG1-EVs inhibit NOTCH signalling and regulate EC behaviour and function. JAG1-EVs inhibited VEGF-induced HUVEC proliferation and migration in 2D culture condition and suppressed sprouting in a 3D microfluidic microenvironment. JAG1-EV treatment of HUVECs leads to a reduction of Notch1 intracellular domain (N1-ICD), and the proteasome and the intracellular domain of JAG1 (JAG1-ICD) are both required for this reduction to occur. These findings reveal a novel mechanism of JAG1 function in NOTCH signalling and ECs through EVs.  相似文献   

12.
Chronic intestinal inflammation is associated with pathological angiogenesis that further amplifies the inflammatory response. Vascular endothelial growth factor (VEGF), is a major angiogenic cytokine that has been implicated in chronic colitis and inflammatory bowel diseases. Endoglin (CD105), a transforming growth factor-β superfamily co-receptor expressed on endothelial and some myeloid cells, is a modulator of angiogenesis involved in wound healing and potentially in resolution of inflammation. We showed previously that Endoglin heterozygous (Eng +/?) mice subjected to dextran sodium sulfate developed severe colitis, abnormal colonic vessels and high tissue VEGF. We therefore tested in the current study if treatment with a monoclonal antibody to VEGF could ameliorate chronic colitis in Eng +/? mice. Tissue inflammation and microvessel density (MVD) were quantified on histological slides. Colonic wall thickness, microvascular hemodynamics and targeted MAdCAM-1+ inflamed vessels were assessed in vivo by ultrasound. Mediators of angiogenesis and inflammation were measured by Milliplex and ELISA assays. Colitic Eng +/? mice showed an increase in intestinal inflammation, MVD, colonic wall thickness, microvascular hemodynamics and the number of MAdCAM-1+ microvessels relative to colitic Eng +/+ mice; these parameters were all attenuated by anti-VEGF treatment. Of all factors up-regulated in the inflamed gut, granulocyte colony-stimulating factor (G-CSF) and amphiregulin were further increased in colitic Eng +/? versus Eng +/+ mice. Anti-VEGF therapy decreased tissue VEGF and inflammation-induced endoglin, IL-1β and G-CSF in colitic Eng +/? mice. Our results suggest that endoglin modulates intestinal angiogenic and inflammatory responses in colitis. Furthermore, contrast-enhanced ultrasound provides an excellent non-invasive imaging modality to monitor gut angiogenesis, inflammation and responses to anti-angiogenic treatment.  相似文献   

13.
14.
Vascular development depends on the highly coordinated actions of a variety of angiogenic regulators, most of which apparently act downstream of vascular endothelial growth factor (VEGF). One potential such regulator is delta-like 4 ligand (Dll4), a recently identified partner for the Notch receptors. We generated mice in which the Dll4 gene was replaced with a reporter gene, and found that Dll4 expression is initially restricted to large arteries in the embryo, whereas in adult mice and tumor models, Dll4 is specifically expressed in smaller arteries and microvessels, with a striking break in expression just as capillaries merge into venules. Consistent with these arterial-specific expression patterns, heterozygous deletion of Dll4 resulted in prominent albeit variable defects in arterial development (reminiscent of those in Notch knockouts), including abnormal stenosis and atresia of the aorta, defective arterial branching from the aorta, and even arterial regression, with occasional extension of the defects to the venous circulation; also noted was gross enlargement of the pericardial sac and failure to remodel the yolk sac vasculature. These striking phenotypes resulting from heterozygous deletion of Dll4 indicate that vascular development may be as sensitive to subtle changes in Dll4 dosage as it is to subtle changes in VEGF dosage, because VEGF accounts for the only other example of haploid insufficiency, resulting in obvious vascular abnormalities. In summary, Dll4 appears to be a major trigger of Notch receptor activities previously implicated in arterial and vascular development, and it may represent a new opportunity for pro- and anti-angiogenic therapies.  相似文献   

15.
p21(Cip1) (p21) controls cell cycle progression and apoptosis in mature endothelial cells (ECs) and regulates size and cycling of the hematopoietic progenitor cell pool. Because circulating endothelial progenitor cells (EPCs) contribute to postnatal neovascularization in addition to mature ECs, we investigated the regulation of ECs and EPCs in p21-deficient mice. Mature aortic EC proliferation was increased in homozygous p21(-/-) and heterozygous p21(+/-) mice, in which p21 protein levels are reduced to one third of wild-type (WT). In contrast, apoptosis sensitivity was increased by 3.5-fold only in p21(-/-), but not in p21(+/-) mice. Consistently, in vivo apoptosis of ECs within areas of neovascularization was elevated in p21(-/-) but not in p21(+/-) mice. EPC numbers were elevated 2-fold in p21(-/-) mice compared with WT (P<0.001), and clonal expansion capacity of EPCs was increased from 25+/-4 (WT) to 57+/-8 colony-forming units in p21(-/-) mice (P<0.005). EPC numbers and expansion were likewise increased in p21(+/-) mice. As the integrative endpoint, in vivo neovascularization reflecting all p21-affected parameters was increased over WT only in p21(+/-) (P<0.001), but not in p21(-/-) mice. In conclusion, reduced p21 protein levels of mice lacking one p21 allele are associated with increased proliferation of ECs and EPCs, whereas survival of ECs to apoptotic stimuli in vitro and in vivo is not impaired. Under these conditions, neovascularization was increased. In contrast, complete p21 deficiency did not result in an increased neovascularization despite increased mature EC and EPC proliferation. This may be due to the sensitization of ECs against apoptosis.  相似文献   

16.
Niessen K  Zhang G  Ridgway JB  Chen H  Kolumam G  Siebel CW  Yan M 《Blood》2011,118(7):1989-1997
The Notch signaling pathway plays a fundamental role during blood vessel development. Notch signaling regulates blood vessel morphogenesis by promoting arterial endothelial differentiation and providing spatial and temporal control over "tip cell" phenotype during angiogenic sprouting. Components of the Notch signaling pathway have emerged as potential regulators of lymphatic development, joining the increasing examples of blood vessel regulators that are also involved in lymphatic development. However, in mammals a role for the Notch signaling pathway during lymphatic development remains to be demonstrated. In this report, we show that blockade of Notch1 and Dll4, with specific function-blocking antibodies, results in defective postnatal lymphatic development in mice. Mechanistically, Notch1-Dll4 blockade is associated with down-regulation of EphrinB2 expression, been shown to be critically involved in VEGFR3/VEGFC signaling, resulting in reduced lymphangiogenic sprouting. In addition, Notch1-Dll4 blockade leads to compromised expression of distinct lymphatic markers and to dilation of collecting lymphatic vessels with reduced and disorganized mural cell coverage. Finally, Dll4-blockade impairs wound closure and severely affects lymphangiogenesis during the wound healing in adult mouse skin. Thus, our study demonstrates for the first time in a mammalian system that Notch1-Dll4 signaling pathway regulates postnatal lymphatic development and pathologic lymphangiogenesis.  相似文献   

17.
18.
Growth of functional arteries is essential for the restoration of blood flow to ischemic organs. Notch signaling regulates arterial differentiation upstream of ephrin-B2 during embryonic development, but its role during postnatal arteriogenesis is unknown. Here, we identify the Notch ligand Delta-like 1 (Dll1) as an essential regulator of postnatal arteriogenesis. Dll1 expression was specifically detected in arterial endothelial cells, but not in venous endothelial cells or capillaries. During ischemia-induced arteriogenesis endothelial Dll1 expression was strongly induced, Notch signaling activated and ephrin-B2 upregulated, whereas perivascular cells expressed proangiogenic vascular endothelial growth factor, and the ephrin-B2 activator EphB4. In heterozygous Dll1 mutant mice endothelial Notch activation and ephrin-B2 induction after hindlimb ischemia were absent, arterial collateral growth was abrogated and recovery of blood flow was severely impaired, but perivascular vascular endothelial growth factor and EphB4 expression was unaltered. In vitro, angiogenic growth factors synergistically activated Notch signaling by induction of Dll1, which was necessary and sufficient to regulate ephrin-B2 expression and to induce ephrin-B2 and EphB4-dependent branching morphogenesis in human arterial EC. Thus, Dll1-mediated Notch activation regulates ephrin-B2 expression and postnatal arteriogenesis.  相似文献   

19.
Notch receptors are important mediators of cell fate during embryogenesis, but their role in adult physiology, particularly in postnatal angiogenesis, remains unknown. Of the Notch receptors, only Notch1 and Notch4 are expressed in vascular endothelial cells. Here we show that blood flow recovery and postnatal neovascularization in response to hindlimb ischemia in haploinsufficient global or endothelial-specific Notch1(+/-) mice, but not Notch4(-/-) mice, were impaired compared with wild-type mice. The expression of vascular endothelial growth factor (VEGF) in response to ischemia was comparable between wild-type and Notch mutant mice, suggesting that Notch1 is downstream of VEGF signaling. Treatment of endothelial cells with VEGF increases presenilin proteolytic processing, gamma-secretase activity, Notch1 cleavage, and Hes-1 (hairy enhancer of split homolog-1) expression, all of which were blocked by treating endothelial cells with inhibitors of phosphatidylinositol 3-kinase/protein kinase Akt or infecting endothelial cells with a dominant-negative Akt mutant. Indeed, inhibition of gamma-secretase activity leads to decreased angiogenesis and inhibits VEGF-induced endothelial cell proliferation, migration, and survival. Overexpression of the active Notch1 intercellular domain rescued the inhibitory effects of gamma-secretase inhibitors on VEGF-induced angiogenesis. These findings indicate that the phosphatidylinositol 3-kinase/Akt pathway mediates gamma-secretase and Notch1 activation by VEGF and that Notch1 is critical for VEGF-induced postnatal angiogenesis. These results suggest that Notch1 may be a novel therapeutic target for improving angiogenic response and blood flow recovery in ischemic limbs.  相似文献   

20.
Fluid forces control endothelial sprouting   总被引:1,自引:0,他引:1  
During angiogenesis, endothelial cells (ECs) from intact blood vessels quickly infiltrate avascular regions via vascular sprouting. This process is fundamental to many normal and pathological processes such as wound healing and tumor growth, but its initiation and control are poorly understood. Vascular endothelial cell growth factor (VEGF) can promote vessel dilation and angiogenic sprouting, but given the complex nature of vascular morphogenesis, additional signals are likely necessary to determine, for example, which vessel segments sprout, which dilate, and which remain quiescent. Fluid forces exerted by blood and plasma are prime candidates that might codirect these processes, but it is not known whether VEGF cooperates with mechanical fluid forces to mediate angiogenesis. Using a microfluidic tissue analog of angiogenic sprouting, we found that fluid shear stress, such as exerted by flowing blood, attenuates EC sprouting in a nitric oxide-dependent manner and that interstitial flow, such as produced by extravasating plasma, directs endothelial morphogenesis and sprout formation. Furthermore, positive VEGF gradients initiated sprouting but negative gradients inhibited sprouting, promoting instead sheet-like migration analogous to vessel dilation. These results suggest that ECs integrate signals from fluid forces and local VEGF gradients to achieve such varied goals as vessel dilation and sprouting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号