首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors mediate most of the excitatory neurotransmission and play a key role in synaptic plasticity in the mammalian central nervous system (CNS). In recent years several classes of AMPA receptor potentiators have been reported in the literature, including pyrrolidones (piracetam, aniracetam), benzothiazides (cyclothiazide), benzylpiperidines (CX-516, CX-546) and biarylpropylsulfonamides (LY392098, LY404187, LY450108, LY451395 and LY503430). Clinical and preclinical data have suggested that positive modulation of AMPA receptors may be therapeutically effective in the treatment of cognitive deficits. However, recent evidence has shown that in addition to modulating fast synaptic plasticity and memory processes, AMPA receptor potentiators alter downstream signalling pathways and may thereby have utility in other CNS disorders. The present review summarises studies into the effects of AMPA receptor potentiators (with a focus on the biarylpropylsulfonamides) in rodent models of depression and Parkinson's disease.  相似文献   

2.
LY404187 is a selective, potent and centrally active positive allosteric modulator of AMPA receptors. LY404187 preferentially acts at recombinant human homomeric GluR2 and GluR4 versus GluR1 and GluR3 AMPA receptors. In addition, LY404187 potentiates the flip splice variant of these AMPA receptors to a greater degree than the flop splice variant. In both recombinant and native AMPA receptors, potentiation by LY404187 displays a unique time-dependent growth that appears to involve a suppression of the desensitization process of these ion channels. LY404187 has been shown to enhance glutamatergic synaptic transmission both in vitro and in vivo. This augmentation of synaptic activity is due to the direct potentiation of AMPA receptor function, as well as an indirect recruitment of voltage-dependent NMDA receptor activity. Enhanced calcium influx through NMDA receptors is known to be a critical step in initiating long-term modifications in synaptic function (e.g., long-term potentiation, LTP). These modifications in synaptic function may be substrates for certain forms of memory encoding. Consistent with a recruitment of NMDA receptor activity, LY404187 has been shown to enhance performance in animal models of cognitive function requiring different mnemonic processes. These data suggest that AMPA receptor potentiators may be therapeutically beneficial for treating cognitive deficits in a variety of disorders, particularly those that are associated with reduced glutamatergic signaling such as schizophrenia. In addition, LY404187 has been demonstrated to be efficacious in animal models of behavioral despair that possess considerable predictive validity for antidepressant activity. Although the therapeutic efficacy of AMPA receptor potentiators in these and other diseases will ultimately be determined in the clinic, evidence suggests that the benefit of these compounds will be mediated by multiple mechanisms of action. These mechanisms include direct enhancement of AMPA receptor function, secondary mobilization of intracellular signaling cascades, and prolonged modulation of gene expression.  相似文献   

3.
Glutamate is the major excitatory transmitter in the brain. Recent developments in the molecular biology and pharmacology of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-subtype of glutamate receptors have led to the discovery of selective, potent and systemically active AMPA receptor potentiators. These molecules enhance synaptic transmission and play important roles in plasticity and cognitive processes. In the present studies we characterized a novel AMPA receptor potentiator, LY503430, on recombinant human GLU(A1-4) and native preparations in vitro, and then evaluated the potential neuroprotective effects of the molecule in rodent models of Parkinson's disease. Results indicated that at submicromolar concentrations LY503430 selectively enhanced glutamate-induced calcium influx into HEK293 cells transfected with human GLU(A1), GLU(A2), GLU(A3), or GLU(A4) AMPA receptors. The molecule also potentiated AMPA-mediated responses in native cortical, hippocampal and substantia nigra neurones. LY503430 had good oral bioavailability in both rats and dogs. We also report here that LY503430 provided dose-dependent functional and histological protection in animal models of Parkinson's disease. The neurotoxicity following unilateral infusion of 6-hyrdoxydopamine (6-OHDA) into either the substantia nigra or the striatum of rats and that following systemic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice were reduced. Interestingly, LY503430 also had neurotrophic actions on functional and histological outcomes when treatment was delayed until well after (6 or 14 days) the lesion was established. LY503430 also produced some increase in brain derived neurotrophic factor (BDNF) in the substantia nigra and a dose-dependent increase in growth associated protein-43 (GAP-43) expression in the striatum. Therefore, we propose that AMPA receptor potentiators such as LY503430 offer the potential of a new disease modifying therapy for Parkinson's disease.  相似文献   

4.
Positive allosteric modulation of AMPA receptor function has therapeutic potential in a number of psychiatric disorders and neurodegenerative diseases. AMPA receptor potentiators can induce neurite sprouting in vivo. Using a strategy of combined morphological and biochemical analyses, we investigated the effect of the AMPA receptor potentiator LY404187 on neurite growth in the SH-SY5Y human neuroblastoma cell line. LY404187 (0.1-10 microM) increased average neurite length and neurofilament expression when co-administered with s-AMPA. Co-incubation with s-AMPA and LY404187 also increased Trk receptor expression. All actions of LY404187 were sensitive to AMPA receptor blockade by the selective antagonist CNQX (10 microM). Antibody sequestration of BDNF attenuated neurite growth following AMPA receptor potentiator administration, suggesting that LY404187 increases neurite length in vitro by a BDNF mediated mechanism. AMPA receptor potentiation activates multiple intracellular neurochemical cascades and the present report identifies BDNF as one key mediator of the neurotrophic effects of AMPA receptor potentiation.  相似文献   

5.
Recent developments in the molecular biology and pharmacology of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors has led to the discovery of selective, potent and systemically active AMPA receptor potentiators. These molecules enhance synaptic transmission and evidence suggests that they play important roles in plasticity and cognitive processes. Activation of AMPA receptors also increases neuronal activation and activity-dependent signalling, which may increase brain-derived neurotrophic factor (BDNF) expression and enhance cell proliferation in the brain. We therefore hypothesised that an AMPA receptor potentiator may provide neurotrophic effects in rodent models of Parkinson's disease. In the present studies we report that the potent and selective AMPA receptor potentiator, R,S-N-2-(4-(4-Cyanophenyl)phenyl)propyl 2-propanesulfonamide (LY404187), provides both functional, neurochemical and histological protection against unilateral infusion of 6-hydroxydopamine into the substantia nigra or striatum of rats. The compound also reduced 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced toxicity in mice. Interestingly, we were also able to observe large functional and histological effects when we delayed treatment until after cell death had occurred (3 or 6 days after 6-hydroxydopamine infusion), supporting a neurotrophic mechanism of action. In addition, LY404187 provided a dose-dependent increase in growth-associated protein-43 expression in the striatum. Therefore, we propose that AMPA receptor potentiators offer the potential of a new therapy to halt the progression and perhaps repair the degeneration in Parkinson's disease.  相似文献   

6.
AMPA receptor activation has been demonstrated to increase the neuronal expression of brain derived neurotrophic factor (BDNF). In the present study, we investigated the effect of a novel AMPA receptor potentiator (LY404187) and its active isomer (LY451646) on the expression of BDNF protein and mRNA, as well as TrkB mRNA in rat hippocampus. LY404187 administered for 7 days (1 mg/kg) significantly increased the number of BDNF immunopositive cells in the dentate gyrus, but not other hippocampal subfields. Chronic treatment (7 days) with LY451646 (0.5 mg/kg, comparable to 1 mg/kg of LY404187) increased the level of both BDNF and TrkB mRNA expression in the dentate gyrus, CA3 and CA4 of the hippocampus. However, chronic treatment with lower doses of LY451646 (0.125 and 0.25 mg/kg) decreased the level of BDNF and TrkB mRNA in hippocampus, whilst the highest used dose of LY451646 (1 mg/kg) had no effect on BDNF and TrkB mRNA in hippocampus. In contrast, acute treatment with LY451646 produced an increase in BDNF mRNA levels at doses of 0.125 and 0.25 mg/kg in the hippocampus (CA4, CA3 and dentate gyrus, but not in CA1). LY451646 at 0.5 mg/kg had no effect, but at 1.0 mg/kg decreased the level of BDNF mRNA in hippocampus. Acute treatment with LY451646 did not affect the TrkB receptor mRNA levels in hippocampus. Our results demonstrate that biarylpropylsulfonamide AMPA receptor potentiators are capable of modulating the expression of BDNF and TrkB mRNA in a dose- and time-dependent manner. The increase in both BDNF protein and mRNA expression in the dentate gyrus but not in CA1 indicates a specific role of AMPA receptors in the regulation of BDNF expression in this hippocampal subfield. The regulation of BDNF expression by biarylpropylsulfonamids such as LY451646 may have important therapeutical implications for this class of molecule in the treatment of depression and other CNS disorders.  相似文献   

7.
The present study describes the pharmacological activity of two novel positive allosteric modulators at AMPA receptors in acutely isolated rat cerebellar Purkinje neurons and cultured rat hippocampal neurons. Currents elicited by application of glutamate (100 μM) to isolated cerebellar Purkinje neurons were potentiated by LY392098, LY404187, cyclothiazide, CX516 and aniracetam. The rank order of potency was LY404187> LY392098> cyclothiazide > CX516> aniracetam. LY392098 displayed a higher maximal efficacy than the other compounds examined. AMPA-activated inward currents in cultured rat hippocampal neurons were potentiated by LY392098, LY404187 and cyclothiazide in a reversible and concentration-dependent manner although considerable heterogeneity in the magnitude of response from cell to cell was observed. LY392098 was ineffective in potentiating AMPA receptor responses when dialyzed via the intracellular solution. The selectivity profiles of the two novel AMPA receptor potentiators were examined. LY392098 or LY404187 had minimal activity on NMDA receptor responses, on voltage-gated calcium channel currents in cultured hippocampal neurons and on GluR5 kainate receptor currents in acutely isolated rat dorsal root ganglion neurons.  相似文献   

8.
We present a substantial series of behavioral and imaging experiments, which demonstrate, for the first time, that increasing AMPA receptor-mediated neurotransmission via administration of potent and selective biarylsulfonamide AMPA potentiators LY404187 and LY451395 reverses the central effects of an acutely intoxicating dose of ethanol in the rat. Using pharmacological magnetic resonance imaging (phMRI), we observed that LY404187 attenuated ethanol-induced reductions in blood oxygenation level dependent (BOLD) in the anesthetized rat brain. A similar attenuation was apparent when measuring local cerebral glucose utilization (LCGU) via C14-2-deoxyglucose autoradiography in freely moving conscious rats. Both LY404187 and LY451395 significantly and dose-dependently reversed ethanol-induced deficits in both motor coordination and disruptions in an operant task where animals were trained to press a lever for food reward. Both prophylactic and acute intervention treatment with LY404187 reversed ethanol-induced deficits in motor coordination. Given that LY451395 and related AMPA receptor potentiators/ampakines are tolerated in both healthy volunteers and elderly patients, these data suggest that such compounds may form a potential management strategy for acute alcohol intoxication.  相似文献   

9.
Major antidepressant agents increase synaptic levels of monoamines. Although the monoamine hypothesis of depression remains a cornerstone of our understanding of the pathophysiology of depression, emerging data has suggested that the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subtype of glutamate receptor may also play a pivotal role in depression. Positive allosteric modulators of AMPA receptors increase brain levels of brain-derived neurotrophic factor (BDNF) that impacts the viability and generation of neurons in key brain structures. AMPA receptor potentiators are active in rodent models predictive of antidepressant efficacy. The mechanisms by which AMPA receptor potentiators produce these biological effects, however, are uncertain. Current evidence points to an antidepressant mechanism that is independent of monoaminergic facilitation that is driven by neurogenesis, a process facilitated by increased BDNF expression. However, alternative hypotheses need to be considered given uncertainties in the relationship between BDNF increases and the effects of conventional antidepressant medications. Electrophysiological and protein conformational data indicate that structural variants of AMPA receptor potentiators can differentially modulate AMPA receptor-mediated currents, although the manner in which this impacts antidepressant efficacy is yet to be understood. Conventional antidepressants such as fluoxetine positively modulate AMPA receptors. This potentiation is engendered by specific phosphorylation pathways activated through the dopamine- and cAMP-regulated phosphoprotein of Mr 32,000 (DARPP-32). Other novel compounds with antidepressant-like effects in rodents may also produce their in vivo effects through potentiation of AMPA receptors. Thus, AMPA receptor potentiation might be a general mechanism through which the clinical outcome of antidepressant efficacy is achieved.  相似文献   

10.
Enhancement of AMPA receptor mediated synaptic excitation has the potential to aid in the treatment of several psychiatric conditions. To test such claims there is a need to develop more potent compounds than those presently available and to demonstrate that they cross the blood–brain barrier to affect responses at central AMPA receptors. We have now completed in vivo tests with two such compounds, the newly discovered biarylpropylsulfonamides, LY392098 and LY404187, on spinal and hippocampal neurones in anaesthetised rats. In the initial study on spinal neurones, LY392098 (30–1000 μg/kg i.v.) dose-dependently increased responses to iontophoretically administered AMPA but not those to NMDA. Subsequently in a more detailed follow-up study on hippocampal neurones, LY392098 (1–100 μg/kg i.v.) and LY404187 (1–100 μg/kg i.v.) enhanced in a dose-dependent manner responses to AMPA. Responses to NMDA were also enhanced but to a less extent. Such enhanced responses to NMDA, but not those to AMPA, were reduced by the NMDA antagonist, ketamine (0.5–1 mg/kg i.v.) whereas the selective AMPA antagonist, LY300168 (GYKI53655; 1 mg/kg i.v.), reduced responses to both NMDA and AMPA. LY392098 also potentiated the synaptic excitation of dentate granule cells following perforant path stimulation. These combined data show that, at doses not dissimilar to those affecting behavioural responses (1–1000 μg/kg; see accompanying papers), the two new drugs cross the blood–brain barrier to affect directly the sensitivity of central AMPA receptors and enhance synaptic excitation in vivo.  相似文献   

11.
Rationale Drugs that enhance α-amino-3-hydroxy-5-methyl-4-isoxazolepropanoic acid (AMPA) receptor-mediated glutamatergic transmission, such as the AMPA receptor potentiator LY404187, may form treatment strategies for disorders of cognition, learning and memory. Objectives Pharmacological magnetic resonance imaging (phMRI) uses blood oxygenation level dependent (BOLD) contrast as a marker of neuronal activity and allows dynamic non-invasive in vivo imaging of the effects of CNS-active compounds. This study used phMRI to examine the effects of LY404187 in the rat brain. Method Groups of Sprague Dawley rats (n=7) were anaesthetised and placed in a 4.7 Tesla superconducting magnet before receiving an acute dose of LY404187 (0.5 mg/kg s.c.), either alone or after pretreatment with the selective AMPA/kainate antagonist LY293558 (15 mg/kg s.c.), or LY293558 alone (15 mg/kg s.c.). Brain images were acquired for each subject every minute for 180 min. These volumes were extensively pre-processed before being analysed for changes in BOLD contrast. Results LY404187 produced significant increases in BOLD contrast in brain regions including the hippocampus, lateral and medial habenulae and superior and inferior colliculi. These changes were blocked by LY293558. When administered alone, LY293558 caused widespread decreases in BOLD contrast. Conclusions The known actions of LY404187 suggest the observed BOLD signal increases reflect increases in excitatory neurotransmission. The decreases in signal following LY293558 alone are harder to interpret and are discussed in terms of the negative BOLD response. This study provides the first evidence that the effects of AMPA receptor-mediating compounds can be observed using phMRI.  相似文献   

12.
The present study describes the activity of two novel potent and selective AMPA receptor potentiator molecules LY392098 and LY404187. LY392098 and LY404187 enhance glutamate (100 μM) stimulated ion influx through recombinant homomeric human AMPA receptor ion channels, GluR1-4, with estimated EC50 values of 1.77 μM (GluR1i), 0.22 μM (GluR2i), 0.56 μM (GluR2o), 1.89 μM (GluR3i) and 0.20 μM (GluR4i) for LY392098 and EC50 values of 5.65 μM (GluR1i), 0.15 μM (GluR2i), 1.44 μM (GluR2o), 1.66 μM (GluR3i) and 0.21 μM (GluR4i) for LY404187. Neither compound affected ion influx in untransfected HEK293 cells or GluR transfected cells in the absence of glutamate. Both compounds were selective for activity at AMPA receptors, with no activity at human recombinant kainate receptors. Electrophysiological recordings demonstrated that glutamate (1 mM)-evoked inward currents in human GluR4 transfected HEK293 cells were potentiated by LY392098 and LY404187 at low concentrations (3–10 nM). In addition, both compounds removed glutamate-dependent desensitization of recombinant GluR4 AMPA receptors. These studies demonstrate that LY392098 and LY404187 allosterically potentiate responses mediated by human AMPA receptor ion channels expressed in HEK 293 cells in vitro.  相似文献   

13.
With an aging population, cognitive decline as a result of aging, Alzheimer's disease and other neurological conditions has become a major problem. Many of the current medications (eg, acetylcholinesterase inhibitors) for cognitive disorders show limited efficacy and are effective only in certain populations. Several other pharmacological pathways are therefore being explored in an attempt to develop superior medications. Glutamate and glutamate receptors are well recognized to play a key role in long-term potentiation (LTP), a process that is believed to underlie memory formation. Glutamate antagonists have been demonstrated to block LTP and to disrupt memory in both rodents and humans. Based on these data, it is not surprising that boosting glutamatergic transmission has been explored as a means of enhancing cognition. AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors have been demonstrated to control fast synaptic transmission. Several classes of AMPA receptor potentiators have been described in the last decade. These molecules bind to allosteric sites on AMPA receptors, slow desensitization and thereby enhance signaling through the receptors. Some AMPA receptor potentiator agents have been explored in rodent models and are now entering clinical trials. Research complexity for these agents arises from the multiple AMPA receptor subtypes on which the molecules can act differentially, as well as from the distribution of AMPA receptors and the difficulty in studying cognition in na?ve rodents. Nevertheless, boosting Ca(2+) flux through the AMPA receptor, and enhancing LTP and downstream pathways may provide a novel approach to the treatment of cognitive deficits.  相似文献   

14.
Many studies have demonstrated that intoxicating concentrations of ethanol (10-100 mM) can selectively inhibit the component of glutamatergic synaptic transmission mediated by N-methyl-D-aspartate (NMDA) receptors while having little or no effect on excitatory synaptic transmission mediated by non-NMDA receptors [i.e., alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and/or kainate (KA) receptors]. However, until the recent development of highly selective AMPA receptor antagonists, it was not possible to assess the relative contribution of AMPA and KA receptors to non-NMDA receptor-mediated synaptic transmission or to determine whether these glutamate receptor subtypes differed in their sensitivity to ethanol. In the present experiments, we used the highly selective AMPA receptor antagonist LY 303070 to pharmacologically isolate KA receptor-mediated excitatory postsynaptic currents (EPSCs) in rat hippocampal CA3 pyramidal neurons and tested their sensitivity to ethanol. Concentrations of ethanol as low as 20 mM significantly and reversibly depressed KA EPSCs. Ethanol also inhibited KA currents evoked by direct pressure application of KA in the presence of LY 303070, suggesting that this inhibition was mediated by a postsynaptic action. In contrast, ethanol had no effect on AMPA EPSCs in these cells, even at the highest concentration tested (80 mM). Ethanol significantly inhibited NMDA EPSCs in these neurons, but these responses were less sensitive to ethanol than KA EPSCs. These results suggest that in addition to its well-described depressant effect on NMDA receptor-mediated synaptic transmission, ethanol has an even greater inhibitory effect on glutamatergic synaptic transmission mediated by KA receptors in rat hippocampal CA3 pyramidal neurons.  相似文献   

15.
AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)-type glutamate receptors mediate fast excitatory transmission throughout the central nervous system. Positive modulation of these receptors can potentially enhance cognition by, firstly, offsetting losses of glutamatergic synapses; secondly, promoting synaptic plasticity; and thirdly, increasing the production of trophic factors. The advent of small molecules that selectively enhance AMPA receptors in the brain made it possible to test these hypotheses. Preclinical experiments indicate that the compounds accelerate the encoding of memory and have positive effects on models of cognitive dysfunction. Initial results with human subjects are also positive. AMPA receptor modulators thus represent an entirely new approach to cognitive enhancement and the treatment of diverse brain disorders.  相似文献   

16.
Legutko B  Li X  Skolnick P 《Neuropharmacology》2001,40(8):1019-1027
The effects of a novel AMPA receptor potentiator (LY392098) on the expression of brain-derived neurotrophic factor (BDNF) were examined in primary neuron culture. The addition of either AMPA or LY392098 to cortical neurons elicited a time and concentration dependent increase in mRNA encoding BDNF. Moreover, co-addition of subeffective concentrations of AMPA (1 μM) and LY392098 (1 μM) resulted in dramatic increases in both BDNF mRNA (>25-fold) and protein (7-fold) levels, whilst no changes in either NT-3 or NT-4 mRNA were detected. More modest (1.5–2.5-fold) elevations in BDNF mRNA and protein expression were also produced by combinations of AMPA and LY392098 in cerebellar granule cell neurons. In contrast, AMPA and LY392098, either alone or in combination, did not elevate BDNF mRNA levels in primary astroglial cultures. Maximum elevations in BDNF mRNA and protein were produced by 6–12 h of AMPA receptor activation 1–3 h of AMPA receptor activation were required to elevate BDNF mRNA levels. AMPA receptor-mediated increases in BDNF mRNA and protein were abolished by the AMPA antagonist, NBQX, but were unaffected by the NMDA antagonist, MK-801. In cortical neuron cultures, activation of both L-type Ca+2 channels and mitogen-activated protein (MAP) kinases contribute to AMPA receptor-mediated increases in BDNF mRNA. The ability of LY392098 to increase the expression of BDNF in primary neuron culture indicates this and related biarylpropylsulfonamides may be useful in the treatment of neuropsychiatric disorders.  相似文献   

17.
18.
LY395153 is a member of a newly described class of arylpropylsulfonamide AMPA receptor potentiators. Here, we characterize and compare [(3)H]LY395153 binding to native AMPA receptors from rat cerebral cortex and recombinant human GluR4(flip) receptors expressed in HEK293 cells. L-Glutamate and AMPA increased [(3)H]LY395153 binding to both native and recombinant AMPA receptors in a concentration dependent and stereoselective manner; this effect of AMPA receptor agonists reflects an apparent increase in ligand affinity. In the presence of L-glutamate (500 microM), [(3)H]LY395153 binding is saturable; the affinity of this radioligand is slightly, albeit statistically significantly higher at human GluR4(flip) (K(d)=55.6+/-5.3nM) than rat cortical receptors (K(d)=110+/-15.1nM). NBQX competitively inhibited L-glutamate-induced increases in [(3)H]LY395153 binding in both native and recombinant receptors, whilst LY303070 (the active isomer of GYKI53655) noncompetitively inhibited this effect in native, but not recombinant receptors. The prototypic AMPA receptor potentiator cyclothiazide competitively inhibited [(3)H]LY395153 binding with a potency (K(i) approximately 7 microM) comparable to EC(50) values reported in electrophysiological studies. In contrast, the structurally unrelated AMPA receptor potentiator CX 516 did not inhibit [(3)H]LY395153 binding at concentrations of up to 600 microM. Further, at concentrations reported to facilitate AMPA receptor desensitization, thiocyanate acts as a competitive inhibitor of [(3)H]LY395153 binding. [(3)H]LY395153 binding was unaffected by a variety of structurally (and mechanistically) diverse compounds tested at a concentration of 10 microM. These data indicate [(3)H]LY395153 is a useful probe for labeling a unique modulatory site on both native and recombinant AMPA receptors.  相似文献   

19.
Lees GJ 《Drugs》2000,59(1):33-78
It has been postulated, consistent with the ubiquitous presence of glutamatergic neurons in the brain, that defects in glutamatergic neurotransmission are associated with many human neurological and psychiatric disorders. This review evaluates the possible application of ligands acting on glutamate alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and kainate (KA) receptors to minimise the pathology and/or symptoms of various diseases. Glutamate activation of AMPA receptors is thought to mediate most fast synaptic neurotransmission in the brain, while transmission via KA receptors contributes only a minor component. Variants of the protein subunits forming these receptors greatly extend the pharmacological and electrophysiological properties of AMPA/KA receptors. Disease and drug use can differentially affect the expression of the subunits and their variants. Ligands bind to AMPA receptors by competing with glutamate at the glutamate binding site, or non-competitively at other sites on the proteins (allosteric modulators). Ligands showing selective competitive antagonist actions at the AMPA/ KA class of glutamate receptors were first reported in 1988, and the systemically active antagonist 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(F)quinoxaline (NBQX) was first shown to have useful therapeutic effects on animal models of neurological diseases in 1990. Since then, newer antagonists with increased potency, higher specificity, increased water solubility, and a longer duration of action in vivo have been developed. Negative allosteric modulators such as the prototype GYKI-52466 also block AMPA receptors but have little action at KA receptors. Positive allosteric modulators enhance glutamatergic neurotransmission at AMPA receptors. Polyamines and adamantane derivatives bind within the ion channel of calcium-permeable AMPA receptors. The latest developments include ligands selective for KA receptors containing Glu-R5 subunits. Evidence for advantages of AMPA receptor antagonists over N-methyl-D-aspartate (NMDA) receptor antagonists for symptomatic treatment of neurological and psychiatric conditions, and for minimising neuronal loss occurring after acute neurological diseases, such as physical trauma, ischaemia or status epilepticus, have been shown in animal models. However, as yet AMPA receptor antagonists have not been shown to be effective in clinical trials. On the other hand, a limited number of clinical trials have been reported for AMPA receptor ligands that enhance glutamatergic neurotransmission by extending the ion channel opening time (positive allosteric modulators). These acute studies demonstrate enhanced memory capability in both young and aged humans, without any apparent serious adverse effects. The use of these allosteric modulators as antipsychotic drugs is also possible. However, the long term use of both direct agonists and positive allosteric modulators must be approached with considerable caution because of potential adverse effects.  相似文献   

20.
Neurotrophins jointly exert various functions in the nervous system, including neuronal differentiation, survival, and regulation of synaptic plasticity. However, the functional interactions of neurotrophins or mechanisms through which neurotrophins regulate each other are still not clear. In the present study, brain-derived neurotrophic factor (BDNF) mRNA expression is induced by neurotrophin-4/5 (NT-4/5) and by BDNF itself in neocortical neurons. K252a, a specific tyrosine kinase (Trk) inhibitor, completely suppresses BDNF- and NT-4/5-enhanced BDNF mRNA expression. NT-4/5 significantly augments BDNF protein production, which is also reversed by K252a. When neurons are incubated with neurotrophin-3 (NT-3) or nerve growth factor (NGF), there are no significant changes in BDNF mRNA or protein expression. Interestingly, the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor blocker 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) or the N-methyl-D-aspartate (NMDA) receptor blocker AP-5 completely suppresses NT-4/5-enhanced BDNF protein production, while tetrodotoxin (TTX) only suppresses NT-4/5-enhanced BDNF production by 50%. Additionally, the mitogen activated protein (MAP) kinase inhibitor PD98059 enhances BDNF-induced glutamate receptor-1 (GluR1) protein expression, but a phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 strongly reduces BDNF-induced GluR1 protein expression. Taken together, glutamate receptors are important for the regulation of BDNF expression by neurotrophins, and MAP and PI3K kinases differentially modulate AMPA receptor expression in the cortical neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号