首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rivard MJ 《Medical physics》2000,27(12):2816-2820
Due to helium production following alpha decay, it is necessary to demonstrate the structural integrity of new 252Cf sources at elevated temperatures for special form certification by the U.S. Department of Transportation. Effects of temperature, capsule composition, and capsule dimensions are examined and reduced to a simple mathematical model. This highly conservative model assumes that all gas products leaving the radioactive source wire are retained by the capsule, and upon elevation to a temperature of 800 degrees C the capsule exhibits negligible expansion or change in internal volume and no increase in gas-phase components due to vaporization of spontaneous fission products. The calculated maximum loadings for the ORNL-made Applicator Tube and three proposed high dose rate 252Cf sources encapsulated in Pt/Ir-10% (VariSource, microSelectron classic, and a novel design) were 10.8, 0.508, 0.708, and 2.12 mg 252Cf, respectively.  相似文献   

2.
3.
Neutron dosimetry for a general 252Cf brachytherapy source   总被引:2,自引:0,他引:2  
Rivard MJ 《Medical physics》2000,27(12):2803-2815
This paper extends previous work to characterize neutron dosimetry in the vicinity of 252Cf brachytherapy sources. A general source is examined with an arbitrary length, diameter, and encapsulation using Monte Carlo methods. Fast neutron dosimetry and thermal neutron fluence rates were determined in a variety of clinically relevant media of varying dimensions. Applicator Tube, point source, high dose rate VariSource, and high dose rate muSelectron source geometries were analyzed. Fast neutron dosimetry was relatively independent of encapsulation thickness for an assortment of encapsulation materials less than 2 mm thick. Large variations in phantom size made minimal differences in the fast neutron dose close to the source. Specific source geometries were compared with dosimetry obtained from a simplified point model. The consequence of these results is a convenient means of accurately predicting clinical fast neutron dosimetry characteristics around a general 252Cf brachytherapy source in a variety of media without requiring neutron transport. Thermal neutron fluence rates were determined for a variety of source encapsulation materials, encapsulation thicknesses, and phantom sizes. At a distance of 3 cm from the source center, the thermal neutron fluence rate for a 30 cm diameter phantom was a 2.65 times greater than for a 10 cm diameter water phantom. These results demonstrate 252Cf thermal neutron fluence rate is relatively independent of encapsulation thickness and composition, yet highly dependent on hydrogen mass density and phantom size for phanta with diameters <30 cm.  相似文献   

4.
Rivard MJ 《Medical physics》2000,27(8):1761-1769
252Cf is a neutron emitting radioisotope which has promise for both standard brachytherapy and neutron capture enhanced brachytherapy. In this study, experimental measurements and calculations were used to determine the thermal neutron fluence rate, phi(th) [n cm(-2) s(-1) mg(-1)], in the vicinity of 252Cf applicator tube (AT) type sources. Results of these measurements were confirmed with Monte Carlo calculations performed in a distributed manner on multiple workstations using MCNP. Three studies were executed: (1) relative phi(th) as a function of distance from a 252Cf AT source in an A-150 tissue equivalent plastic phantom using thermoluminescent dosimeters (TLDs) of varying 6Li/Li enrichment, (2) phi(th) measured with gold foils in a 114 liter water phantom 5 cm from two 252Cf AT sources, and (3) calculations of the impact of phantom material composition (e.g., A-150, water, brain, muscle) on phi(th) from moderated 252Cf fast neutrons. TLD results and Monte Carlo calculations in A-150 of relative phi(th) typically agreed within 1% and at most differed by 3% for distances from 1 to 6 cm. Foil measurements followed the ASTM E 262-86e protocol, and the ratio of activated plain and Cd encased gold foils (7.31) agreed well with the calculated ratio (7.26). Measured phi(th) at 5 cm (1.70+/-0.10 x 10(7) n cm(-2) s(-1) mg(-1)) was 10% greater than that determined using MCNP (1.55+/-0.12 x 10(7) n cm(-2) s(-1) mg(-1)), but was within the combined uncertainties. Compared with A-150 at a distance of 1 cm, phi(th) was 20%, 22%, and 32% less for water, brain, and muscle, respectively; these ratios decreased to 16%, 16%, and 24% less, respectively, at a distance of 5 cm from the source in a 15 cm diameter phantom. Comparisons of these results generally agreed with those in the literature for a value of 2 x 10(7) n cm(-2) s(-1) mg(-1) in water at 3 cm.  相似文献   

5.
6.
Dosimetry of 192Ir sources used for endovascular brachytherapy   总被引:2,自引:0,他引:2  
An in-phantom calibration technique for 192Ir sources used for endovascular brachytherapy is presented. Three different source lengths were investigated. The calibration was performed in a solid phantom using a Farmer-type ionization chamber at source to detector distances ranging from 1 cm to 5 cm. The dosimetry protocol for medium-energy x-rays extended with a volume-averaging correction factor was used to convert the chamber reading to dose to water. The air kerma strength of the sources was determined as well. EGS4 Monte Carlo calculations were performed to determine the depth dose distribution at distances ranging from 0.6 mm to 10 cm from the source centre. In this way we were able to convert the absolute dose rate at 1 cm distance to the reference point chosen at 2 mm distance. The Monte Carlo results were confirmed by radiochromic film measurements, performed with a double-exposure technique. The dwell times to deliver a dose of 14 Gy at the reference point were determined and compared with results given by the source supplier (CORDIS). They determined the dwell times from a Sievert integration technique based on the source activity. The results from both methods agreed to within 2% for the 12 sources that were evaluated. A Visual Basic routine that superimposes dose distributions, based on the Monte Carlo calculations and the in-phantom calibration, onto intravascular ultrasound images is presented. This routine can be used as an online treatment planning program.  相似文献   

7.
8.
9.
Dosimetric properties of neutron beams produced by stopping 26, 35 and 45 MeV protons in beryllium and lithium have been measured. The effects of filtering the p-Be beam with 6 cm of polyethylene have been investigated. The tissue kerma rate in air exhibited an energy dependence of approximately E3 and the rate for p-Be beams was approximately one-fifth of the rate for d-Be beams. The penetrability of the neutrons was significnatly enhanced by the use of the filter, but with a 50% attentuation in tissue kerma rate. The tissue kerma rate for the p-Li beam was nearly the same as that for the p-Be beam.  相似文献   

10.
11.
An analysis of Ir-192 source distribution using the Monte Carlo method and radiochromic film experiments for endovascular brachytherapy is presented. Three different source possibilities, namely, mHDR Ir-192 sources with 5 mm and 2.5 mm step sizes and Ir-192 seed sources with 1 mm air gap are investigated to obtain uniform radial dose distribution throughout the treatment area. From this study, it is inferred that mHDR Ir-192 sources with 2.5 mm step size are effective for getting dose uniformity. Hence, different restenosis geometries, namely, linear, dumb bell and hairpin, are simulated with 2.5 mm step size, 15 mHDR Ir-192 sources using the Monte Carlo technique and the results are compared experimentally by using radiochromic films. The results from both methods agreed to within 7%. Further, it is also inferred that for the dosimetry of endovascular brachytherapy, the film dosimetry may be considered adequate, even if the film calibration is time consuming and requires adequate dosimetric procedures.  相似文献   

12.
13.
The design and construction of a versatile clinical instrument for multi-element in vivo neutron activation analysis of major and minor body elements is described. A 200 micrograms (4 GBq) 252Cf neutron source is stored below ground level and pneumatically propelled to one of two irradiation ports. These deliver collimated beams of fast neutrons either to a localised volume such as the liver or kidney, or across the width of a patient for a head-to-toe scanning whole-body measurement. The source control system allows selection of either a continuous or cyclic mode of activation. The instrument is intended primarily for measurement, by the prompt-gamma technique, of total and partial body calcium, total body nitrogen and partial body cadmium. The potential of the instrument for determination of these three elements has been established. Phantom results suggest that total body calcium can be measured with a precision of +/- 2.6% (CV) for an average whole-body skin dose equivalent of 6.4 mSv; total body nitrogen with a precision of +/- 2.0% for an average whole-body skin dose equivalent of less than 0.4 mSv; and a detection limit (2 SD of the background) of 2.4 mg of cadmium in the kidney has been obtained for a radiation dose equivalent to the skin of 3 mSv (QF = 10). The suitability of this instrument for the measurement of other elements is also discussed.  相似文献   

14.
15.
Gamma-rays contribute 33% of the absorbed dose from an unfiltered 252Cf fission neutron source. To reduce this gamma-ray component and to enable radiobiological experiments at as high a dose rate as possible, Monte Carlo calculations for several filter materials (Al, Fe, Pb and concrete) have been made using MCNP neutron and photon transport code version 4a. A lead filter of thickness 4 cm was found to reduce the gamma-ray component to 6.7% of the total dose whilst reducing the neutron dose by only about 10%. Such a filter was installed at the MRC 252Cf neutron irradiation facility and dosimetric measurements were made using a TE-TE chamber and a 7LiF(Mg, Cu, P) TLD. Monte Carlo simulations agree with experimental measurements of neutron and gamma-ray doses within 6%. V79-4 Chinese hamster cells were irradiated with lead-filtered and unfiltered neutrons and also with 60Co gamma-rays at two dose rates. The survival fraction obtained for each radiation was consistent with the reduced gamma-ray dose. The relative biological effectiveness for neutrons alone, corrected for gamma-ray effects, was found to be 9.2 +/- 3.4 from the initial slopes and 3.1 +/- 0.5 at 10% survival, both relative to the acute gamma-rays.  相似文献   

16.
A L Boyer 《Medical physics》1979,6(5):454-456
The dose rate gradients in the first few centimeters away from brachytherapy sources are extremely high. Attempts at direct measurements of the dose rates in the near vicinity of such sources are made with the smallest detectors available. Nevertheless, it is not obvious that the agreement between reported measurements and theoretical calculations can be justified when the dose rate gradients across the detector volumes employed are so great. A figure of merit is derived here which indicates how well the dose averaged over the volume of the detector corresponds to the dose at the center of the detector. This figure of merit provides a means to assess the maximum accuracy one can expect to achieve in a measurement made at a given distance from a linear source based on the dimensions of the source and the dimensions and shape of the detector.  相似文献   

17.
Dose rates along the transverse axes of 125I model 6702, 125I model 6711 and 192Ir 0.2-mm steel sources for interstitial brachytherapy have been measured in a solid-water phantom for distances up to 10 cm using LiF thermoluminescent dosimeters (TLDs). Specific dose rate constants, the dose rates in water per unit source strength 1 cm along the perpendicular bisector of the source, are determined to be 0.90 +/- 0.03, 0.85 +/- 0.03, and 1.09 +/- 0.03 cGy h-1 U-1 for 125I model 6702, 125I model 6711 and 192Ir 0.2-mm steel sources, respectively (1 U = unit of air kerma strength = 1 microGy m2 h-1 = 1 cGy cm2 h-1). In older and obsolete units of source strength (i.e., mCi apparent), these are 1.14 +/- 0.03, 1.08 +/- 0.03, and 4.59 +/- 0.15 cGy h-1 mCi-1 (apparent). Currently accepted values of specific dose rate constant for 125I sources are up to 20% higher than our measured values which are in good agreement with the results of our Monte Carlo simulations. But for 192Ir there is good agreement between our measured value of the specific dose rate constant and currently accepted values. The radial dose function for 125I model 6702 is found to be consistently larger than that for 125I model 6711, with an increasing difference as the distance from the source increases. Our measured values for the radial dose function for 125I sources are in good agreement with the results of our Monte Carlo simulation as well as the measured values of Schell et al. [Int. J. Radiat. Oncol. Biol. Phys. 13, 795-799 (1987)] for model 6702 and Ling et al.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Since publication of the American Association of Physicists in Medicine (AAPM) Task Group No. 43 Report in 1995 (TG-43), both the utilization of permanent source implantation and the number of low-energy interstitial brachytherapy source models commercially available have dramatically increased. In addition, the National Institute of Standards and Technology has introduced a new primary standard of air-kerma strength, and the brachytherapy dosimetry literature has grown substantially, documenting both improved dosimetry methodologies and dosimetric characterization of particular source models. In response to these advances, the AAPM Low-energy Interstitial Brachytherapy Dosimetry subcommittee (LIBD) herein presents an update of the TG-43 protocol for calculation of dose-rate distributions around photon-emitting brachytherapy sources. The updated protocol (TG-43U1) includes (a) a revised definition of air-kerma strength; (b) elimination of apparent activity for specification of source strength; (c) elimination of the anisotropy constant in favor of the distance-dependent one-dimensional anisotropy function; (d) guidance on extrapolating tabulated TG-43 parameters to longer and shorter distances; and (e) correction for minor inconsistencies and omissions in the original protocol and its implementation. Among the corrections are consistent guidelines for use of point- and line-source geometry functions. In addition, this report recommends a unified approach to comparing reference dose distributions derived from different investigators to develop a single critically evaluated consensus dataset as well as guidelines for performing and describing future theoretical and experimental single-source dosimetry studies. Finally, the report includes consensus datasets, in the form of dose-rate constants, radial dose functions, and one-dimensional (1D) and two-dimensional (2D) anisotropy functions, for all low-energy brachytherapy source models that met the AAPM dosimetric prerequisites [Med. Phys. 25, 2269 (1998)] as of July 15, 2001. These include the following 125I sources: Amersham Health models 6702 and 6711, Best Medical model 2301, North American Scientific Inc. (NASI) model MED3631-A/M, Bebig/Theragenics model I25.S06, and the Imagyn Medical Technologies Inc. isostar model IS-12501. The 103Pd sources included are the Theragenics Corporation model 200 and NASI model MED3633. The AAPM recommends that the revised dose-calculation protocol and revised source-specific dose-rate distributions be adopted by all end users for clinical treatment planning of low energy brachytherapy interstitial sources. Depending upon the dose-calculation protocol and parameters currently used by individual physicists, adoption of this protocol may result in changes to patient dose calculations. These changes should be carefully evaluated and reviewed with the radiation oncologist preceding implementation of the current protocol.  相似文献   

19.
Wang R  Li XA 《Medical physics》2001,28(2):134-141
The dose parameters for the beta-particle emitting 90Sr/90Y source for intravascular brachytherapy (IVBT) have been calculated by different investigators. At a distant distance from the source, noticeable differences are seen in these parameters calculated using different Monte Carlo codes. The purpose of this work is to quantify as well as to understand these differences. We have compared a series of calculations using an EGS4, an EGSnrc, and the MCNP Monte Carlo codes. Data calculated and compared include the depth dose curve for a broad parallel beam of electrons, and radial dose distributions for point electron sources (monoenergetic or polyenergetic) and for a real 90Sr/90Y source. For the 90Sr/90Y source, the doses at the reference position (2 mm radial distance) calculated by the three code agree within 2%. However, the differences between the dose calculated by the three codes can be over 20% in the radial distance range interested in IVBT. The difference increases with radial distance from source, and reaches 30% at the tail of dose curve. These differences may be partially attributed to the different multiple scattering theories and Monte Carlo models for electron transport adopted in these three codes. Doses calculated by the EGSnrc code are more accurate than those by the EGS4. The two calculations agree within 5% for radial distance <6 mm.  相似文献   

20.
Brachytherapy is a widely used radiation therapy modality while neutron capture therapy is being intensely studied. These methods provide some advantages, but also have limitations that might be ameliorated by combining them. A technique that uses stable solid seeds or needles of Gd which are irradiated in vivo with neutrons has been evaluated. Monte Carlo calculations show that 5000 cGy of prompt gamma dose can be delivered to a treatment volume of 40 cm3 with a three-plane implant of 9-Gd needles. The tumor to normal tissue advantage of this method is as good as brachytherapy using 60Co seeds. Measurements of prompt gamma dose with films and TLD-700s in a lucite phantom verify the Monte Carlo evaluation. Dose measurements of a Gd needle in air also show that Gd is promising for this form of brachytherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号