首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Vaccine》2017,35(1):125-131
Achieving consistent protection by vaccinating pigs against porcine reproductive and respiratory syndrome virus (PRRSV) remains difficult. Recently, an interferon-inducing PRRSV vaccine candidate strain A2MC2 was demonstrated to be attenuated and induced neutralizing antibodies. The objective of this study was to determine the efficacy of passage 90 of A2MC2 (A2P90) to protect pigs against challenge with moderately virulent PRRSV strain VR-2385 (92.3% nucleic acid identity with A2MC2) and highly virulent atypical PRRSV MN184 (84.5% nucleic acid identity with A2MC2). Forty 3-week old pigs were randomly assigned to five groups including a NEG-CONTROL group (non-vaccinated, non-challenged), VAC-VR2385 (vaccinated, challenged with strain VR-2385), VR2385 (challenged with strain VR-2385), VAC-MN184 (vaccinated, challenged with strain MN184) and a MN184 group (challenged with MN184 virus). Vaccination was done at 3 weeks of age followed by challenge at 8 weeks of age. No viremia was detectable in any of the vaccinated pigs; however, by the time of challenge, 15/16 vaccinated pigs had seroconverted based on ELISA and had neutralizing antibodies against a homologous strain with titers ranging from 8 to 128. Infection with VR-2385 resulted in mild-to-moderate clinical disease and lesions. For VR-2385 infected pigs, vaccination significantly lowered PRRSV viremia and nasal shedding by 9 days post challenge (dpc), significantly reduced macroscopic lung lesions, and significantly increased the average daily weight gain compared to the non-vaccinated pigs. Infection with MN184 resulted in moderate-to-severe clinical disease and lesions regardless of vaccination status; however, vaccinated pigs had significantly less nasal shedding by dpc 5 compared to non-vaccinated pigs. Under the study conditions, the A2P90 vaccine strain was attenuated without detectable shedding, improved weight gain, and offered protection to the pigs challenged with VR-2385 by reduction of virus load and macroscopic lung lesions. Further work is needed to investigate different vaccination and challenge protocols, including routes, doses, timing and strains.  相似文献   

2.
《Vaccine》2015,33(30):3518-3525
Modified live virus (MLV) vaccines developed to protect against PRRSV circulating in North America (NA) offer limited protection to highly pathogenic (HP) PRRSV strains that are emerging in Asia. MLV vaccines specific to HP-PRRSV strains commercially available in China provide protection to HP-PRRSV; however, the efficacy of these HP-PRRSV vaccines to current circulating NA PRRS viruses has not been reported. The aim of this study is to investigate whether pigs vaccinated with attenuated Chinese HP-PRRSV vaccine (JXA1-R) are protected from infection by NA PRRSV strain NADC-20. We found that pigs vaccinated with JXA1-R were protected from challenges with HV-PRRSV or NADC-20 as shown by fewer days of clinical fever, reduced lung pathology scores, and lower PRRS virus load in the blood. PRRSV-specific antibodies, as measured by IDEXX ELISA, appeared one week after vaccination and virus neutralizing antibodies were detected four weeks post vaccination. Pigs vaccinated with JXA1-R developed broadly neutralizing antibodies with high titers to NADC-20, JXA1-R, and HV-PRRSV. In addition, we also found that IFN-α and IFN-β occurred at higher levels in the lungs of pigs vaccinated with JXA1-R. Taken together, our studies provide the first evidence that JXA1-R can confer protection in pigs against the heterologous NA PRRSV strain NADC-20.  相似文献   

3.
Porcine reproductive and respiratory syndrome (PRRS) is an immunosuppressive chronic respiratory viral disease of pigs that is responsible for major economic losses to the swine industry worldwide. The efficacy of parenteral administration of widely used modified live virus PRRS vaccine (PRRS-MLV) against genetically divergent PRRSV strains remains questionable. Therefore, we evaluated an alternate and proven mucosal immunization approach by intranasal delivery of PRRS-MLV (strain VR2332) with a potent adjuvant to elicit cross-protective immunity against a heterologous PRRSV (strain MN184). Mycobacterium tuberculosis whole cell lysate (Mtb WCL) was chosen as a potent mucosal adjuvant due to its Th1 biased immune response to PRRS-MLV. Unvaccinated pigs challenged with MN184 had clinical PRRS with severe lung pathology; however, vaccinated (PRRS-MLV+ Mtb WCL) pigs challenged with MN184 were apparently healthy. There was a significant increase in the body weight gain in vaccinated compared to unvaccinated PRRSV challenged pigs. Vaccinated compared to unvaccinated, virus-challenged pigs had reduced lung pathology associated with enhanced PRRSV neutralizing antibody titers and reduced viremia. Immunologically, an increased frequency of Th cells, Th/memory cells, γδ T cells, dendritic cells, and activated Th cells and a reduced frequency of T-regulatory cells were detected at both mucosal and systemic sites. Further, reduced secretion of immunosuppressive cytokines (IL-10 and TGF-β) and upregulation of the Th1 cytokine IFN-γ in blood and lungs were detected in mucosally vaccinated, PRRSV-challenged pigs. In conclusion, intranasal immunization of pigs with PRRS-MLV administered with Mtb WCL generated effective cross-protective immunity against PRRSV.  相似文献   

4.
《Vaccine》2021,39(47):6852-6859
BackgroundIn pigs, modified live virus (MLV) vaccines against porcine reproductive and respiratory syndrome virus (PRRSV) are commonly used and administered by intramuscular (IM) injection. In contrast, PRRSV, as a primary respiratory pathogen, is mainly transmitted via the intranasal (IN) route. The objective of this study was to evaluate the efficacy of a commonly used commercial PRRSV MLV delivered IN compared to the IM route.MethodsFifty-four pigs were divided into five treatment groups. All vaccinated groups received the same MLV vaccine but administered via different routes. Group IN-JET-VAC was vaccinated with an automated high pressure prototype nasal jet device (IN-JET-VAC, n = 12), group IN-MAD-VAC was vaccinated with a mucosal atomization device (IN-MAD-VAC, n = 12), group IM-VAC was vaccinated intramuscularly (IM-VAC; n = 12) according to label instructions, while the NEG-CONTROL (n = 6) and the POS-CONTROL (n = 12) groups were both unvaccinated. At 28 days post vaccination all vaccinated groups and the POS-CONTROL pigs were challenged with a pathogenic US PRRSV isolate. Blood and nasal swabs were collected at regular intervals, and all pigs were necropsied at day 10 post challenge (dpc) when gross and microscopic lung lesions were assessed.ResultsPrior to challenge most vaccinated pigs had seroconverted to PRRSV. Clinical signs (fever, inappetence) were most obvious in the POS-CONTROL group from dpc 7 onwards. The vaccinated groups were not different for PRRSV viremia, seroconversion, or average daily weight gain. However, IN-JET-VAC and IN-MAD-VAC had significantly higher neutralizing antibody levels against the vaccine virus at challenge.ConclusionsComparable vaccine responses were obtained in IN and IM vaccinated pigs, suggesting the intranasal administration route as an alternative option for PRRSV vaccination.  相似文献   

5.
《Vaccine》2016,34(46):5546-5553
Current porcine reproductive and respiratory syndrome virus (PRRSV) vaccines sometimes fail to provide adequate immunity to protect pigs from PRRSV-induced disease. This may be due to antigenic differences among PRRSV strains. Rapid production of attenuated farm-specific homologous vaccines is a feasible alternative to commercial vaccines. In this study, attenuation and efficacy of a codon-pair de-optimized candidate vaccine generated by synthetic attenuated virus engineering approach (SAVE5) were tested in a conventional growing pig model. Forty pigs were vaccinated intranasally or intramuscularly with SAVE5 at day 0 (D0). The remaining 28 pigs were sham-vaccinated with saline. At D42, 30 vaccinated and 19 sham-vaccinated pigs were challenged with the homologous PRRSV strain VR2385. The experiment was terminated at D54. The SAVE5 virus was effectively attenuated as evidenced by a low magnitude of SAVE5 viremia for 1–5 consecutive weeks in 35.9% (14/39) of the vaccinated pigs, lack of detectable nasal SAVE5 shedding and failure to transmit the vaccine virus from pig to pig. By D42, all vaccinated pigs with detectable SAVE5 viremia also had detectable anti-PRRSV IgG. Anti-IgG positive vaccinated pigs were protected from subsequent VR2385 challenge as evidenced by lack of VR2385 viremia and nasal shedding, significantly reduced macroscopic and microscopic lung lesions and significantly reduced amount of PRRSV antigen in lungs compared to the non-vaccinated VR2385-challenged positive control pigs. The nasal vaccination route appeared to be more effective in inducing protective immunity in a larger number of pigs compared to the intramuscular route. Vaccinated pigs without detectable SAVE5 viremia did not seroconvert and were fully susceptible to VR2385 challenge. Under the study conditions, the SAVE approach was successful in attenuating PRRSV strain VR2385 and protected against homologous virus challenge. Virus dosage likely needs to be adjusted to induce replication and protection in a higher percentage of vaccinated pigs.  相似文献   

6.
Porcine reproductive and respiratory syndrome virus (PRRSV) is prevalent in swine farms worldwide and is a major source of economic loss and animal suffering. Rapid genetic variation of PRRSV makes it difficult for current vaccines to confer protection against newly emerging strains. We recently demonstrated that a novel peptide nanofiber hydrogel (H9e) could act as a potent adjuvant for killed H1N1 vaccines. Therefore, the objective of this study was to evaluate H9e as an adjuvant for PRRSV modified live virus (MLV) vaccines. Pigs were vaccinated with Ingelvac PRRSV MLV with or without H9e adjuvant before being challenged with the VR-2332 (parental vaccine strain) or MN184A (genetically diverse strain) PRRSV. Pigs vaccinated with MLV + H9e had higher levels of circulating vaccine virus. More importantly, pigs vaccinated with MLV + H9e had improved protection against challenge by both PRRSV strains, as demonstrated by reduced challenge-induced viremia compared with pigs vaccinated with MLV alone. Pigs vaccinated with MLV + H9e had lower frequency of T-regulatory cells and IL-10 production but higher frequency of Th/memory cells and IFN-γ secretion than that in pigs vaccinated with MLV alone. Taken together, our studies suggest that the peptide nanofiber hydrogel H9e, when combined with the PRRSV MLV vaccine, can enhance vaccine efficacy against two different PRRSV strains by modulating both host humoral and cellular immune responses.  相似文献   

7.
《Vaccine》2017,35(18):2427-2434
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of arguably the most economically important global swine disease. The extensive genetic variation of PRRSV strains is a major obstacle for heterologous protection of current vaccines. Previously, we constructed a panel of chimeric viruses containing only the ectodomain sequences of DNA-shuffled structural genes of different PRRSV strains in the backbone of a commercial vaccine, and found that one chimeric virus had an improved cross-protection efficacy. In this present study, to further enhance the cross-protective efficacy against heterologous strains, we constructed a novel chimeric virus VR2385-S3456 containing the full-length sequences of shuffled structural genes (ORFs 3-6) from 6 heterologous PRRSV strains in the backbone of PRRSV strain VR2385. We showed that the chimeric virus VR2385-S3456 induced a high level of neutralizing antibodies in pigs against two heterologous strains. A subsequent vaccination and challenge study in 48 pigs revealed that the chimeric virus VR2385-S3456 conferred an enhanced cross-protection when challenged with heterologous virus strain NADC20 or a contemporary heterologous strain RFLP 1-7-4. The results suggest that the chimera VR2385-S3456 may be a good PRRSV vaccine candidate for further development to confer heterologous protection.  相似文献   

8.
The purpose of this study was to assess the immune response in pigs intradermally vaccinated with a commercially available attenuated porcine reproductive and respiratory virus (PRRSV) vaccine (Porcilis PRRS) and subsequently exposed to a heterologous (Italian cluster) field strain of virulent PRRSV. A total of 18, 4-week-old pigs seronegative for PRRSV were allocated to 1 of 3 groups (groups A, B, and C). At 5 weeks of age, pigs of groups A (n=6 pigs) and B (n=6 pigs) were vaccinated intramuscularly and intradermally, respectively, with Porcilis PRRS. The more conventional intramuscular route of vaccination was included for comparative purposes with the intradermal route of vaccination (performed with the I.D.A.L. vaccinator). Pigs of group C (n=6 pigs) were kept as nonvaccinated controls. At post-vaccination (PV) days 7, 14, 21, 28, and 35, blood samples were collected for detection of vaccine virus (PCR) and antibodies (ELISA), and for changes in PBMC (flow cytometry). At PV day 35, pigs of all groups were each exposed (challenged) intranasally to a heterologous field strain (78% ORF5 sequence homology between vaccine and field virus) belonging to the Italian cluster of the European genotype of PRRSV. At post-challenge (PC) days 0, 3, 7, 10, 13, and 17, blood samples were collected for detection and quantitation of virus and antibodies, and for changes in PBMC as described above for blood samples collected PV. Throughout the experiment all pigs were observed daily for clinical signs. At PC days 7 and 17, two pigs and four pigs, respectively, of each group were euthanized and examined for macroscopic lesions. Following vaccination some pigs of groups A and B had a detectable viremia that in two pigs (one pig of group A and one pig of group B) lasted until PV day 28. However, all pigs (groups A, B, and C) remained clinically normal. All vaccinated pigs developed a serological response (ELISA) to PRRSV. Presumptive evidence for vaccine-induced protective immunity against the heterologous challenge strain was provided by finding that viremia following challenge was generally less (incidence) and significantly less (titers) in vaccinated pigs than in nonvaccinated pigs. No differences were apparent between pigs vaccinated intramuscularly and those vaccinated intradermally. The absence of virulent-virus-induced clinical signs and macroscopic lesions in nonvaccinated as well as in vaccinated pigs precluded a more definitive evaluation of the magnitude of protective immunity provided by vaccination or by the route of vaccination. Some likely treatment-associated changes in lymphocyte subpopulations were observed among the three treatment groups. These changes and their potential relationship to protective immunity are discussed.  相似文献   

9.
10.
In the U.S., despite available swine influenza virus (SIV) vaccines, multiple influenza subtypes as well as antigenic and genetic variants within subtypes continue to circulate in the swine population. One of the challenges to control and eliminate SIV is that the currently used inactivated influenza virus vaccines do not provide adequate cross-protection against multiple antigenic variants of SIV in the field. We previously generated a recombinant H3N2 swine influenza virus (SIV) based on the influenza A/SW/TX/4199-2/98 virus (TX98) containing an NS1 gene expressing a truncated NS1 protein of 126 amino acids, TX98-NS1Delta126 virus. This recombinant strain was demonstrated to be highly attenuated in swine and showed potential for use as a modified live-virus vaccine (MLV) after intratracheal application in pigs. However, this route of inoculation is not practical for vaccination in the field. In the present study, we first compared intramuscular and intranasal routes of application of the MLV, and found that the intranasal route was superior in priming the local (mucosal) immune response. Pigs were then vaccinated via the intranasal route and challenged with wild type homologous TX98 H3N2 virus, with a genetic and antigenic variant H3N2 SIV (influenza A/SW/CO/23619/99 virus, CO99) and a heterosubtypic H1N1 SIV (influenza A/SW/IA/00239/2004 virus, IA04). The intranasally vaccinated pigs were completely protected against homologous challenge. In addition, MLV vaccination provided nearly complete protection against the antigenic H3N2 variant CO99 virus. When challenged with the H1N1 IA04 virus, MLV vaccinated animals displayed reduced fever and virus titers despite minimal reduction in lung lesions. In vaccinated pigs, there was no serologic cross-reactivity by HI assays with the heterologous or heterosubtypic viruses. However, there appeared to be substantial cross-reactivity in antibodies at the mucosal level with the CO99 virus in MLV vaccinated pigs.  相似文献   

11.
The purpose of this study was to assess clinical protection in pigs vaccinated with a commercially available attenuated porcine reproductive and respiratory syndrome virus (PRRSV) vaccine (Porcilis® PRRS) and then naturally exposed under field conditions to a heterologous (Italian cluster) strain of virulent PRRSV. A total of 30, 4-week-old pigs seronegative for PRRSV were allocated to 1 of 3 groups (IM, ID, and C groups). At 5 weeks of age, pigs of groups IM (n = 10 pigs) and ID (n = 10 pigs) were vaccinated intramuscularly and intradermally, respectively, with modified live PRRSV-1 vaccine (Porcilis® PRRS). Pigs of group C (n = 10 pigs) were kept as non-vaccinated controls. At post-vaccination (PV) days 0, 7, 14, 28, and 45, blood samples were collected for detection of vaccine virus (PCR) and antibody response (ELISA), identification of changes in lymphocyte subpopulations by cytometry, and IFN-γ PRRSV-specific secreting cells (SC) by ELISpot. At PV day 45, pigs of A, B, and C groups were moved to a site 3 conventional finishing herd with a history of respiratory disease caused by PRRSV and the most common bacteria to be exposed to a natural challenge. The PRRSV field strain, belonging to the Italian cluster of the PRRSV-1, demonstrated a 84% identity with the vaccine virus (DV strain) at ORF5 sequencing. At 0 (exposure day = 45 days PV), 4, 7, 11, 14, 19, 21, 28, and 34 days post-exposure (PE) blood samples were collected for detection and titration of PRRSV and antibody, as well as for lymphocyte and IFN-γ measurement as described above. Throughout the post-exposure period, all pigs were observed daily for clinical signs. The overall clinical signs were reduced by 68 and 72%, respectively in the intramuscularly and intradermally vaccinated pigs compared to controls. Respiratory signs were reduced by 72 and 80%, respectively in the IM and ID groups. Clinical protection was associated with marked activation of cell-mediated immune response. The highest levels of specific IFN-γ production at 21–34 days PE were concomitant and associated to changes in natural killer (NK) cells, γ/δ T, and cytotoxic T lymphocytes in the blood. In our field study, evidences of EU attenuated vaccine-induced clinical protection against natural exposure to a genetically diverse (84% homology) PRRSV-1 isolate (Italian cluster) was demonstrated by the statistically significant reduction in clinical signs in terms of incidence, duration and severity and by a more efficient cell-mediated immune response in the vaccinated pigs as compared to the unvaccinated controls.  相似文献   

12.
A Luminex (Luminex Corp., Austin, TX) multiplex swine cytokine assay was developed to measure 8 cytokines simultaneously in pig serum for use in assessment of vaccine candidates. The fluorescent microsphere immunoassay (FMIA) was tested on archived sera in a porcine reproductive and respiratory syndrome virus (PRRSV) vaccine/challenge study. This FMIA simultaneously detects innate (IL-1β, IL-8, IFN-α, TNF-α, IL-12), regulatory (IL-10), Th1 (IFN-γ) and Th2 (IL-4) cytokines. These proteins were measured to evaluate serum cytokine levels associated with vaccination strategies that provided for different levels of protective immunity against PRRSV. Pigs were vaccinated with a modified-live virus (MLV) vaccine and subsequently challenged with a non-identical PRRSV isolate (93% identity in the glycoprotein (GP5) gene). Protection (as defined by no serum viremia) was observed in the MLV vaccinated pigs after PRRSV challenge but not those vaccinated with killed virus vaccine with adjuvant (KV/ADJ) (99% identity in the GP5 gene to the challenge strain) or non-vaccinates. Significantly elevated levels of IL-12 were observed in the KV/ADJ group compared to MLV vaccinated and control groups. However, this significant increase in serum IL-12 did not correlate with protection against PRRSV viremia. Additional studies using this assay to measure the local cytokine tissue responses may help in defining a protective cytokine response and would be useful for the targeted design of efficacious vaccines, not only for PRRSV, but also for other swine pathogens.  相似文献   

13.
Porcine reproductive and respiratory syndrome (PRRS) is an economically important swine disease affecting swine worldwide. In this study, a total of 385 samples were collected from Shandong pig farms during 2013 and 2014, when pigs were not inoculated with any vaccine. Results indicated that, out of 385 samples, 47 (12.21%) were PRRSV-RNA-positive. The gene sequence analysis of 12 ORF5, 12 ORF7, and 8 Nsp2 of these samples was used to determine the molecular epidemiology of PRRSV in different parts of China’s Shandong Province. The phylogenetic tree based on these 3 genes indicated that the Chinese PRRSV strains could be divided into five subgroups and two large groups. The 8 study strains were clustered into subgroup IV, another 4 strains into subgroup I. The first 8 strains shared considerable homology with VR-2332 in ORF5 (96–97.5%), the other 4 strains shared considerable homology with JXA1 (94–98%). Phylogenetic tree of GP5 showed that the eight isolates formed a tightly novel clustered branch, subgroup V, which resembled but differed from isolate VR-2332. When examined using Nsp2 alone, the first 8 strains showed considerable homology with a U.S. vaccine strain, Ingelvac MLV (89.6–98.4%). One novel pattern of deletion was observed in Nsp2. The genetic diversity of genotype 2 PRRSV tended to vary in the field. The emergence of novel variants will probably be the next significant branch of PRRSV study.  相似文献   

14.
《Vaccine》2019,37(31):4318-4324
Modified live virus (MLV) vaccines are commonly used to reduce the impact of porcine reproductive and respiratory syndrome (PRRS) but limited efficacy is achieved in field conditions. Here, we evaluated the impact of maternally-derived neutralizing antibodies (MDNAs) on vaccine efficacy after PRRS virus (PRRSV) challenge. Piglets with low (A−) or high (A+) MDNA levels derived from a commercial pig herd were moved to experimental facilities to be vaccinated (V+) or not (V−) with a PRRSV-1 MLV vaccine at 3 weeks of age (woa). Because of unexpectedly low vaccine detection in A−V+ piglets post-vaccination (pv), all V+ piglets received a second vaccination at 4 woa. Five weeks (W5) pv, piglets were inoculated with a PRRSV-1 field strain to evaluate vaccine protection, and were mingled 24 h later with non-inoculated piglets of similar immune status to assess viral transmission. Vaccine strain was detected at W2 pv in 69% and 6% of A−V+ and A+V+ piglets, and at W5 pv in 50% and 25% of A−V+ and A+V+ piglets, respectively. At W5 pv, 94% of A−V+ and 44% of A+V+ piglets seroconverted, with a significant IFNg response induction in the A−V+ group only. After challenge, compared to the V− inoculated group, viremia was 100-fold lower at 10 days post-infection in A−V+ whereas viremia was not significantly reduced in A+V+ piglets. A lower transmission rate was estimated for the A−V+ group: 0.15 [0.07–0.29] versus 0.44 [0.18–1.76] and 0.32 [0.14–0.68] for the A+V+ and V− groups, respectively. Investigations about the low vaccine strain detection after the first vaccination suggested a relationship between IFNa levels and vaccine strain detection in A−V+ piglets. We showed that MDNAs impair vaccine efficacy against PRRSV both in inoculated and contact piglets, probably by reducing vaccine replication. IFNa may also interfere with PRRSV vaccination. These new data could help improving vaccination protocols.  相似文献   

15.
Porcine reproductive and respiratory syndrome (PRRS) is an economically important disease to pork producers worldwide. Commercially, both live and killed PRRSV vaccines are available to control PRRS, but they are not always successful. Based on the results of mucosal immunization studies in other viral models, a good mucosal vaccine may be an effective way to elicit protective immunity to control PRRS outbreaks. In the present study, mucosal adjuvanticity of Mycobacterium tuberculosis whole cell lysate (Mtb WCL) was evaluated in pigs administered a modified live PRRS virus vaccine (PRRS-MLV) intranasally. A Mtb WCL mediated increase in the frequency of NK cells, CD8+and CD4+ T cells, and γδ T cells in pig lungs were detected. Importantly, an increased and early generation of PRRSV specific neutralizing antibodies were detected in PRRS-MLV+ Mtb WCL compared to pigs inoculated with vaccine alone. In addition, there was an increased secretion of Th1 cytokines (IFNγ and IL-12) that correlated with a reciprocal reduction in the production of immunosuppressive cytokines (IL-10 and TGFβ) as well as T-regulatory cells in pigs vaccinated with PRRS-MLV+ Mtb WCL. Further, a complete rescue in arginase levels in the lungs mediated through Mtb WCL was observed in pigs inoculated with PRRS-MLV. In conclusion, Mtb WCL may be a potent mucosal adjuvant for PRRS-MLV in order to potentiate the anti-PRRSV specific immune responses to control PRRS effectively.  相似文献   

16.
《Vaccine》2017,35(5):782-788
Because porcine reproductive and respiratory syndrome virus (PRRSV) exhibits extensive genetic variation among field isolates, characterizing the extent of cross reactivity of immune responses, and most importantly cell-mediated immunity (CMI), could help in the development of broadly cross-protective vaccines. We infected 12 PRRSV-naïve pigs with PRRSV strain FL12 and determined the number of interferon (IFN)-γ secreting cells (SC) by ELISpot assay using ten type 2 and one type 1 PRRSV isolates as recall antigens. The number of IFN-γ SC was extremely variable among animals, and with exceptions, late to appear. Cross reactivity of IFN-γ SC among type 2 isolates was broad, and we found no evidence of an association between increased genetic distance among isolates and the intensity of the CMI response. Comparable to IFN-γ SC, total antibodies evaluated by indirect immunofluorescence assay (IFA) were cross reactive, however, neutralizing antibody titers could only be detected against the strain used for infection. Finally, we observed a moderate association between homologous IFN-γ SC and neutralizing antibodies.  相似文献   

17.
《Vaccine》2018,36(2):227-236
The objective of the study was to compare responses of pigs vaccinated with a PRRS MLV vaccine against PRRSV-1 or PRRSV-2 with the responses of pigs vaccinated simultaneously with both vaccines. Furthermore, the efficacy of the two PRRSV MLV vaccination strategies was assessed following challenge. The experimental design included four groups of 4-weeks old SPF-pigs. On day 0 (DPV0), groups 1–3 (N = 18 per group) were vaccinated with modified live virus vaccines (MLV) containing PRRSV-1 virus (VAC-T1), PRRSV-2 virus (VAC-T2) or both (VAC-T1T2). One group was left unvaccinated (N = 12). On DPV 62, the pigs from groups 1–4 were mingled in new groups and challenged (DPC 0) with PRRSV-1, subtype 1, PRRSV-1, subtype 2 or PRRSV-2. On DPC 13/14 all pigs were necropsied. Samples were collected after vaccination and challenge. PRRSV was detected in all vaccinated pigs and the majority of the pigs were positive until DPV 28, but few of the pigs were still viremic 62 days after vaccination. Virus was detected in nasal swabs until DPV 7–14. No overt clinical signs were observed after challenge. PRRSV-2 vaccination resulted in a clear reduction in viral load in serum after PRRSV-2 challenge, whereas there was limited effect on the viral load in serum following challenge with the PRRSV-1 strains. Vaccination against PRRSV-1 had less impact on viremia following challenge. The protective effects of simultaneous vaccination with PRRSV Type 1 and 2 MLV vaccines and single PRRS MLV vaccination were comparable. None of the vaccines decreased the viral load in the lungs at necropsy. In conclusion, simultaneous vaccination with MLV vaccines containing PRRSV-1 and PRRSV-2 elicited responses comparable to single vaccination and the commercial PRRSV vaccines protected only partially against challenge with heterologous strains. Thus, simultaneous administration of the two vaccines is an option in herds with both PRRSV types.  相似文献   

18.
《Vaccine》2018,36(48):7353-7360
The glycoprotein E2 of classical swine fever virus (CSFV) is a major immunogenic protein that induces neutralizing antibodies and protective immunity. Thus, E2 is a suitable target antigen for the development of genetically engineered CSFV vaccines. However, these vaccines cannot generate complete protective immunity in their hosts, thereby limiting the scope of applications under field conditions. IFN-γ is an immune adjuvant that has been shown to enhance antigen immune response in various experimental models. In this study, porcine IFN-γ was used to improve the immunogenicity of the CSFV E2 subunit vaccine in pigs. Pigs were immunized with E2 subunit vaccine alone or in combination with IFN-γ. Results demonstrated that porcine IFN-γ did not enhance the CSFV-specific antibody and neutralizing antibody titers compared with the E2 subunit vaccine alone. However, co-administration of the E2 and IFN-γ subunit vaccines significantly enhanced the CSFV-specific IFN-γ expression. These findings indicated that porcine IFN-γ can increase cellular immune responses to E2 protein in pigs. Furthermore, co-immunization with E2 + IFN-γ subunit vaccine and C-strain conferred complete protection against CSFV. In contrast, E2 subunit vaccines provided incomplete protection in pigs. These results indicated that using IFN-γ as an adjuvant with CSFV E2 subunit vaccines can enhance the specific protective immune response. Therefore, E2 + IFN-γ subunit vaccine is a promising marker vaccine candidate for the control and eradication of CSF.  相似文献   

19.
《Vaccine》2018,36(29):4265-4277
A vaccine against Respiratory Syncytial Virus (RSV) is a major unmet need to prevent the significant morbidity and mortality that it causes in society. In addition to efficacy, such a vaccine must not induce adverse events, as previously occurred with a formalin-inactivated vaccine (FI-RSV). In this study, the safety, immunogenicity and efficacy of a molecularly adjuvanted adenovirus serotype 5 based RSV vaccine encoding the fusion (F) protein (Ad-RSVF) is demonstrated in cotton rats. Protective immunity to RSV was induced by Ad-RSVF when administered by an oral route as well as by intranasal and intramuscular routes. Compared to FI-RSV, the Ad-RSVF vaccine induced significantly greater neutralizing antibody responses and protection against RSV infection. Significantly, oral or intranasal immunization each induced protective multi-functional effector and memory B cell responses in the respiratory tract. This study uniquely demonstrates the capacity of an orally administered adenovirus vaccine to induce protective immunity in the respiratory tract against RSV in a pre-clinical model and supports further clinical development of this oral Ad-RSVF vaccine strategy.  相似文献   

20.
Cano JP  Dee SA  Murtaugh MP  Pijoan C 《Vaccine》2007,25(22):4382-4391
The objectives of this study were to evaluate the effects of a therapeutic vaccine intervention with a modified-live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine on the dynamics of a heterologous viral infection in a population of pigs, and to determine the clinical and virological response of previously exposed and vaccinated pigs against a second virulent heterologous challenge. A population of 320 pigs were infected with a field isolate, PRRSV MN-30100, alone or followed by Ingelvac PRRS MLV vaccine administered one to three times at 30 days intervals beginning 1 week after infection. Vaccine intervention reduced the duration of viral shedding, but did not reduce the viral load in tissues or the proportion of persistently infected pigs. A different and highly virulent field isolate, MN-184, was then given as a heterologous viral challenge at 97 days after first exposure. Previously infected and vaccinated pigs showed a significant reduction in clinical signs and enhanced weight gain after the highly virulent challenge with PRRSV MN-184, but infection with and shedding of the challenge isolate were not prevented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号