首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

While animal study and cadaveric study have demonstrated an association between knee joint loading rate and joint degeneration, the relationship between knee joint loading rate during walking and osteoarthritis has not yet been sufficiently studied in humans.

Methods

Twenty-eight participants (14 transfemoral amputees and 14 age and body mass matched controls) underwent knee MRI with subsequent assessment using the semiquantitative Whole-Organ Magnetic Resonance Image Score. Each subject also underwent gait analysis in order to determine knee adduction moment loading rate, peak, and impulse and an exploratory measure, knee adduction moment rate ∗ magnitude.

Findings

Significant correlations were found between medial tibiofemoral joint degeneration and knee adduction moment peak (slope = 0.42 [SE 0.20]; P = .037), loading rate (slope = 12.3 [SE 3.2]; P = .0004), and rate ∗ magnitude (slope = 437 [SE 100]; P < .0001). These relationships continued to be significant after adjusting for body mass or subject type. The relationship between medial knee semiquantitative MRI score and knee adduction moment loading rate and rate ∗ magnitude continued to be significant even after adjusting for peak moment (P < .0001), however, the relationship between medial knee semiquantitative MRI score and peak moment was no longer significant after adjusting for either loading rate or rate ∗ magnitude (P > .2 in both cases).

Interpretation

This study suggests an independent relationship between knee adduction moment loading rate and medial tibiofemoral joint degeneration. Our results support the hypothesis that rate of loading, represented by the knee adduction moment loading rate, is strongly associated with medial tibiofemoral joint degeneration independent of knee adduction moment peak and impulse.  相似文献   

2.

Background

The progression of medial knee osteoarthritis seems closely related to a high external knee adduction moment, which could be reduced through gait retraining. We aimed to determine the retraining strategy that reduces this knee moment most effective during gait, and to determine if the same strategy is the most effective for everyone.

Methods

Thirty-seven healthy participants underwent 3D gait analysis. After normal walking was recorded, participants received verbal instructions on four gait strategies (Trunk Lean, Medial Thrust, Reduced Vertical Acceleration, Toe Out). Knee adduction moment and strategy-specific kinematics were calculated for all conditions.

Findings

The overall knee adduction moment peak was reduced by Medial Thrust (− 0.08 Nm/Bw·Ht) and Trunk Lean (− 0.07 Nm/Bw·Ht), while impulse was reduced by 0.03 Nms/Bw·Ht in both conditions. Toeing out reduced late stance peak and impulse significantly but overall peak was not affected. Reducing vertical acceleration at initial contact did not reduce the overall peak. Strategy-specific kinematics (trunk lean angle, knee adduction angle, first peak of the vertical ground reaction force, foot progression angle) showed that multiple parameters were affected by all conditions. Medial Thrust was the most effective strategy in 43% of the participants, while Trunk Lean reduced external knee adduction moment most in 49%. With similar kinematics, the reduction of the knee adduction moment peak and impulse was significantly different between these groups.

Interpretation

Although Trunk Lean and Medial Thrust reduced the external knee adduction moment overall, individual selection of gait retraining strategy seems vital to optimally reduce dynamic knee load during gait.  相似文献   

3.

Background

Knee osteoarthritis is common following arthroscopic partial meniscectomy and a higher external peak knee adduction moment is believed to be a contributor. The peak knee adduction moment has been shown to increase over 2 years (from 3-months post-arthroscopic partial meniscectomy). The aim of this study was to evaluate mechanisms underpinning the increase in peak knee adduction moment over 2 years observed in people 3-months following arthroscopic partial meniscectomy.

Methods

Sixty-six participants with medial arthroscopic partial meniscectomy were assessed at baseline and again 2 years later. Parameters were evaluated at time of peak knee adduction moment as participants walked barefoot at their self-selected normal and fast pace for both time points.

Findings

For normal pace walking, an increase in frontal plane ground reaction force-to-knee lever arm accounted for 30% of the increase in peak knee adduction moment (B = 0.806 [95% CI 0.501–1.110], P < 0.001). For fast pace walking, an increase in the frontal plane ground reaction force magnitude accounted for 21% of the increase in peak knee adduction moment (B = 2.343 [95% CI 1.219–3.468], P < 0.001); with an increase in tibia varus angle accounting for a further 15% (B = 0.310 [95% CI 0.145–0.474], P < 0.001).

Interpretation

Our data suggest that an increase in lever arm and increase in frontal plane ground reaction force magnitude are contributors to the increased knee adduction moment observed over time in people following arthroscopic partial meniscectomy.  相似文献   

4.

Background

The peak knee adduction moment is a valid proxy for medial knee joint loading. However as it only measures load at one instance of stance, knee adduction moment impulse, a measure that takes into account both the magnitude and duration of the stance phase, may provide more comprehensive information. This study directly compared the abilities of peak knee adduction moment and knee adduction moment impulse to distinguish between knee osteoarthritis severities.

Methods

169 participants with medial knee osteoarthritis completed radiographic and magnetic resonance imaging, the Western Ontario and McMaster Universities Arthritis Index to assess pain and a three-dimensional gait analysis. Participants were classified using four dichotomous classifications: Kellgren–Lawrence grading, alignment, medial tibiofemoral bone marrow lesions, and pain.

Findings

When using Kellgren–Lawrence grade and alignment classifications, the area under the receiver operator curves were significantly greater for knee adduction moment impulse than for peak knee adduction moment. Based on analysis of covariance, knee adduction moment impulse was significantly different between Kellgren–Lawrence grade and alignment groups while peak knee adduction moment was not significantly different. Both peak knee adduction moment and knee adduction moment impulse distinguished between bone marrow lesion severities while neither measure was significantly different between pain severity groups.

Interpretations

Findings suggest knee adduction moment impulse is more sensitive at distinguishing between disease severities and may provide more comprehensive information on medial knee joint loading. Future studies investigating biomechanics of knee osteoarthritis should include knee adduction moment impulse in conjunction with peak knee adduction moment.  相似文献   

5.

Background

Laterally wedged insoles are one of the gait modifications potentially slowing down progression of medial knee osteoarthritis. Clinical studies have, however, found large individual differences in the biomechanical effect and an insufficient pain reduction. To clarify if and how pain mediates mechanical changes during gait the current study investigated how acute experimental knee pain changes the mechanical effect of laterally wedged insoles in healthy subjects during walking.

Methods

3D gait analysis was carried out for twelve healthy individuals. The study followed a cross-over design and data were collected with both a neutral and a 10-degree laterally wedged insole with experimental pain induced by hypertonic and isotonic saline injections into the infrapatellar fat pad. Peak knee adduction moment was the primary outcome. A repeated ANOVA (analysis of variance) was used to evaluate the relationship between the factors wedge, condition and test number.

Findings

Wedges significantly reduced peak knee adduction moment but experimental knee pain did only marginally affect its magnitude in either condition. While frontal plane mechanics were relatively unaffected by pain, the sagittal plane knee extension moment increased with laterally wedging (P = 0.008), whereas late knee flexion moment was reduced by experimental knee pain (P = 0.04).

Interpretation

The effect of laterally wedged insoles in attenuating knee adduction moment during walking is independent of experimental knee pain. The present study provides evidence that subjects with experimental knee pain reduce knee loading by reducing extension moment, whereas lateral wedges have the opposite effect and increase the extension moment.  相似文献   

6.

Background

Stair climbing is a challenging task to the elderly being the task with the first complaint in patients with mild to moderate knee osteoarthritis. Stair climbing results in around six times more compressive load transmitted through the knee joint than walking on level ground. The purpose of this study was to assess whether lateral wedge insoles would reduce medial compartment knee loading when ascending and descending stairs in patients with medial knee osteoarthritis.

Methods

Eight patients with medial knee osteoarthritis were tested in random order with and without a pair of 5° off-the-shelf lateral wedge insoles for two separate activities (stair ascent and stair descent). Kinematic and kinetic data were collected for the lower extremity using a sixteen camera motion capture system and two force plates. Primary outcome measures were the external knee adduction moment and the knee adduction angular impulse.

Findings

During stair ascent and descent, lateral wedge insoles significantly (P < 0.05) reduced the 1st peak external knee adduction moment in early stance (ascent 6.8%, descent 8.4%), the trough in mid stance (ascent 13%, descent 10.7%), 2nd peak in the late stance (ascent 15%, descent 8.3%) and the knee adduction angular impulse compared to the control (standard shoe) with large effect sizes (0.75–0.95).

Interpretation

In this first study on stairs, lateral wedge insoles consistently reduced the overall magnitude of medial compartment loading during stair ascent and descent. Further research is needed to determine the relationship of this with clinical results when ascending and descending stairs with lateral wedge insoles.  相似文献   

7.

Background

An increase in the knee adduction moment is one of the risk factors of medial knee osteoarthritis. This study examined the relationship between knee adduction moment and self-reported pain and disability. We also investigated the influence of pain on the relationships between knee adduction moment and gait performance and disability.

Methods

Thirty-eight Japanese women with medial knee osteoarthritis participated in this study (66.37 years (41–79 years)). Gait analysis involved the measurement of the external knee adduction moment impulse in the stance duration and during 3 subdivisions of stance. The total, pain and stiffness, and physical function Japanese Knee Osteoarthritis Measure scores were determined.

Findings

The pain and stiffness, physical function, and total scores were positively correlated with the knee adduction moment impulses in the stance duration, and initial and second double support interval, and single limb support interval. The knee adduction moment impulse during the stance duration was related to the pain and stiffness subscale and gait velocity. The pain and stiffness subscale was related to the physical function subscale.

Interpretation

Our results suggest that increasing in the knee adduction moment impulse, a proxy for loading on the medial compartment of the knee, is related to increased pain during weight-bearing activities such as walking, thereby restricting walking performance and causing disability by reducing gait velocity. Thus, the reduction in the knee adduction moment impulse during gait may result in pain relief and may serve as a conservative treatment option with disease-modifying potential.  相似文献   

8.

Background

Recent work has shown that anterior cruciate ligament reconstructed patients exhibit an increased peak knee adduction moment during walking gait compared to healthy controls. An increased peak knee adduction moment has been suggested to be a potential mechanism of degeneration for knee osteoarthritis. The few studies in this area have not considered an exclusively female anterior cruciate ligament reconstructed group. This study tested the hypothesis that female anterior cruciate ligament-reconstructed patients would have higher peak knee adduction moments than controls.

Methods

Peak knee adduction moment during walking was compared between a group of anterior cruciate ligament reconstructed females and a group of female activity matched controls over ten 15 m walking trials in a laboratory at a self-selected pace.

Findings

Peak knee adduction moment was lower for the anterior cruciate ligament reconstructed group (N = 17, M = 0.31 Nm/kg·m, SD = 0.08) than for the control group (N = 17, M = 0.41 Nm/kg·m, SD = 0.12; t(32) = 2.483, p = 0.010, one-tailed, eta squared effect size = 0.16).

Interpretation

A group of female anterior cruciate ligament reconstructed subjects did not exhibit a gait characteristic which has been suggested to be associated with knee osteoarthritis development and has been shown to be present in male and mixed sex anterior cruciate ligament reconstructed populations previously.  相似文献   

9.

Background

While knee osteoarthritis has been shown to affect a multitude of kinematic, kinetic and temporo-spatial gait parameters, few investigations have examined the effect of increasing levels of radiographic osteoarthritis severity on these gait parameters. Fewer still have investigated the effect of walking speed on gait variables in persons with knee osteoarthritis. The objective of this study was to investigate the influence of walking speed on biomechanical variables associated with joint loading in persons with varying severities of medial compartment knee osteoarthritis.

Methods

Twenty-one persons with moderate osteoarthritis (Kellgren–Lawrence score 2–3) and 13 persons with severe osteoarthritis (Kellgren–Lawrence score of 4) participated. Twenty-two persons without knee pain or radiographic evidence of arthritis comprised a healthy control group. Sagittal plane kinetics, knee adduction moment, sagittal plane knee excursion, ground reaction forces and knee joint reaction forces were calculated from three-dimensional motion analysis at 1.0 m/s, self-selected and fastest tolerable walking speeds. Differences were analyzed using multivariate analysis of variance and multivariate analysis of covariance with speed as a covariate.

Findings

Persons with knee osteoarthritis showed significantly lower knee and ankle joint moments, ground reaction forces, knee reaction force and knee excursion when walking at freely chosen speeds. When differences in walking speed were accounted for in the analysis, the only difference found at all conditions was decreased knee joint excursion.

Interpretation

Compared to a healthy control group, persons with knee OA demonstrate differences in joint kinetics and kinematics. Except for knee excursion, these differences in gait parameters appear to be a result of slower freely chosen walking speeds rather than a result of disease progression.  相似文献   

10.

Background

To evaluate knee joint contact mechanics and kinematics during the loading response phase of downhill gait in knee osteoarthritis patients with self-reported instability.

Methods

Forty-three subjects, 11 with medial compartment knee osteoarthritis and self-reported instability (unstable), 7 with medial compartment knee osteoarthritis but no reports of instability (stable), and 25 without knee osteoarthritis or instability (control) underwent Dynamic Stereo X-ray analysis during a downhill gait task on a treadmill.

Findings

The medial compartment contact point excursions were longer in the unstable group compared to the stable (P = 0.046) and the control groups (P = 0.016). The peak medial compartment contact point velocity was also greater for the unstable group compared to the stable (P = 0.047) and control groups (P = 0.022). Additionally, the unstable group demonstrated a coupled movement pattern of knee extension and external rotation after heel contact which was different than the coupled motion of knee flexion and internal rotation demonstrated by stable and control groups.

Interpretation

Our findings suggest that knee joint contact mechanics and kinematics are altered during the loading response phase of downhill gait in knee osteoarthritis patients with self-reported instability. The observed longer medial compartment contact point excursions and higher velocities represent objective signs of mechanical instability that may place the arthritic knee joint at increased risk for disease progression. Further research is indicated to explore the clinical relevance of altered contact mechanics and kinematics during other common daily activities and to assess the efficacy of rehabilitation programs to improve altered joint biomechanics in knee osteoarthritis patients with self-reported instability.  相似文献   

11.

Background

Patients with a history of anterior cruciate ligament rupture are at elevated risk of developing knee osteoarthritis. Altered knee kinematics and kinetics during functional activities have been viewed as risk factors for cartilage breakdown and, therefore, one of the primary goals of anterior cruciate ligament reconstruction is to restore knee joint function.

Methods

Patients' (n = 18) knee mechanics while performing a single leg hop for distance were calculated for both legs using a soft-tissue artifact optimized rigid lower-body model at the pre-reconstruction state and six and twelve months after anterior cruciate ligament reconstruction.

Findings

Independent of the analyzed time point the involved leg showed a lower external flexion and adduction moment at the knee, and an increased anterior translation and external rotational offset of the shank with respect to the thigh compared to the uninvolved leg. There were no differences for any of the analyzed knee kinematic and kinetic parameters within the control subject group.

Interpretation

The identified kinematic changes can cause a shift in the normal load-bearing regions of the knee and may support the view that the risk of developing knee osteoarthritis in an anterior cruciate ligament ruptured joint while performing activities involving frequent landing and stopping actions is less likely to be associated with the knee adduction moment and is rather due to kinematic changes. Anterior cruciate ligament reconstruction surgery failed to restore normal knee kinematics during landing, potentially explaining the persistent risk for the development of knee osteoarthritis in patients who have returned to sports following reconstruction surgery.  相似文献   

12.

Background

It is reported that a majority of the patients with knee osteoarthritis have cartilage degeneration in medial and patellofemoral compartments. A bi-compartmental knee replacement system was designed to treat osteoarthritis at medial and patellofemoral compartments. To date, there is very little information regarding the knee mechanics during gait after bi-compartmental knee replacement. The purpose of the study was to evaluate knee strength and mechanics during level walking after knee replacement.

Methods

Ten healthy control subjects and eight patients with unilateral bi-compartmental knee replacement participated in the study. Maximal isokinetic concentric knee extension strength was evaluated. 3D kinematic and kinetic analyses were conducted for level walking. Paired Student t-test was used to determine difference between surgical and non-involved limbs. One way MANOVA was used to determine difference between surgical and control groups.

Findings

The surgical knee exhibited less peak torque and initial abduction moment than both the non-involved and control limbs (P < 0.05). The non-involved limb had less knee extension at stance and greater knee extensor moment during push-off than both the surgical and control limbs (P < 0.05). No differences were found for other typical knee mechanics among the surgical, non-involved, and control limbs during walking (P > 0.05).

Interpretations

Patients with bi-compartmental knee replacement exhibited good frontal plane knee mechanics and were able to produce the same level of knee extensor moment as healthy control limbs during walking. While showing some compensatory patterns during walking, patients with bi-compartmental knee replacement largely exhibited normal gait patterns and knee mechanics.  相似文献   

13.

Background

Hip abductor muscles generate moments of force that control lower extremity frontal plane motion. Strengthening these muscles has been a recent trend in therapeutic intervention studies for knee osteoarthritis. The current study investigated the relationship between hip abductor muscle function (strength and activation) and the net external knee adduction moment during gait in those with medial compartment knee osteoarthritis.

Methods

54 individuals with moderate knee osteoarthritis walked at their self-selected velocity while gluteus medius electromyograms, segment motions and ground reaction forces were recorded. Net external knee adduction moment (KAM) and linear enveloped electromyographic profiles were calculated. Peak KAM was determined and then principal component analyses (PCA) were applied to KAM and electromyographic profiles. Isometric hip abductor strength, anthropometrics and gait velocity were measured. Multiple regression models evaluated the relationship between walking velocity, hip abductor strength, electromyographic variables recorded during gait and KAM waveform characteristics.

Findings

Minimal peak KAM variance was explained by abductor strength (R2 = 9%, P = 0.027). PCA-based KAM waveform characteristics were not explained by abductor strength. Overall gluteus medius amplitude (PP1-scores) was related to a reduction in the bi-modal KAM (PP3-scores) pattern (R2 = 16%, P = 0.003).

Interpretation

There was no clear relationship between hip abductor muscle strength and specific amplitude and temporal KAM characteristics. Higher overall gluteus medius activation amplitude was related to a sustained KAM during mid-stance. 84 to 90% of the variance in KAM waveform characteristics was not explained by hip abductor muscle function showing hip abductor muscle function has minimal association to KAM characteristics.  相似文献   

14.

Background

The purpose of this study was to identify changes in knee kinematics, kinetics and stiffness that occur during gait due to lower limb neuromuscular fatigue.

Methods

Kinematic, kinetic and electromyographic measures of gait were collected on healthy, young women (n = 20) before and after two bouts of fatigue. After baseline gait analysis, two bouts of fatiguing contractions were completed. Fatigue was induced using sets of 50 isotonic knee extensions and flexions at 50% of the peak torque during a maximum voluntary isometric contraction. Fatigue was defined as a drop in knee extension or flexion maximum voluntary isometric torques of at least 25% from baseline. Gait analyses were completed after each bout of fatigue. Dynamic knee stiffness was calculated as the change in knee flexion moment divided by the change in knee flexion angle from 3 to 15% of the gait cycle. Co-activations of the biceps femoris and rectus femoris muscles were calculated from 3 to 15% and 40 to 52% of gait. Repeated measures analyses of variance assessed differences in discrete gait measures, knee torques, and electromyography amplitudes between baseline and after each bout of fatigue.

Findings

Fatigue decreased peak isometric torque. Fatigue did not alter knee adduction moments, knee flexion angles, dynamic knee stiffness, or muscle co-activation. Fatigue reduced the peak knee extension moment.

Interpretation

While neuromuscular fatigue of the knee musculature alters the sagittal plane knee moment in healthy, young women during walking, high intensity fatigue is not consistent with known mechanical environments implicated in knee pathologies or injuries.  相似文献   

15.

Background

In this pilot study we wanted to evaluate the kinematics of a knee implanted with an artificial polycarbonate-urethane meniscus device, designed for medial meniscus replacement. The static kinematic behavior of the implant was compared to the natural medial meniscus of the non-operated knee. A second goal was to evaluate the motion pattern, the radial displacement and the deformation of the meniscal implant.

Methods

Three patients with a polycarbonate-urethane implant were included in this prospective study. An open-MRI was used to track the location of the implant during static weight-bearing conditions, within a range of motion of 0° to 120° knee flexion. Knee kinematics were evaluated by measuring the tibiofemoral contact points and femoral roll-back. Meniscus measurements (both natural and artificial) included anterior–posterior meniscal movement, radial displacement, and meniscal height.

Findings

No difference (P > 0.05) was demonstrated in femoral roll-back and tibiofemoral contact points during knee flexion between the implanted and the non-operated knees. Meniscal measurements showed no significant difference in radial displacement and meniscal height (P > 0.05) at all flexion angles, in both the implanted and non-operated knees. A significant difference (P ≤ 0.05) in anterior–posterior movement during flexion was observed between the two groups.

Interpretation

In this pilot study, the artificial polycarbonate-urethane implant, indicated for medial meniscus replacement, had no influence on femoral roll-back and tibiofemoral contact points, thus suggesting that the joint maintains its static kinematic properties after implantation. Radial displacement and meniscal height were not different, but anterior–posterior movement was slightly different between the implant and the normal meniscus.  相似文献   

16.

Background

Gonarthrosis is a degenerative disease mainly found in elderly persons. Frontal plane deviations are known to induce lateral and medial gonarthrosis. Nevertheless, patients suffer from gonarthrosis without frontal deviations. Lower limb torsions disorders have been considered as a factor inducing lateral and medial gonarthrosis. This paper reports an in vitro study aiming at quantifying the relationships between experimental femoral torsion disorders and femoro-tibial kinematics.

Methods

Five fresh-frozen lower limbs were used. Specimens were fixed on an experimental jig and muscles were loaded. A six-degree-of-freedom Instrumented Spatial Linkage was used to measure femoro-tibial kinematics. Experimental femoral osteotomies were performed to simulate various degrees of medial and lateral torsion. Internal tibial rotation, abduction/adduction and proximo-distal, medio-lateral and antero-posterior translations were measured during knee flexion.

Findings

Internal tibial rotation and abduction/adduction were significantly influenced (P < 0.001) by femoral torsion disorder conditions. Medial femoral torsion increased tibial adduction and decreased internal rotation during knee flexion. Opposite changes were observed during lateral femoral torsion. Concerning translations, medial femoral torsion induced a significant (P < 0.05) decrease of medial translation and inversely for lateral femoral torsion. No interactions between femoral torsion disorders and range of motion were observed.

Interpretation

Our results showed that medial and lateral femoral torsion disorders induced alterations of femoro-tibial kinematics when applied in normally aligned lower limbs. These results highlight a potential clinical relevance of the effect of femoral torsion alterations on knee kinematics that may be related to the development of long-term knee disease.  相似文献   

17.
18.

Background

Osteoarthritis affects the whole body, thus biomechanical effects on other joints should be considered. Unloading knee braces could be effective for knee osteoarthritis, but their effects on the contralateral knee and bilateral hip joints remain unknown. This study investigated the effects of bracing on the kinematics and kinetics of involved and contralateral joints during gait.

Methods

Nineteen patients with medial compartment knee osteoarthritis were analysed. Kinematics and kinetics of the knee and hip joints in frontal and sagittal planes were measured during walking without and with bracing on the more symptomatic knee.

Findings

The ipsilateral hip in the braced condition showed a lower adduction angle by an average of 2.58° (range, 1.05°–4.16°) during 1%–49% of the stance phase, and a lower abduction moment at the second peak during the stance phase than the hip in the unbraced condition (P < 0.05 and P < 0.005, respectively). With bracing, the contralateral hip showed a more marked peak extension moment and lower abduction moment at the first peak (P < 0.05), and the contralateral knee adduction angle increased by an average of 0.32° (range, 0.21°–0.45°) during 46%–55% of the stance phase (P < 0.05), compared to no bracing.

Interpretation

Unloading bracing modified the contralateral knee adduction angle pattern at a specific time point during gait. It also affected the frontal plane on the ipsilateral hip and the frontal and sagittal planes on the contralateral hip joint. Consideration should be provided to other joints when treating knee osteoarthritis.  相似文献   

19.

Background

Many patellofemoral complications such as anterior knee pain, subluxation, fracture, wear, and aseptic loosening after total knee arthroplasty are attributed to malrotation of the femoral component. Rotating-platform mobile bearings can reduce malrotation between the tibial and femoral components and may also improve patellofemoral maltracking.

Methods

A computer model (LifeMOD/KneeSIM) of a weight-bearing deep knee bend was validated using cadaver knees tested in an Oxford-type knee rig. Changes in knee kinematics and patellofemoral forces were measured after femoral component malrotation of ± 3°. The effect of a rotating–bearing on these kinematics and forces was determined.

Findings

In a fixed-bearing arthroplasty femoral component internal malrotation increased tibiofemoral internal rotation by 3.4°, and external malrotation increased tibiofemoral external rotation by 4°. Femoral component malrotation affected patellofemoral lateral shift by up to 2.5 mm, and patellofemoral lateral shear by up to 19 N. When the malrotated femoral component was tested against a rotating–bearing the change in tibiofemoral rotation and patellofemoral lateral shift was less than 1° and 1 mm respectively. The rotating–bearing reduced peak lateral shear by 7 N and peak medial shear by 17 N. Increasing the conformity of the rotating–bearing reduced changes in tibiofemoral rotation due to femoral malrotation and increased the net rotation of the bearing (by approximately 5°) during flexion.

Interpretation

Our results are consistent with one randomized clinical outcome study and emphasize the value of computational modeling for preclinical design evaluation. It is important to continue to improve existing methodologies for accurate femoral component alignment especially in rotation.  相似文献   

20.

Background

We hypothesised that high intensity progressive resistance training would improve lower limb dynamic alignment and function (lower knee adduction moment, increased muscle strength, and fewer knee osteoarthritis symptoms).

Methods

Women (n = 54) with osteoarthritis in at least one knee were randomised into a 6-month resistance training or a sham-exercise program. The primary outcomes were dynamic shank and knee adduction angles and knee adduction moment of the most symptomatic knee measured with quantitative gait analysis. Secondary outcomes were muscle strength, gait speed, and osteoarthritis symptoms.

Findings

Dynamic alignment and knee adduction moment did not change over time or between groups. Muscle strength improved in both groups over time, but significantly more in the resistance training group (P = 0.002). By contrast, gait velocity and pain improved over time (P ≤ 0.009) in both groups. Improvements in shank adduction angle were related to improvements in self-reported disability (r = 0.381, P = 0.015), but not to changes in muscle strength, gait velocity, or pain (all P > 0.05).

Interpretations

Although muscle strength improved significantly more in the PRT group, the hypothesised reduction in knee adduction moment, shank and knee adduction angles were not evident after either exercise modality. However, improvements in disability and shank adduction angle were significantly directly related. Initial alignment should be used to stratify this population into separate groups when designing future trials and alternative modes of training investigated to potentially enhance beneficial alterations in knee alignment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号