首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hollow fiber bioreactors (HFBRs) have been widely described as capable of supporting the production of highly concentrated monoclonal antibodies and recombinant proteins. Only recently HFBRs have been proposed as new single-use platforms for production of high-titer influenza A virus. These bioreactors contain multiple hollow fiber capillary tubes that separate the bioreactor in an intra- and an extra-capillary space. Cells are usually cultured in the extra-capillary space and can grow to a very high cell concentration. This work describes the evaluation of the single-use hollow fiber bioreactor PRIMER HF® (Biovest International Inc., USA) for production of influenza A virus. The process was setup, characterized and optimized by running a total of 15 cultivations. The HFBRs were seeded with either adherent or suspension MDCK cells, and infected with influenza virus A/PR/8/34 (H1N1), and the pandemic strain A/Mexico/4108/2009 (H1N1). High HA titers and TCID50 of up to 3.87 log10 (HA units/100 μL) and 1.8 × 1010 virions/mL, respectively, were obtained for A/PR/8/34 influenza strain. Influenza virus was collected by performing multiple harvests of the extra-capillary space during a virus production time of up to 12 days. Cell-specific virus yields between 2,000 and 8,000 virions/cell were estimated for adherent MDCK cells, and between 11,000 and 19,000 virions/cell for suspension MDCK.SUS2 cells. These results do not only coincide with the cell-specific virus yields obtained with cultivations in stirred tank bioreactors and other high cell density systems, but also demonstrate that HFBRs are promising and competitive single-use platforms that can be considered for commercial production of influenza virus.  相似文献   

2.
An adherently growing MDCK cell line was adapted in a two-step process in a fully defined medium and in suspension. The resulting MDCK.SUS2 cells were subsequently evaluated for their potential as host cells for influenza vaccine production in two lab-scale bioreactors (wave and stirred-tank). Cell concentrations up to 2.3 × 106 cells/mL were obtained after 96 h, which is slightly higher than cell concentrations obtained with adherent MDCK cells cultivated on microcarriers (2 g/L). Infections with influenza A/PR/8/34 and B/Malaysia resulted in high virus titers (2.90 and 2.75 log HA units/100 μL, respectively). The monitoring of extracellular metabolites, including amino acids, revealed a change in some of the metabolite consumption or release profiles, which indicates changes in metabolism during the adaptation process. Overall, the MDCK.SUS2 cell line represents a new cell substrate for a robust influenza vaccine production in a fully defined process.  相似文献   

3.
Cell culture-based influenza vaccine manufacturing is of growing importance. Depending on virus strains, differences in infection dynamics, virus-induced apoptosis, cell lysis and virus yields are observed. Comparatively little is known concerning details of virus–host cell interaction on a cellular level and virus spreading in a population of cells in bioreactors. In this study, the infection of MDCK cells with different influenza A virus strains in lab-scale microcarrier culture was investigated by flow cytometry. Together with the infection status of cells, virus-induced apoptosis was monitored. A mathematical model has been formulated to describe changes in the concentration of uninfected and infected adherent cells, dynamics of virus particle release (infectious virions, hemagglutinin content), and the time course of the percentage composition of the cell population.  相似文献   

4.
《Vaccine》2019,37(47):7003-7010
Control and prevention of rapid influenza spread among humans depend on the availability of efficient and safe seasonal and pandemic vaccines, made primarily from inactivated influenza virus particles. Current influenza virus production processes rely heavily on embryonated chicken eggs or on cell culture as substrate for virus propagation. Today’s efforts towards process intensification in animal cell culture could innovate viral vaccine manufacturing using high-yield suspension cells in high cell density perfusion processes. In this work, we present a MDCK cell line adapted to grow as single cell suspension with a doubling time of less than 20 h, achieving cell concentrations over 1 × 107 cells/mL in batch mode. Influenza A virus titer obtained in batch infections were 3.6 log10(HAU/100 µL) for total- and 109 virions/mL for infectious virus particles (TCID50), respectively. In semi-perfusion mode concentrations up to 6 × 107 cells/mL, accumulated virus titer of 4.5 log10(HAU/100 µL) and infectious titer of almost 1010 virions/mL (TCID50) were possible. This exceeds results reported previously for cell culture-based influenza virus propagation by far and suggests perfusion cultures as the preferred method in viral vaccine manufacturing.  相似文献   

5.
Porcine circovirus-1 (PCV1) was recently identified as a contaminant in live Rotavirus vaccines, which was likely caused by contaminated porcine trypsin. The event triggered the development of new regulatory guidance on the use of porcine trypsin which shall ensure that cell lines and porcine trypsin in use are free from PCV1. In addition, manufacturing processes of biologicals other than live vaccines include virus clearance steps that may prevent and mitigate any potential virus contamination of product. In this work, artificial spiking of down-scaled models for the manufacturing process of an inactivated pandemic influenza virus vaccine were used to investigate inactivation of PCV1 and the physico-chemically related porcine parvovirus (PPV) by formalin and ultraviolet-C (UV-C) treatment as well as removal by the purification step sucrose gradient ultracentrifugation. A PCV1 infectivity assay, using a real-time PCR infectivity readout was established. The formalin treatment (0.05% for 48 h) showed substantial inactivation for both PCV1 and PPV with reduction factors of 3.0 log10 and 6.8 log10, respectively, whereas UV-C treatment resulted in complete PPV (≥5.9 log10) inactivation already at a dose of 13 mJ/cm but merely 1.7 log10 at 24 mJ/cm2 for PCV1. The UV-C inactivation results with PPV were confirmed using minute virus of mice (MVM), indicating that parvoviruses are far more sensitive to UV-C than PCV1. The sucrose density gradient ultracentrifugation also contributed to PCV1 clearance with a reduction factor of 2 log10. The low pH treatment during the production of procine trypsin was investigated and showed effective inactivation for both PCV1 (4.5 log10) and PPV (6.4 log10). In conclusion, PCV1 in general appears to be more resistant to virus inactivation than PPV. Still, the inactivated pandemic influenza vaccine manufacturing process provides for robust virus reduction, in addition to the already implemented testing for PCV1 to avoid any contaminations.  相似文献   

6.
Few suspension cells can be used for vaccine manufacturing today as they either do not meet requirements from health regulatory authorities or do not produce high virus titres. Two new avian designer cell lines (AGE1.CR and AGE1.CR.pIX) that have been adapted to grow in suspension in serum-free medium were evaluated for their potential as host cells for influenza and modified vaccinia Ankara (MVA, wild type) vaccine production. Their metabolism was studied during growth in static (T-flasks) and dynamic cultivation systems (roller bottles, stirred tank reactor, wave bioreactor). High cell concentrations up to 5.8 × 106 cells/mL were obtained with doubling times of 23 h for AGE1.CR and 35 h for AGE1.CR.pIX, respectively. Both viruses were produced to high titres (3.5 log HA/100 μL for influenza virus, 3.2 × 108 pfu/mL for MVA). Hence, the CR cell lines are an appropriate substrate for pharmaceutical influenza and MVA production.  相似文献   

7.
《Vaccine》2019,37(47):7019-7028
Seasonal and pandemic influenza respiratory infections are still a major public health issue. Vaccination is the most efficient way to prevent influenza infection. One option to produce influenza vaccines is cell-culture based virus propagation. Different host cell lines, such as MDCK, Vero, AGE1.CR or PER.C6 cells have been shown to be a good substrate for influenza virus production. With respect to the ease of scale-up, suspension cells should be preferred over adherent cells. Ideally, they should replicate different influenza virus strains with high cell-specific yields. Evaluation of new cell lines and further development of processes is of considerable interest, as this increases the number of options regarding the design of manufacturing processes, flexibility of vaccine production and efficiency.Here, PBG.PK2.1, a new mammalian cell line that was developed by ProBioGen AG (Germany) for virus production is presented. The cells derived from immortal porcine kidney cells were previously adapted to growth in suspension in a chemically-defined medium. Influenza virus production was improved after virus adaptation to PBG.PK2.1 cells and optimization of infection conditions, namely multiplicity of infection and trypsin concentration. Hemagglutinin titers up to 3.24 log10(HA units/100 µL) were obtained in fed-batch mode in bioreactors (700 mL working volume). Evaluation of virus propagation in high cell density culture using a hollow-fiber based system (ATF2) demonstrated promising performance: Cell concentrations of up to 50 × 106 cells/mL with viabilities exceeding 95%, and a maximum HA titer of 3.93 log10(HA units/100 µL). Analysis of glycosylation of the viral HA antigen expressed showed clear differences compared to HA produced in MDCK or Vero cell lines. With an average cell-specific productivity of 5000 virions/cell, we believe that PBG.PK2.1 cells are a very promising candidate to be considered for next-generation influenza virus vaccine production.  相似文献   

8.
Introduction: In March 2010, more than 213 countries worldwide reported laboratory confirmed cases of influenza H1N1 infections with at least 16,813 deaths. In some countries, roughly 10 to 30% of the hospitalized patients were admitted to the ICU and up to 70% of those required mechanical ventilation. The question now arises whether breathing system filters can prevent virus particles from an infected patient from entering the breathing system and passing through the ventilator into the ambient air.We tested the filters routinely used in our institution for their removal efficacy and efficiency for the influenza virus A H1N1 (A/PR/8/34).Methods: Laboratory investigation of three filters (PALL Ultipor® 25, Ultipor® 100 and Pall BB50T Breathing Circuit Filter, manufactured by Pall Life Sciences) using a monodispersed aerosol of human influenza A (H1N1) virus in an air stream model with virus particles quantified as cytopathic effects in cultured canine kidney cells (MDCK). Results: The initial viral load of 7.74±0.27 log10 was reduced to a viral load of ≤2.43 log10, behind the filter. This represents a viral filtration efficiency of ≥99.9995%. Conclusion: The three tested filters retained the virus input, indicating that their use in the breathing systems of intubated and mechanically ventilated patients can reduce the risk of spreading the virus to the breathing system and the ambient air.  相似文献   

9.
Cell culture processes offer an attractive alternative to conventional chicken egg-based influenza vaccine production methods. However, most protocols still rely on the use of adherent cells, which makes process scale-up a challenging issue. In this study, it is demonstrated that the HEK-293 human cell line is able to efficiently replicate influenza virus. Production in serum-free suspension of HEK-293 cultures resulted in high titers of infectious influenza viruses for different subtypes and variants including A/H1, A/H3 and B strains. After virus adaptation and optimization of infection conditions, production in 3-L bioreactor resulted in titers of up to 109 IVP/mL demonstrating the scale-up potential of the process.  相似文献   

10.
We discovered a unique, single amino acid mutation in the influenza B M1 protein promoting viral growth of NS1 truncation mutants in Vero cells. Due to this mutation, we were able to generate an influenza B virus lacking the complete NS1 open reading frame (ΔNS1-B virus) by reverse genetics, which was growing to titers of 8 log10 TCID50/ml in a Vero cell culture-based micro-carrier fermenter. The ΔNS1-B vaccine candidate was attenuated in IFN-competent hosts such as human alveolar epithelial cells (A549) similar to influenza A ΔNS1 viruses. In ferrets, the ΔNS1-B virus was replication-deficient and did not provoke any clinical symptoms. Importantly, a single intranasal immunization of ferrets at a dose as low as 6 log10 TCID50/animal induced a significant HAI response and provided protection against challenge with wild-type influenza B virus. So far, the lack of a ΔNS1-B virus component growing to high titers in cell culture has been limiting the possibility to formulate a trivalent vaccine based on deletion of the NS1 gene. Our study closes this gap and paves the way for the clinical evaluation of a seasonal, trivalent, live replication-deficient ΔNS1 intranasal influenza vaccine.  相似文献   

11.
Isken B  Genzel Y  Reichl U 《Vaccine》2012,30(35):5253-5261
In cell culture-based influenza vaccine production significant efforts are directed towards virus seed optimization for maximum yields. Typically, high growth reassortants (HGR) containing backbones of six gene segments of e.g. influenza A/PR/8, are generated from wild type strains. Often, however, HA and TCID50 titres obtained do not meet expectations and further optimization measures are required.  相似文献   

12.
Efficient vaccine production requires the growth of large quantities of virus produced with high yield from a safe host system. Human influenza vaccines are produced in embryonated chicken eggs. However, over the last decade many efforts have allowed the establishment of cell culture-derived vaccines.We generated a Vero cell line adapted to grow in suspension (sVero) in a serum-free medium and evaluated it for its potential as host cell for influenza vaccine production. Initially we studied the capacity of sVero cells to grow in the presence of incremental concentrations of trypsin. In comparison with adherent Vero cells (aVero), we found that sVero cells maintain their growth kinetics even with a three-fold increase in trypsin concentration.The influence of the conditions of infection on the yield of H1N1 produced in serum-free suspension cultures of sVero cells was investigated by a 22 full factorial experiment with center point. Each experiment tested the influence of the multiplicity of infection (m.o.i.) and trypsin concentration, on production yields at two levels, in four possible combinations of levels and conditions, plus a further combination in which each condition was set in the middle of its extreme levels.On the basis of software analysis, a combination of m.o.i. of 0.0066 TCID50%/cell and trypsin concentration of 5 μg/1.0 × 106 cells with a desirability of 0.737 was selected as the optimized condition for H1N1 production in sVero cells.Our results show the importance of proper selection of infection conditions for H1N1 production on sVero cells in serum-free medium.  相似文献   

13.
Knowledge of the relation between the antigen content of inactivated avian influenza (AI) vaccines, the serological response after vaccination and protection of vaccinated animals is important for the choice of optimal vaccines and vaccination regimes as well as for the assessment of criteria for the licensing of new AI-vaccines. We studied this relation in a dose response study using inactivated H7N7 avian influenza vaccines with varying antigen content. The serological response depended on the antigen content of the vaccines. Anti-AI antibodies were detected most frequently with ELISA, followed by the virus neutralisation test and the haemagglutination inhibition (HI) assay. Chickens with measurable HI-antibody titers, using homologous H7N7 antigen, were all protected against clinical disease after challenge with highly pathogenic A/chicken/Netherlands/621557/03 H7N7 virus. However, in these chickens high levels of virus could still be present on days 2–4 after challenge. The reduction of virus titers after challenge, depended on the antigen content of the vaccines as well as on the serum antibody titers. While 10 haemagglutinating units (HAU), equivalent to 0.8 μg haemagglutinin (HA) protein, per vaccine dose was sufficient for prevention of clinical disease, 128 HAU (9 μg HA) per dose was required for reduction of virus titers in all chickens to 103 egg-infectious dose 50% (EID50) or less. In order to reduce virus titers below 103 EID50 per swab a HI-antibody titer of 64 was required. After use of the vaccine with the highest antigen content, challenge still induced a booster of antibody titers which is indicative of replication of challenge virus.  相似文献   

14.
《Vaccine》2015,33(35):4269-4280
Adaptation of continuous cell lines to growth in suspension in a chemically defined medium has significant advantages for design and optimization in manufacturing of biologicals. In this work, changes in the protein expression level during a step-wise adaptation of an adherent Madin Darby canine kidney (MDCK) cell line to suspension growth were analyzed. Therefore, three cell line adaptations were performed independently. Two adaptations were monitored closely to characterize short term changes in protein expression levels after serum deprivation. In addition, initial stages of suspension growth were analyzed for both adaptations. The third adaptation involved MDCK suspension cells (MDCKSUS2) grown over an extended time period to achieve robust growth characteristics. Here, cells of the final stage of adaptation were compared with their parental cell line (MDCKADH). A combination of two dimensional differential gel electrophoresis for relative protein quantification and tandem mass spectrometry for protein identification enabled insights into cellular physiology. The two closely monitored cell line adaptations followed different routes regarding specific changes in protein expression but resulted in similar proteome profiles at the initial stages of suspension growth analyzed. Compared to the MDCKADH cells more than 90% of all changes in the protein expression level were identified after serum deprivation and were related to cytoskeletal structure, genetic information processing and cellular metabolism. Myosin proteins, involved in cellular detachment by actin-myosin contractile mechanisms were also differentially expressed. Interestingly, for both of the two adaptations, proteins linked for tumorigenicity, like lactoylglutathione lyase and sulfotransferase 1A1 were differentially expressed. In contrast, none of these proteins were differentially expressed for the MDCKSUS2 cell line. Overall, proteomic monitoring allowed identification of key proteins involved in adaptation from adherent to suspension growth. In addition, identified proteins related to tumorigenicity may represent markers to support cell clone selection at early stages of industrial cell line development.  相似文献   

15.
《Vaccine》2020,38(52):8379-8386
Cell culture based live attenuated influenza vaccines (LAIV) as an alternative to egg-based LAIV have been explored because of lack of easy access to SPF eggs for large scale production. In this study, feasibility of MDCK platform was assessed by including multiple LAIV strains covering both type A (H1 and H3) and type B seasonal strains as well as the candidate pandemic potential strains like A/H5 and A/H7 for the growth in MDCK cells. A risk assessment study was conducted on the cell banks to evaluate safety concerns related to tumorigenicity with a regulatory perspective. Tumorigenic potential of the MDCK cells was evaluated in nude mice (107cells/mouse) model system. The 50% tumor producing dose (TPD50) of MDCK cells was studied in SCID mice to determine the amount of cells required for induction of tumors. Further, we conducted an oncogenicity study in three sensitive rodent species as per the requirements specified in the WHO guidelines.We determined TPD50 value of 1.9 X 104 cells/mice through subcutaneous route. Our results suggest that, the intranasal route of administration of the cell culture based LAIV pose minimal to no risk of tumorigenicity associated with the host cells. Also, non-oncogenic nature of MDCK cells was demonstrated. Host cell DNA in the vaccine formulations was < 10 ng/dose which ensures vaccine safety. Production efficiency and consistency were characterized and the observed titer values of the viral harvest and the processed bulk were comparable to the expansion in embryonated eggs.The present study clearly establishes the suitability of MDCK cells as a substrate for the manufacture of a safe and viable LAIV.  相似文献   

16.
《Vaccine》2019,37(47):7011-7018
Driven by the concept of plug-and-play cell culture-based viral vaccine production using disposable bioreactors, we evaluated an orbital shaken bioreactor (OSB) for human influenza A virus production at high cell concentration. Therefore, the OSB model SB10-X was coupled to two hollow fiber-based perfusion systems, namely, tangential flow filtration (TFF) and alternating tangential flow filtration (ATF). The AGE1.CR.pIX avian suspension cells grew to 50 × 106 cells/mL in chemically defined medium, maintaining high cell viabilities with an average specific growth rate of 0.020 h−1 (doubling time = 32 h). Maximum virus titers in the range of 3.28–3.73 log10(HA units/100 µL) were achieved, corresponding to cell-specific virus yields of 1000–3500 virions/cell and productivities of 0.5–2.2 × 1012 virions/L/d. This clearly demonstrates the potential of OSB operation in perfusion mode, as results achieved in a reference OSB batch cultivation were 2.64 log10(HA units/100 µL), 1286 virions/cell and 1.4 × 1012 virions/L/d, respectively. In summary, the SB10-X bioreactor can be operated with ATF and TFF systems, which is to our knowledge the first report regarding OSB operation in perfusion mode. Moreover, the results showed that the system is a promising cultivation system for influenza A virus vaccine production. The OSB disposable bioreactor has the potential for simplifying the scale-up from shake flasks to the large-scale bioreactor, facilitating rapid responses in the event of epidemics or pandemics.  相似文献   

17.
Outbreaks of highly pathogenic avian influenza viruses (HPAIVs) would cause disasters worldwide. Various strategies against HPAIVs are required to control damage. It is thought that the use of non-pathogenic avian influenza viruses as live vaccines will be effective in an emergency, even though there might be some adverse effects, because small amounts of live vaccines will confer immunity to protect against HPAIV infection. Therefore, live vaccines have the advantage of being able to be distributed worldwide soon after an outbreak. In the present study, we found that intranasal administration of a live H5N1 subtype non-pathogenic virus induced antibody and cytotoxic T lymphocyte responses and protected mice against H5N1 HPAIV infection. In addition, it was found that a small amount (100 PFU) of the live vaccine was as effective as 100 μg (approximately 1010–11 PFU of virus particles) of the inactivated whole particle vaccine in mice. Consequently, the use of live virus vaccines might be one strategy for preventing pandemics of HPAIVs in an emergency.  相似文献   

18.

Background

A candidate recombinant, live-attenuated, CYD tetravalent dengue vaccine (CYD-TDV) has recently demonstrated immunogenicity, efficacy and good tolerability. This study was performed to evaluate three CYD-TDV formulations in adults.

Methods

This was a randomized, double-blind, multicenter, phase II trial. The vaccine formulations were: CYD-TDV 5555 (≈5 log10 tissue culture infectious dose 50% [TCID50] of serotypes 1–4); CYD-TDV 5553 (≈5 log10 TCID50 of serotypes 1–3 and ≈3 log10 TCID50 of serotype 4); and CYD-TDV 4444 (≈4 log10 TCID50 of serotypes 1–4). Vaccinations were administered at 0, 6 and 12 months. Immunogenicity was assessed using the plaque reduction neutralization test.

Results

In total, 260 individuals were enrolled. The 5555 formulation elicited a superior serotype 4 response versus the 5553 formulation, with seropositivity rates of 89.7% and 58.3%, respectively, after the second dose (between-group difference 31.4%; 95% confidence interval 18.2–43.2). After each of the three doses, seropositivity rates for serotypes 1–3 were numerically highest with CYD-TDV 5553 and lowest with the 4444 formulation; seropositivity rates for serotype 4 were similar with the 5555 and 4444 formulations, and much lower among recipients of CYD-TDV 5553. Geometric mean titers followed the same pattern as that seen with seropositivity rates. Safety/reactogenicity results were similar for all three vaccine formulations, although the percentage of participants reporting solicited injection site reactions was lower with CYD-TDV 4444 than with the other two formulations. All serious adverse events were unrelated to vaccination.

Conclusions

Reducing the dose of serotype 4 antigen (5553 formulation) creates an imbalance in the immune response to CYD-TDV. Immune responses to CYD-TDV 5555 were slightly higher than to the 4444 formulation. Development of CYD-TDV 5555 has subsequently been pursued.  相似文献   

19.
To develop a cell-based live attenuated influenza vaccine (LAIV) manufacturing process, several different cell lines were evaluated by comparing the titer of viruses after infection with LAIV strains. While several cell lines have been reported to support influenza virus replication, the degree of replication and the ability to support replication of LAIV strains have not been systematically examined. MDCK cells, which have been considered as potential substrates for influenza vaccine production were evaluated in addition to Vero, MRC-5, WI-38 and FRhL cells. MRC-5, WI-38 and FRhL cells produced low to moderate titers of virus with titers equal or below 5.0 log10 TCID50/mL. Both Vero and MDCK cells could support a higher level of virus replication for certain strains, however, Vero cells only produced high titers when grown in the presence of serum. MDCK cells supported high levels of vaccine virus production for multiple different LAIV subtypes in both serum containing and serum-free media. These results suggest that MDCK cell-based production can be used as an alternative production platform to the currently used egg-based LAIV production system.  相似文献   

20.
《Vaccine》2020,38(26):4209-4218
In the 2013–2014 and 2015–2016 influenza seasons, live attenuated influenza vaccine (LAIV) generated reduced vaccine effectiveness (VE) against circulating H1N1 strains. This reduced VE coincided with the introduction of pandemic 2009 H1N1 (A/H1N1pdm09) vaccine virus reassortants, in place of pre-2009 seasonal H1N1 strains. Here, we explored one specific hypothesis for reduced VE; decreased replicative fitness of A/H1N1pdm09 strains in humans. Two A/H1N1pdm09 strains with reduced VE, A/California/07/2009 (A/CA09) and A/Bolivia/559/2013 (A/BOL13), were compared to pre-2009 seasonal H1N1 strains, A/New Caledonia/20/1999 (A/NC99) and A/South Dakota/6/2007 (A/SD07). Initial results showed that A/H1N1pdm09 strains had reduced multi-cycle infectivity in Madin-Darby Canine Kidney (MDCK) cells, compared to their pre-2009 counterparts. The A/BOL13 viral titre was found to be 2.65 log10/mL lower when measured by multi-cycle 50% tissue culture infectious dose (TCID50) assay compared to single-cycle fluorescent focus assay (FFA). By contrast, clinically effective A/NC99 titres differed by only 0.54 log10/mL. In human alveolar (A549) cells, A/H1N1pdm09 strains replicated less than pre-2009 strains, with A/CA09 and A/BOL13 generating lower peak viral titres over 5 days. This phenotype was corroborated in physiologically relevant, primary human nasal epithelial cells (hNECs). Here, peak titres for pre-2009 strains A/NC99 and A/SD07 were 8.43 log10 TCID50/mL and 8.52 log10 TCID50/mL, respectively, versus 6.89 log10 TCID50/mL and 6.06 log10 TCID50/mL for A/H1N1pdm09 strains A/CA09 and A/BOL13. This confirmed a reduced ability of A/H1N1pdm09 strains to sustain replication in human respiratory cells. Using this information, H1N1 candidate A/Slovenia/2903/2015 (A/SLOV15) was characterised for replacement of A/BOL13 in the 2017/18 LAIV. A/SLOV15 produced comparable single and multi-cycle infectivity titres (Δ 0.16 log10/mL) and reached a peak titre 1.23 log10 TCID50/mL higher than that of A/BOL13 in hNEC cultures. Taken together, these data suggest a reduction in sustained multi-cycle replication in human cells as a plausible root cause for reduced A/H1N1pdm09 VE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号