首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
目的 对两个有血缘关系的常染色体显性非综合性耳聋家系进行基因定位及突变分析,确定其致病基因.方法 通过家系调查和临床检查,鉴定了两个有血缘关系的常染色体显性非综合性耳聋大家系.并对已知位点及基因进行连锁分析,对致病基因在染色体上进行定位.PCR扩增候选基因MYH14基因的所有外显子和外显子-内含子交界区,直接测序法进行突变检测.结果 将这两个家系的致病基因定位于DFNA4位点,最大连锁值为4.94.具有统计学意义.突变检测发现MYH14基因的杂合突变c.359T>C(p.S120L),DNA直接测序确证两家系的所有患者均携带该突变,而家系中正常人则均不携带该突变.结论 第1次在中国非综合性耳聋家系中发现MYH14基因的突变,表明MYH14基因突变也是导致中国人非综合性耳聋的原因.  相似文献   

2.
We ascertained a large North American family, LMG2, segregating progressive, non-syndromic, sensorineural hearing loss. A genome-wide scan identified significant evidence for linkage (maximum logarithm of the odds (LOD) score = 4.67 at θ  = 0 for D4S398) to markers in a 5.7-cM interval on chromosome 4q12-13.1. The DFNA27 interval spans 8.85 Mb and includes at least 61 predicted and 8 known genes. We sequenced eight genes and excluded them as candidates for the DFNA27 gene.  相似文献   

3.
目的对一个中国视神经萎缩1(optic atrophy 1,0PA1)家系进行临床和基因分析。方法对家系进行连锁分析,通过测序和限制性片段长度多态鉴定致病基因突变。结果在家系患者中均发现OPA1基因的一个错义突变1202(G→A),即G401D,而且患者呈现出视神经萎缩以及听力受损的综合征症状。结论在中国OPA1患者中鉴定了OPA1基因突变,并支持OPA1基因突变可导致伴随有听力受损的视神经萎缩。  相似文献   

4.
Mutations in GJB2, encoding connexin 26 (Cx26), cause both autosomal dominant and autosomal recessive nonsyndromic hearing loss (ARNSHL) at the DFNA3 and DFNB1 loci, respectively. Most of the over 100 described GJB2 mutations cause ARNSHL. Only a minority has been associated with autosomal dominant hearing loss. In this study, we present two families with autosomal dominant nonsyndromic hearing loss caused by a novel mutation in GJB2 (p.Asp46Asn). Both families were ascertained from the same village in northern Iran consistent with a founder effect. This finding implicates the D46N missense mutation in Cx26 as a common cause of deafness in this part of Iran mandating mutation screening of GJB2 for D46N in all persons with hearing loss who originate from this geographic region.  相似文献   

5.
The prevalence of DFNA8/DFNA12 (DFNA8/12), a type of autosomal dominant nonsyndromic hearing loss (ADNSHL), is unknown as comprehensive population-based genetic screening has not been conducted. We therefore completed unbiased screening for TECTA mutations in a Spanish cohort of 372 probands from ADNSHL families. Three additional families (Spanish, Belgian, and English) known to be linked to DFNA8/12 were also included in the screening. In an additional cohort of 835 American ADNSHL families, we preselected 73 probands for TECTA screening based on audiometric data. In aggregate, we identified 23 TECTA mutations in this process. Remarkably, 20 of these mutations are novel, more than doubling the number of reported TECTA ADNSHL mutations from 13 to 33. Mutations lie in all domains of the α-tectorin protein, including those for the first time identified in the entactin domain, as well as the vWFD1, vWFD2, and vWFD3 repeats, and the D1-D2 and TIL2 connectors. Although the majority are private mutations, four of them-p.Cys1036Tyr, p.Cys1837Gly, p.Thr1866Met, and p.Arg1890Cys-were observed in more than one unrelated family. For two of these mutations founder effects were also confirmed. Our data validate previously observed genotype-phenotype correlations in DFNA8/12 and introduce new correlations. Specifically, mutations in the N-terminal region of α-tectorin (entactin domain, vWFD1, and vWFD2) lead to mid-frequency NSHL, a phenotype previously associated only with mutations in the ZP domain. Collectively, our results indicate that DFNA8/12 hearing loss is a frequent type of ADNSHL.  相似文献   

6.
Nonsyndromic hearing loss (NSHL), a common sensory disorder, is characterized by high clinical and genetic heterogeneity (i.e., approximately 115 genes and 170 loci so far identified). Nevertheless, almost half of patients submitted for genetic testing fail to receive a conclusive molecular diagnosis. We used next‐generation sequencing to identify causal variants in PLS1 (c.805G>A, p.[E269K]; c.713G>T, p.[L238R], and c.383T>C, p.[F128S]) in three unrelated families of European ancestry with autosomal dominant NSHL. PLS1 encodes Plastin 1 (also called fimbrin), one of the most abundant actin‐bundling proteins of the stereocilia. In silico protein modeling suggests that all variants destabilize the structure of the actin‐binding domain 1, likely reducing the protein's ability to bind F actin. The role of PLS1 gene in hearing function is further supported by the recent demonstration that Pls1?/? mice show a hearing loss phenotype similar to that of our patients. In summary, we report PLS1 as a novel gene for autosomal dominant NSHL, suggesting that this gene is required for normal hearing in humans and mice.  相似文献   

7.
8.
Autosomal recessive nonsyndromic sensorineural hearing loss (ARNSHL) in Ashkenazi Jews, is mainly caused by mutations in the GJB2 and GJB6 genes. Here we describe a novel homozygous mutation of the LOXHD1 gene resulting in a premature stop codon (R1572X) in nine patients of Ashkenazi Jewish origin who had severe-profound congenital non-progressive ARNSHL and benefited from cochlear implants. Upon screening for the mutation among 719 anonymous Ashkenazi-Jews we detected four carriers, indicating a carrier rate of 1:180 Ashkenazi Jews. This is the second reported mutation in the LOXHD1 gene, and its homozygous presence in two of 39 Ashkenazi Jewish families with congenital ARNSHL suggest that it could account for some 5% of the familial cases in this community.  相似文献   

9.
10.

Background

Non‐syndromic hearing loss is among the most genetically heterogeneous traits known in humans. To date, at least 50 loci for autosomal dominant non‐syndromic sensorineural hearing loss (ADNSSHL) have been identified by linkage analysis.

Objective

To report the mapping of a novel autosomal dominant deafness locus on the long arm of chromosome 14 at 14q11.2‐q12, DFNA53, in a large multigenerational Chinese family with post‐lingual, high frequency hearing loss that progresses to involve all frequencies.

Results

A maximum multipoint LOD score of 5.4 was obtained for marker D14S1280. The analysis of recombinant haplotypes mapped DFNA53 to a 9.6 cM region interval between markers D14S581 and D14S1021. Four deafness loci (DFNA9, DFNA23, DFNB5, and DFNB35) have previously been mapped to the long arm of chromosome 14. The critical region for DFNA53 contains the gene for DFNA9 but does not overlap with the regions for DFNB5, DFNA23, or DFNB35. Screening of the COCH gene (DFNA9), BOCT, EFS, and HSPC156 within the DFNA53 interval did not identify the cause for deafness in this family.

Conclusions

Identifying the DFNA53 locus is the first step in isolating the gene responsible for hearing loss in this large multigeneration Chinese family.  相似文献   

11.
In about 20% of non‐syndromic hearing loss (NSHL) cases, inheritance is autosomal dominant (ADNSHL). DIAPH1 mutations define the ADNSHL locus DFNA1. We identified two new families with heterozygous truncating DIAPH1 mutations (p.Ala1210Serfs*31 and p.Arg1213*). In contrast to the extensively studied original DFNA1 family, hearing loss was not confined to low frequencies, but congenital manifestation and rapid progression were confirmed. In line with a recent unrelated study, we identified an association with thrombocytopenia, reclassifying DFNA1 as a syndrome. Consequently, we suggest to include the blood count into the initial clinical workup of patients with autosomal dominant hearing loss to guide the genetic diagnosis. We provide the first data on DIAPH1 expression in the organ of Corti, where it localizes to the inner pillar cells, at the base of the outer hair cells. Homozygous truncating DIAPH1 mutations located N‐terminally to the DFNA1 mutations have recently been identified in autosomal recessive microcephaly. It is therefore noteworthy that we found DIAPH1 expression also in spiral ganglion neurons and in the barrier between the myelinating glia of the peripheral nervous system and oligodendrocytes that form the myelinating glia of the central nervous system (CNS).  相似文献   

12.
Dominant mutations in the GJB2 gene encoding connexin 26 (Cx26) can cause non-syndromic hearing impairment alone or in association with palmoplantar keratoderma (PPK). We have identified the novel G224A (R75Q) mutation in the GJB2 gene in a four-generation family from Turkey with autosomal dominant inherited hearing impairment and PPK. The age of onset and progression of hearing loss were found to be variable among affected family members, but all of them had more severe impairment at higher hearing frequencies. Interestingly, the novel R75Q mutation affects the same amino acid residue as described recently in a small family (R75W) with profound prelingual hearing loss and PPK. However, the R75W mutation was also observed in a control individual without PPK and unknown hearing status. Therefore, the nature of the R75W mutation remains ambiguous. Our molecular findings provide further evidence for the importance of the conserved R75 in Cx26 for the physiological function of the inner ear and the epidermal cells of the skin.  相似文献   

13.
Sixteen Japanese nonsyndromic autosomal dominant sensorineural hearing loss (ADSNHL) families were investigated clinically as well as genetically. Most families showed postlingual hearing loss. Although the severity of their hearing loss varied, most patients showed mild-moderate sensorineural hearing loss of a progressive nature. Mutation analysis was performed for the MYO7A, KCNQ4, and GJB3 genes, which are known to be responsible for autosomal dominant sensorineural hearing loss. The present study reports that a mutation in KCNQ4, a member of a large family of potassium channel genes, was responsible for ADSNHL in one Japanese family. Received: January 16, 2001 / Accepted: March 15, 2001  相似文献   

14.
Mutations in the GJB2 gene encoding connexin26 (CX26) account for up to 50% of cases of autosomal recessive hearing loss. In contrast, only one GJB2 mutation has been reported to date in an autosomal dominant form of isolated prelingual hearing loss. We report here a novel heterozygous 605G→T mutation in GJB2 in all affected members of a large family with late childhood onset of autosomal dominant isolated hearing loss. The resulting C202F substitution, which lies in the fourth (M4) transmembrane domain of CX26, may impair connexin oligomerisation. Finally, our study suggests that GJB2 should be screened for heterozygous mutations in patients with autosomal dominant isolated hearing impairment, whatever the severity of the disease.


Keywords: C202F mutation; connexin26 gene (GJB2); autosomal dominant hearing loss  相似文献   

15.
Using Affymetrix 10K arrays, we searched for regions of homozygosity in 51 Turkish families including at least three members with either congenital or prelingual autosomal recessive non-syndromic sensorineural hearing loss (ARNSSNHL), and identified four families whose deafness mapped to the DFNB6 locus on 3p21 containing the TMIE gene. Mutation analysis revealed the p.R84W mutation in all four families. Screening of this mutation in 254 families with ARNSSNHL, without GJB2 mutations, revealed four additional affected families. A novel mutation was found in a non-complementary marriage between a deaf couple who were homozygous for p.R84W and p.W57X, respectively with two affected children who were compound heterozygotes. Six of the TMIE families originated from southeastern Anatolia, making p.R84W a common cause of hearing loss in that region with a relative frequency of 10.3% (95% CI is 2.5–18.1%). The overall prevalence of the p.R84W mutation in ARNSSNHL in Turkey is 2.4% (95% CI is 0.7–4.0%). Genotyping of single-nucleotide polymorphisms flanking the TMIE gene revealed a conserved haplotype, suggesting a single origin for p.R84W from a common ancestor 1250 years ago (95% CI is 650–2500 years). We conclude that p.R84W could be a common mutation in other Middle Eastern populations and should be included in mutation screening offered to individuals with ARNSSNHL.  相似文献   

16.
Hereditary deafness is a genetically heterogeneous phenotype for which more than 100 genomic loci have been identified thus far. By analysis of a consanguineous Palestinian family, GPSM2 was recently discovered to be the cause of autosomal recessive non-syndromic hearing loss DFNB82. Here, we report a second truncating mutation, GPSM2 p.Q562X, identified via autozygosity mapping in a consanguineous Turkish family. This report provides evidence for allelic heterogeneity of GPSM2 and confirms its causative role for non-syndromic deafness.  相似文献   

17.
Matsunaga T, Mutai H, Kunishima S, Namba K, Morimoto N, Shinjo Y, Arimoto Y, Kataoka Y, Shintani T, Morita N, Sugiuchi T, Masuda S, Nakano A, Taiji H, Kaga K. A prevalent founder mutation and genotype–phenotype correlations of OTOF in Japanese patients with auditory neuropathy. Auditory neuropathy is a hearing disorder characterized by normal outer hair cell function and abnormal neural conduction of the auditory pathway. Aetiology and clinical presentation of congenital or early‐onset auditory neuropathy are heterogeneous, and their correlations are not well understood. Genetic backgrounds and associated phenotypes of congenital or early‐onset auditory neuropathy were investigated by systematically screening a cohort of 23 patients from unrelated Japanese families. Of the 23 patients, 13 (56.5%) had biallelic mutations in OTOF, whereas little or no association was detected with GJB2 or PJVK, respectively. Nine different mutations of OTOF were detected, and seven of them were novel. p.R1939Q, which was previously reported in one family in the United States, was found in 13 of the 23 patients (56.5%), and a founder effect was determined for this mutation. p.R1939Q homozygotes and compound heterozygotes of p.R1939Q and truncating mutations or a putative splice site mutation presented with stable, and severe‐to‐profound hearing loss with a flat or gently sloping audiogram, whereas patients who had non‐truncating mutations except for p.R1939Q presented with moderate hearing loss with a steeply sloping, gently sloping or flat audiogram, or temperature‐sensitive auditory neuropathy. These results support the clinical significance of comprehensive mutation screening for auditory neuropathy.  相似文献   

18.
Hearing loss is the most common sensory disorder, affecting 1 in 650 newborns. Linkage analysis revealed linkage to locus DFNA22 in two Belgian families 1 and 2 with autosomal dominant sensorineural hearing loss. As MYO6 has previously been reported as responsible for the hearing loss at loci DFNA22 and DFNB37, respectively, DNA sequencing of the coding region and the promoter of MYO6 was performed but this analysis did not reveal any mutations. However, only in patients of family 2, an insertion of 108 bp was identified in the mRNA of the gene. The inserted fragment was part of intron 23 and sequencing of this intron revealed a new splice-site mutation c.IVS23+2321T>G, segregating with the hearing loss in the family. The mutation causes a frameshift and a premature termination codon, but real-time PCR revealed that only 15-20% of the mRNA is degraded by nonsense-mediated decay, while the other part may give rise to an aberrant protein. In family 1, a quantitative real-time PCR experiment revealed a 1.5-1.8-fold overexpression of MYO6 in patients compared to controls. The possible presence of a gene duplication could be excluded by real-time PCR on genomic level. Most likely, the overexpression is caused by a mutation in an unidentified regulatory region of the gene. This study indicates that the inner ear hair cells are sensitive to changes in expression levels of MYO6.  相似文献   

19.
20.
Auditory reception relies on the perception of mechanical stimuli by stereocilia and its conversion to electrochemical signal. Mechanosensory stereocilia are abundant in actin, which provides them with structural conformity necessary for perception of auditory stimuli. Out of three major classes of actin-bundling proteins, plastin 1 encoded by PLS1, is highly expressed in stereocilia and is necessary for their regular maintenance. A missense PLS1 variant associated with autosomal dominant hearing loss (HL) in a small family has recently been reported. Here, we present another PLS1 missense variant, c.805G > A (p.E269K), in a Turkish family with autosomal dominant non-syndromic HL confirming the causative role of PLS1 mutations in HL. We propose that HL due to the p.E269K variant is from the loss of a stable PLS1-ACTB interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号