首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increased levels of interleukin (IL)-10 have been described as a negative prognostic indicator for survival in patients with various types of cancer. IL-10 exerts tolerogenic and immunosuppressive effects on dendritic cells, which are crucial for the induction of an antitumor immune response. Blood dendritic cell antigen (BDCA)-2 and BDCA-4 are specifically expressed by CD123(bright) CD11c- plasmacytoid dendritic cells; whereas BDCA-1 and BDCA-3 define 2 distinct subsets of CD11c+ myeloid dendritic cells. In this study, the T-helper cell (Th)1/Th2 cytokine serum profile of 65 hepatocellular carcinoma patients was assessed. We found that serum levels of IL-10 were substantially increased in hepatocellular carcinoma patients as compared with controls. Peripheral blood mononuclear cells from healthy volunteers were exposed to recombinant human (rh)IL-10 in vitro to additionally characterize its impact on distinct blood dendritic cell subsets. A dramatic decrease of all myeloid dendritic cell (MDC) and plasmacytoid dendritic cell (PDC) subsets was detectable after 24 hours of continuous rhIL-10 exposure. Moreover, the expression of HLA-DR, CD80 and CD86, was significantly reduced on rhIL-10-treated dendritic cell subsets. Direct ex vivo flow cytometric analysis of various dendritic cell subpopulations in peripheral blood from hepatocellular carcinoma patients revealed an immature phenotype and a substantial reduction of circulating dendritic cells that was associated with increased IL-10 concentrations in serum and with tumor progression. These findings confirm a predominantly immunosuppressive role of IL-10 for circulating dendritic cells in patients with hepatocellular carcinoma and, thus, may indicate novel aspects of tumor immune evasion.  相似文献   

2.
During cancer development, a number of regulatory cell subsets and immunosuppressive cytokines subvert adaptive immune responses. Although it has been shown that tumor-derived interleukin (IL)-18 participates in the PD-1-dependent tumor progression in NK cell-controlled cancers, the mechanistic cues underlying this immunosuppression remain unknown. Here, we show that IL-18 converts a subset of Kit(-) (CD11b(-)) into Kit(+) natural killer (NK) cells, which accumulate in all lymphoid organs of tumor bearers and mediate immunoablative functions. Kit(+) NK cells overexpressed B7-H1/PD-L1, a ligand for PD-1. The adoptive transfer of Kit(+) NK cells promoted tumor growth in two pulmonary metastases tumor models and significantly reduced the dendritic and NK cell pools residing in lymphoid organs in a B7-H1-dependent manner. Neutralization of IL-18 by RNA interference in tumors or systemically by IL-18-binding protein dramatically reduced the accumulation of Kit(+)CD11b(-) NK cells in tumor bearers. Together, our findings show that IL-18 produced by tumor cells elicits Kit(+)CD11b(-) NK cells endowed with B7-H1-dependent immunoablative functions in mice.  相似文献   

3.
4.
PURPOSE: High-dose recombinant human interleukin-2 (IL-2) therapy is of clinical benefit in a subset of patients with advanced melanoma and renal cell cancer. Although IL-2 is well known as a T-cell growth factor, its potential in vivo effects on human immunoregulatory cell subsets are largely unexplored. EXPERIMENTAL DESIGN: Here, we studied the effects of high-dose IL-2 therapy on circulating dendritic cell subsets (DC), CD1d-reactive invariant natural killer T cells (iNKT), and CD4(+)CD25(+) regulatory-type T cells. RESULTS: The frequency of both circulating myeloid DC1 and plasmacytoid DC decreased during high-dose IL-2 treatment. Of these, only a significant fraction of myeloid DC expressed CD1d. Although the proportion of Th1-type CD4(-) iNKT increased, similarly to DC subsets, the total frequency of iNKT decreased during high-dose IL-2 treatment. In contrast, the frequency of CD4(+)CD25(+) T cells, including CD4(+)Foxp3(+) T cells, which have been reported to suppress antitumor immune responses, increased during high-dose IL-2 therapy. However, there was little, if any, change of expression of GITR, CD30, or CTLA-4 on CD4(+)CD25(+) T cells in response to IL-2. Functionally, patient CD25(+) T cells at their peak level (immediately after the first cycle of high-dose IL-2) were less suppressive than healthy donor CD25(+) T cells and mostly failed to Th2 polarize iNKT. CONCLUSIONS: Our data show that there are reciprocal quantitative and qualitative alterations of immunoregulatory cell subsets with opposing functions during treatment with high-dose IL-2, some of which may compromise the establishment of effective antitumor immune responses.  相似文献   

5.
Circulating human CD4(+)CD25(high)Foxp3(+) T cell populations (Treg) may contain activated CD4(+)CD25(+) T cells interfering with Treg evaluation. To gain insights into the phenotypic and functional characteristics of Treg in patients with cancer, we have analyzed CD4(+)CD25(high) populations at the clonal level. Single-cell sorted (SCS) CD4(+)CD25(high) T cells obtained from PBMC of normal controls (NC) or patients with squamous cell carcinoma of the head and neck (HNSCC) were plated at 1 cell/well in 96 well plates and expanded with anti-CD3/anti-CD28 Abs and 1,000 IU IL-2/mL in the presence or absence of rapamycin (1 nM). All generated clones were evaluated for the phenotype by flow cyometry and suppressor function in CFSE-based proliferation assays. Clones had heterogeneous CD25 expression levels. Cloning efficiency of CD4(+)CD25(high) T cells was low. CD25(high) clones expressed CTLA-4, Foxp3, CD62L, but little GITR and suppressed proliferation of autologous CD4(+)CD25(-) responder cells. Clones of activated CD4(+)CD25(interm./low) cells expressed intermediate to high levels of GITR and HLA-DR and did not suppress proliferation of responder cells. The number, suppressor phenotype and function of CD25(high) Treg clones were significantly enhanced in HNSCC patients relative to NC (p 相似文献   

6.
7.
The present review has summarized the expression, production and effects of the human interleukins (IL) 1-11 and myelopoietic colony stimulating factors (CSF) in the established myeloid leukemia cell lines and in cells from patients with acute myeloid leukemia as well as the oncogene expression reported in these myeloid leukemia cell lines. The genetic dissection of leukemic myelopoiesis may provide new perspectives for the control of myeloid leukemias. Based on their expression of phenotypic markers (e.g., surface antigens, cytochemical staining, etc.), myeloid cell lines can be further subdivided into myelogenous, monocytic, erythroid and megakaryoblastic leukemia cell lines. Due to the close relationship of erythroid and megakaryoblastic progenitor cells and to the existence of a probably common precursor cell giving rise to these two different cell lineages, many megakaryoblastic cell lines express erythroid markers (e.g., expression of hemoglobin or glycophorin A) and conversely cell lines with a predominant erythroid profile might display megakaryoblastic features (e.g., platelets peroxidase or glycoproteins CD41, CD42b or CD61). The recent cloning of the specific cytokine: thrombopoietin (TPO) and its receptor generated a strong interest in these particular myeloid cell lines that are discussed in more detail in the present review. Both normal and leukemic megakaryocytopoiesis are stimulated by granulocyte-macrophage colony stimulating factor (GM-CSF), IL-3, GM-CSF/IL-3 fusion protein, IL-6, IL-11 and TPO but inhibited by IL-4, interferon-alpha (IFN-alpha) and IFN-gamma. Human megakaryoblastic leukemia cell lines have common biological features: high expression of the megakaryocytic specific antigen (CD41); high expression of early myeloid antigens (CD34, CD33 and CD13); constitutive expression of IL-6 and platelet-derived growth factor; a complex karyotype picture; expression of c-kit (the stem cell factor receptor); growth-dependency or-stimulation by IL-3 and/or GM-CSF; and in vivo tumorigenicity in mice associated with marked fibrosis. Whereas numerous chemical and biologic agents induce granulocytic and/or monocytic differentiation of myeloid leukemia cell lines, only a few agents including phorbol myristate acetate, vitamin D3, IFN-alpha, IL-6 and thrombin have been reported to induce megakaryocytic differentiation in the megakaryoblastic leukemia cells.  相似文献   

8.
Interleukin (IL)-6 plays pleiotropic roles in human hematopoiesis and immune responses by acting on not only the IL-6 receptor-alpha subunit (IL-6Ralpha)(+) but also IL-6Ralpha(-) hematopoietic progenitors via soluble IL-6R. The Notch ligand Delta-1 has been identified as an important modulator of the differentiation and proliferation of human hematopoietic progenitors. Here, it was investigated whether these actions of IL-6 are influenced by Delta-1. When CD34(+)CD38(-) hematopoietic progenitors were cultured with stem cell factor, flt3 ligand, thrombopoietin and IL-3, Delta-1, in combination with the IL-6R/IL-6 fusion protein FP6, increased the generation of glycophorin A(+) erythroid cells but counteracted the effects of IL-6 and FP6 on the generation of CD14(+) monocytic and CD15(+) granulocytic cells. Although freshly isolated CD34(+)CD38(-) cells expressed no or only low levels of IL-6Ralpha, its expression was increased in myeloid progenitors after culture but remained negative in erythroid progenitors. It was found that Delta-1 acted in synergy with FP6 to enhance the generation of erythroid cells from the IL-6Ralpha(-) erythroid progenitors. In contrast, Delta-1 antagonized the effects of IL-6 and FP6 on the development of monocytic and granulocytic cells, as well as CD14(-)CD1a(+) dendritic cells, from the IL-6Ralpha(+) myeloid progenitors. These results indicate that Delta-1 interacts differentially with gp130 activation in IL-6Ralpha(-) erythroid and IL-6Ralpha(+) myeloid progenitors. The present data suggest a divergent interaction between Delta-1 and gp130 activation in human hematopoiesis.  相似文献   

9.
肺癌细胞和蛙皮素抑制树突状细胞的产生和功能   总被引:2,自引:0,他引:2  
韩宝惠  范小红  钟华  董强刚 《肿瘤》2003,23(2):115-118
目的:了解肺癌细胞株及蛙皮素对树突状细胞(DC)产生及功能的影响。方法:树突状细胞由健康人外周血单个核细胞CD14^ ,在完全细胞培养液中加入1000U/ml GM-CSF和1000U/ml IL-4,培养7天获得,肺癌细胞株CRL-5815,CRL-5826,Bombesin和Bombesin受体拮抗剂加入培养液中,Annxin V检测DC凋亡;流式细胞仪检测CD40,CD86,CD83,CD80,HLA-DR阳性表达。结果:培养7-10天后的DC前体细胞表达高水平的HLA-DR CD80 CD86 CD83 CD40。肺癌及蛙皮素可导致DC前体细胞凋亡,而蛙皮素受体拮抗剂可部分保护蛙皮素致DC凋亡的作用。加入肺癌细胞株或蛙皮素与DC共培养时明显抑制上述细胞表型的表达和DC刺激同种异体T细胞的增殖能力,当加入蛙皮素受体拮抗剂时,DC细胞表达HLA-DR CD80 CD86 CD83 CD40明显增加,接近DC正常对照组。结论:肺癌细胞株及蛙皮素可导致DC的凋亡,抑制树突状细胞的产生和功能。  相似文献   

10.
The present study aimed to investigate the efficacy of a myeloid dendritic cell (mDCs) and plasmacytoid (p)DC combined vaccine loaded with heat-treated cancer cell lysates against lung cancer cells. The mDCs and pDCs were selected using magnetic bead sorting. Antigen loading was performed by adding heat-treated Lewis lung cancer cell lysates to mDC, pDC or mDC+pDC (1:1). Surface expression of CD80, CD86, CD40 and major histocompatibility complex (MHC)-II molecules were determined using flow cytometry, and the secretion of cytokines IL-12, IL-6 and TNF-α were assessed using ELISA assays. The effect of the mDC and pDC vaccine on cytotoxic T lymphocytes (CTLs) against tumor cells was investigated. Tumor-bearing nude mice were intravenously injected with the mDC and pDC combined vaccine. Tumor tissues were collected for hematoxylin and eosin and TUNEL staining. Loading with tumor cell lysate significantly upregulated the surface expression of costimulatory molecules MHC-II on DCs and enhanced secretions of IL-6, IL-12 and TNF-α by DCs. In addition, the tumor cell lysate-loaded mDC and pDC combined vaccine significantly promoted lymphocyte proliferation and enhanced CTL-mediated cytotoxicity against Lewis lung cancer cells compared with mDC or pDC treatment alone. Furthermore, intravenous injection of the mDC and pDC combined vaccine into tumor-bearing nude mice significantly inhibited subcutaneous tumor growth and induced necrosis and apoptosis within the tumor tissue. Overall, the pDC and mDC combination vaccine loaded with heat-treated Lewis lung cancer cell lysate had a synergistic effect on the induction of T lymphocyte proliferation and antitumor efficacy, which may be associated with the upregulation of co-stimulatory molecules and cytokine secretions.  相似文献   

11.
Tumor-associated factors are related to increased accumulation of CD11b(+) Gr1(+) myeloid-derived suppressor cells (MDSCs). However, the exact mechanism of how genetic factors control the expansion of MDSCs in tumor-bearing hosts remains elusive. Herein, we found that tumor-associated MDSCs and their subsets, mononuclear MDSCs and polymorphonuclear MDSCs, have decreased expression of miR-223 when compared to CD11b(+) Gr1(+) cells from the spleen of disease-free mice. With the differentiation of CD11b(+) Gr1(+) MDSCs from bone marrow cells (BMCs) upon exposure to tumor-associated factors, the expression of both pri-miR-223 and mature miR-223 was downregulated, indicating that the expression of miR-223 could be regulated by tumor-associated factors. Interestingly, miR-223 remarkably inhibits differentiation of BMCs into CD11b(+) Gr1(+) MDSCs in the presence of tumor-associated factors by targeting myocyte enhancer factor 2C (MEF2C). Using reconstituted s.c. tumor models, miR-223 also suppresses accumulation of CD11b(+) Gr1(+) MDSCs, whereas its targeting molecule MEF2C increases the number of MDSCs. Tumor growth is slower in mice infused by miR223-engineered BMCs than in mice infused with control transfected BMCs. As miR-223 and its target molecule MEF2C are highly conserved between mice and humans, the modulation of miR-223 in tumor-induced CD11b(+) Gr1(+) MDSCs may exert an important role in controlling the increased accumulation of CD11b(+) Gr1(+) MDSCs in patients with tumor.  相似文献   

12.
Regulatory T cells (Treg) mediate amelioration of disease and immune homeostasis by inhibiting immune activation and maintaining peripheral immune tolerance. The suppressive mechanisms and clinical significance of Treg have not been completely elucidated in patients with acute myeloid leukemia (AML). Here, we demonstrated that CD127 in combination with CD4 and CD25 can identify FoxP3(+) Treg in peripheral blood (PB) and bone marrow (BM) using multicolor flow cytometry. We showed that the CD4(+) CD25(+) CD127(lo) Treg frequencies were significantly increased and their phenotypes were different in PB from newly diagnosed AML patients compared to those from healthy volunteers (HVs). Moreover, the Treg frequencies were significantly higher in BM than those from PB in the same patients. The Treg frequencies were reduced when patients achieved complete remission (CR) and were increased when patients relapsed. The Treg frequencies at diagnosis in PB and BM of patients who had achieved CR were lower than those of patients who had persistent leukemia or died, respectively. CD4(+) CD25(+) Treg were isolated by magnetic-activated cell sorting and tested for suppressive functions in coculture with allogeneic carboxyfluorescein diacetate succinimidylester-labeled CD4(+) CD25(-) responder cells. Suppression mediated by Treg was higher in AML patients compared to HVs. No significant differences were observed in the cytokines production of Treg, including interferon-gamma (IFN-γ), interleukin (IL)-4,IL-2 and IL-10, between patients with AML and HVs. Our study suggests that Treg may play a role in the pathogenesis of AML, and sequential measurements of Treg frequency may have clinical value in the evaluation of therapeutic effects and clinical outcome.  相似文献   

13.
The anti-tumor activity of human peripheral blood mononuclear cells (PBMC) against various tumor cell line cells (K562, Daudi, KMG-2, and KATOIII) was enhanced by coculture with irradiated BALL-1, but not with other irradiated B cell line cells (NALM-1, Namalwa, and Daudi). PBMC cocultured with BALL-1, however, failed to exhibit evident cytotoxicity against autologous concanavalin A-induced lymphoblasts. The enhancement of the anti-tumor activity seemed not to be correlated with EBNA and HLA-DR expression on B cell line cells. Monoclonal antibodies (mAbs) against interleukin (IL)-2, interferon-γ, IL-12, IL-15, tumor necrosis factor-α and lymphotoxin showed little or no suppression of the anti-tumor activity of PBMC treated with irradiated BALL-1. Furthermore, the culture supernatants of BALL-1 failed to enhance the anti-tumor activity of PBMC, suggesting no involvement of soluble factors in the induction of the anti-tumor activity. The anti-tumor activity of PBMC treated with BALL-1 was synergistically enhanced by an additional IL-2 stimulation. Periodate-lysine-paraformaldehyde-fixed, but not ethanol- or acetone-fixed, BALL-1 could significantly enhance the anti-tumor activity. Furthermore, BALL-1-derived membrane fraction, but not that of Daudi, enhances the anti-tumor activity. It was thus suggested that some membrane glycoproteins on the cell surface of BALL-1 play a crucial role in the induction of the anti-tumor activity. By analysis using mAbs against human leukocytes, we found that depletion of CD11b, CD16, and CD56-positive cells resulted in decreased anti-tumor activity, suggesting that the main effector cells in the BALL-1-induced anti-tumor activity were natural killer (NK) cells. The present results thus raise the possibility that BALL-1, probably via membrane glycoproteins, modulates NK cell-mediated anti-tumor activity.  相似文献   

14.

Objective

To clarify the composition of wound fluid (WF) and investigate the impact of WF on breast cancer cell lines.

Methods

The proliferation and migration of WF-treated breast cancer cells MDA-MB-231 and MCF-7 were assessed with colony formation test, MTT cell proliferation test and scratch wound test. The quantitative profiles of WF were analyzed using Bio-Plex Pro kits.

Results

The proliferation and migration of WF-treated breast cancer cells were significantly higher than that of untreated cells. Fifteen cytokines, 29 chemokines and 9 matrix metalloproteinases (MMPs) were assessed in WF. The concentrations of these factors were influenced by post-surgery days, neoadjuvant chemotherapy (NAC), TNM stage, pathological type and molecular subtype. The WF harvested from patients underwent NAC showed significant higher profiles of interleukin-1β (IL-1β), IL-4, IL-6, IL-17F, IL-21, IL-23, IL-25, IL-31, Interferon γ (IFNγ), CD40 ligand (CD40L), tumor necrosis factor α (TNFα), CXCL1, CXCL2, CXCL5, CCL3, CCL7 and CCL20.

Conclusions

Surgery-induced WF promotes the proliferation and migration of breast cancer cells. The composition of WF is influenced by various clinical features and provides potential therapeutic targets to control local recurrence and tumor progression.  相似文献   

15.
Rheumatoid arthritis is a multisystem disease with underlying immune mechanisms. Osteoarthritis is a debilitating, progressive disease of diarthrodial joints associated with the aging process. Although much is known about the pathogenesis of rheumatoid arthritis and osteoarthritis, our understanding of some immunologic changes remains incomplete. This study tries to examine the numeric changes in the T cell subsets and the alterations in the levels of some cytokines and adhesion molecules in these lesions. To accomplish this goal, peripheral blood and synovial fluid samples were obtained from 24 patients with rheumatoid arthritis, 15 patients with osteoarthritis and six healthy controls. The counts of CD4 (+) and CD8 (+) T lymphocytes were examined using flow cytometry. The levels of some cytokines (TNF-alpha, IL1-beta, IL-10, and IL-17) and a soluble intercellular adhesion molecule-1 (sICAM-1) were measured in the sera and synovial fluids using enzyme linked immunosorbant assay. We found some variations in the counts of T cell subsets, the levels of cytokines and sICAM-1 adhesion molecule between the healthy controls and the patients with arthritis. High levels of IL-1beta, IL-10, IL-17 and TNF-alpha (in the serum and synovial fluid) were observed in arthritis compared to the healthy controls. In rheumatoid arthritis, a high serum level of sICAM-1 was found compared to its level in the synovial fluid. A high CD4(+)/CD8(+) T cell ratio was found in the blood of the patients with rheumatoid arthritis. In rheumatoid arthritis, the cytokine levels correlated positively with some clinicopathologic features. To conclude, the development of rheumatoid arthritis and osteoarthritis is associated with alteration of the levels of some cytokines. The assessment of these immunologic changes may have potential prognostic roles.  相似文献   

16.
Chronic inflammation is an important underlying condition for ovarian tumor development, growth and progression. Since chemokine networks are activated by inflammation, patterns of chemokine gene expression were investigated in ovarian cancer cells. Chemokine specific microarrays were performed after mouse (ID8) and human (SKOV-3) ovarian surface epithelial cancer cells were exposed to the inflammatory agent bacterial endotoxin lipopolysaccharide (LPS, 10 microg/ml) and pro-inflammatory cytokines interleukin-1beta (IL-1, 10 ng/ml) and tumor necrosis factor-alpha (TNF, 10 ng/ml). In the mouse ID8 cells, LPS, IL-1 and TNF led to robust upregulation of keratinocyte chemoattractant (KC) chemokines CXCL1/2, mouse homologues of human growth-regulated oncogenes (GRO). Other chemokines, interferong inducible protein (IP)-10 (CXCL10), CCL7 and CCL20 were moderately upregulated. ID8 cells constitutively expressed CXCL16 and CCL2, but only CCL2 expression was enhanced by LPS, IL-1 and TNF. In the human SKOV-3 cells, LPS had no effect on chemokines expression due to the absence of the LPS receptor, toll-like receptor 4 (TLR4). However, IL-1 and TNF induced GROalpha/beta (CXCL1/2) in human SKOV-3 cells in a similar manner as observed with mouse ID8 cells. In SKOV-3 cells, IL-8 (CXCL8) was highly expressed and other chemokines GROgamma (CXCL3) and CCL20 were moderately expressed in response to IL-1 and TNF. The nuclear factor-kappaB (NF-kappaB) is a known mediator of cytokine and chemokines signaling. The NFkappaB inhibitor BAY 11-7082 attenuated expression of inflammatory-induced chemokines in the mouse and human ovarian cancer cells. Taken together, the results indicate that KC/GRO chemokines are the principal chemokines induced by LPS and pro-inflammatory cytokines IL-1 and TNF via NFkappaB signaling in ovarian surface epithelial cancer cells.  相似文献   

17.
18.
We have carried out a detailed analysis of the cellular immune functions of cervical cancer patients in comparison with healthy controls. It has been observed that the freshly isolated peripheral blood mononuclear cells (PBMC) exhibit natural cytotoxicity (NC) against a number of targets including tumor cells, mainly delivered by NK cells, which are non-adoptive and MHC unrestricted. Upon stimulation with cytokines like IL-2, IL-7, IL-12, IL-15 and interferons, PBMC acquire lymphokine activated killer (LAK) activity which enables them to lyse a wide range of targets including fresh tumor cells and virally infected cells. We compared the effect of IL-2 and IL-12 on enhancement of NC of PBMC from cervical cancer patients. IL-12 stimulated cultures (CD3+, CD56+) exhibited significant levels of tumoricidal activity. IL-2 stimulated lytic activity sustained even after 10 days while that of IL-12 stimulated cells declined after 6 days. Activation of PBMC was marked by increase in the expression of activation marker CD45RO and adhesion molecules LFA-1alpha, ICAM-1 and CD44. Addition of IL-12 to IL-2 stimulated cultures further enhanced the degree of lytic activity. Our data, thus, provide an evidence that PBMC from cervical cancer patients can be stimulated in response to cytokines and local or systemic treatment with low doses of cytokines may help to yield a better immune response against virus infected tumor cells in cervical cancer.  相似文献   

19.
Dendritic cell (DC) defects are an important component of immunosuppression in cancer. Here, we assessed whether cancer could affect circulating DC populations and its correlation with tumor progression. The blood DC compartment was evaluated in 136 patients with breast cancer, prostate cancer, and malignant glioma. Phenotypic, quantitative, and functional analyses were performed at various stages of disease. Patients had significantly fewer circulating myeloid (CD11c+) and plasmacytoid (CD123+) DC, and a concurrent accumulation of CD11c(-)CD123(-) immature cells that expressed high levels of HLA-DR+ immature cells (DR(+)IC). Although DR(+)IC exhibited a limited expression of markers ascribed to mature hematopoietic lineages, expression of HLA-DR, CD40, and CD86 suggested a role as antigen-presenting cells. Nevertheless, DR(+)IC had reduced capacity to capture antigens and elicited poor proliferation and interferon-gamma secretion by T-lymphocytes. Importantly, increased numbers of DR(+)IC correlated with disease status. Patients with metastatic breast cancer showed a larger number of DR(+)IC in the circulation than patients with local/nodal disease. Similarly, in patients with fully resected glioma, the proportion of DR(+)IC in the blood increased when evaluation indicated tumor recurrence. Reduction of blood DC correlating with accumulation of a population of immature cells with poor immunologic function may be associated with increased immunodeficiency observed in cancer.  相似文献   

20.
Koizumi K  Hojo S  Akashi T  Yasumoto K  Saiki I 《Cancer science》2007,98(11):1652-1658
The chemotactic cytokines called chemokines are a superfamily of small secreted cytokines that were initially characterized through their ability to prompt the migration of leukocytes. Attention has been focused on the chemokine receptors expressed on cancer cells because cancer cell migration and metastasis show similarities to leukocyte trafficking. CXC chemokine receptor 4 (CXCR4) was first investigated as a chemokine receptor that is associated with lung metastasis of breast cancers. Recently, CXCR4 was reported to be a key molecule in the formation of peritoneal carcinomatosis in gastric cancer. In the present review, we highlight current knowledge about the role of CXCR4 in cancer metastases. In contrast to chemokine receptors expressed on cancer cells, little is known about the roles of cancer cell-derived chemokines. Cancer tissue consists of both cancer cells and various stromal cells, and leukocytes that infiltrate into cancer are of particular importance in cancer progression. Although colorectal cancer invasion is regulated by the chemokine CCL9-induced infiltration of immature myeloid cells into cancer, high-level expression of cancer cell-derived chemokine CXCL16 increases infiltrating CD8+ and CD4+ T cells into cancer tissues, and correlates with a good prognosis. We discuss the conflicting biological effects of cancer cell-derived chemokines on cancer progression, using CCL9 and CXCL16 as examples. ( Cancer Sci 2007; 98: 1652–1658)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号