首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Pharmaceutical aerosol delivery is undergoing dramatic changes in both inhaler device and formulation aspects. There is a rapid move from the traditional propellant-driven metered dose inhalers to the high performance liquid atomizers and dry powder inhalers (DPIs). DPIs involving the dispersion of powders into aerosols by an inhaler device are particularly attractive as dry powders generally have greater chemical stability than liquids used in atomizers. Delivery of therapeutic proteins as dry powder aerosols is of high commerical interest. However, production and formulation of dry powders for inhalation can be difficult and challenging due to the potential physical instability of the powder. Dry powders consisting of micro- or nano-sized particles are inherently adhesive and cohesive, leading to highly variable dose accuracy and poor aerosol performance. Particle engineering via the use of appropriate pharmaceutical excipients and processing parameters can produce particles of optimal morphologies and surface properties which would enhance aerosol generation. Some of the key determinants for successful dispersion of pharmaceutical powders suitable for inhalation are reviewed with an emphasis on the practical significance.  相似文献   

2.
The delivery efficiency of dry-powder products for inhalation is dependent upon the drug formulation, the inhaler device, and the inhalation technique. Dry powder formulations are generally produced by mixing the micronised drug particles with larger carrier particles. These carrier particles are commonly lactose. The aerosol performance of a powder is highly dependent on the lactose characteristics, such as particle size distribution and shape and surface properties. Because lactose is the main component in these formulations, its selection is a crucial determinant of drug deposition into the lung, as interparticle forces may be affected by the carrier-particle properties. Therefore, the purpose of this article is to review the various grades of lactose, their production, and the methods of their characterisation. The origin of their adhesive and cohesive forces and their influence on aerosol generation are described, and the impact of the physicochemical properties of lactose on carrier-drug dispersion is discussed in detail.  相似文献   

3.
The performance of dry powder inhaler (DPI) systems depends on the design of the powder formulation, the dose-metering system, and the device used to disperse the powder as an aerosol. Multiple factors associated with drug and carrier particles are known to influence dry powder performance. Elucidation of a mechanistic understanding of particulate system properties and how these relate to powder performance and the disruption of inter-particulate forces that cause aggregation has not yet been achieved. However, the complexity of interactions within dry powder formulations has not restricted research in this area. Various strategies of overcoming inter-particulate forces have been devised, ranging from active inhaler designs to powder engineering approaches. The influence of the interactive carrier system’s physicochemical properties (i.e. size, shape, chemical properties, surface roughness, electrostatics, humidity, and ternary excipients) on the performance of carrier-based systems has been examined extensively in the literature. In addition, matrix carriers, which contain drug and functional excipients for promotion of powder performance, control of pharmacokinetics, stability, controlled release of active drug and enhanced control of drug targeting, have also been investigated. Both the interactive carrier and matrix carrier approaches are attempts to develop DPI systems that perform as device-independent formulations and/or provide patient-independent delivery (controlled carrier systems). It seems likely that the future of DPI systems will combine both of these strategies with future developments in device design (formulation independency).  相似文献   

4.
Development of dry powder aerosol delivery system involves powder production, formulation, dispersion, delivery, and deposition of the powder aerosol in the airways. Insufficiency of conventional powder production by crystallization and milling has led to development of alternative techniques. Over the last decade, performance of powder formulations has been improved significantly through the use of engineered drug particles and excipient systems which are (i) of low aerodynamic diameters (being porous or of low particle density), and/or (ii) less cohesive and adhesive (via corrugated surfaces, low bulk density, reduced surface energy and particle interaction, hydrophobic additives, and fine carrier particles). Early insights into particle forces and surface energy that help explain the improvement have been provided by analytical techniques such as the atomic force microscopy (AFM) and inverse gas chromatography (IGC). Relative humidity is critical to the performance of dry powder inhaler (DPI) products via capillary force and electrostatic interaction. Electrostatic charge of different particle size fractions of an aerosol can now be measured using a modified electrical low-pressure impactor (ELPI). Compared with powders, much less work has been done on the inhaler devices at the fundamental level. Most recently, computational fluid dynamics has been applied to understand how the inhaler design (such as mouthpiece, grid structure, air inlet) affects powder dispersion. The USP throat is known to under-represent the oropharyngeal deposition of DPI aerosols. Studies using magnetic resonance imaging (MRI) model casts have been undertaken to explain the inter- and intra- subject variation in oropharyngeal deposition. Most of the lung deposition studies performed on commercial products did not allow a thorough understanding of the determinants affecting in vivo lung deposition. A more systematic approach would be necessary to build a useful database on the dependence of lung deposition on the breathing parameters, inhaler design, and powder formulation properties.  相似文献   

5.
For dry powder inhaler formulations, micronized drug powders are commonly mixed with coarse lactose carriers to facilitate powder handling during the manufacturing and powder aerosol delivery during patient use. The performance of such dry powder inhaler formulations strongly depends on the balance of cohesive and adhesive forces experienced by the drug particles under stresses induced in the flow environment during aerosolization. Surface modification with appropriate additives has been proposed as a practical and efficient way to alter the inter-particulate forces, thus potentially controlling the formulation performance, and this strategy has been employed in a number of different ways with varying degrees of success. This paper reviews the main strategies and methodologies published on surface coating of lactose carriers, and considers their effectiveness and impact on the performance of dry powder inhaler formulations.  相似文献   

6.
Non-invasive delivery systems are desirable for routine administration of therapeutic protein and peptides. The large absorptive surface area of the lungs, thin alveolar epithelial barrier, and extensive vasculature makes the pulmonary route a promising option. For many years, drug delivery to the lungs has been achieved by nebulizers and metered dose inhalers. Two rapidly expanding fields of aerosol drug delivery are liquid-spray systems and dry-powder delivery systems. The selection of an aerosolization system for protein and peptide active compounds will be driven by several inter-related factors that include: physicochemical properties of the macromolecule, the principle of aerosolization of the device, and patient- and disease-related properties. Although novel liquid spray systems may have aerosol and delivery advantages over current inhalation aerosol technologies, rigorous scientific evaluation has not yet been performed due to the relatively recent introduction of these systems. Alternatively, dry-powder inhaler systems for protein and peptide therapeutics have undergone significantly more scientific evaluation. Dry-powder systems for protein and peptide therapeutics may have stability and sterility advantages. However, with currently used excipients and passive dispersion mechanisms, these devices are relatively inefficient. A convergence of improved particle manufacturing methods and technologies with active dispersion technologies may lead to more efficient delivery options. Alongside these delivery considerations, issues pertaining to economic viability, regulatory approval, and patient factors are equally important for selection of an appropriate delivery system. Thus, with our current understanding, there is no acceptable decision tree or algorithm that can be used to derive the most appropriate device technology for inhaled protein and peptide therapy. This review aims to provide guidance to select the best formulation alternative to deliver a candidate protein/peptide drug through the pulmonary route.  相似文献   

7.
干粉吸入剂是近年来肺部给药制剂研发的热点。随着微粉化技术不断成熟,新型给药装置日益涌现,干粉吸入剂的应用范围越来越广。本文从微粉化的药物、载体和干粉吸入器等3个方面综述了干粉吸入剂的处方组成,并重点介绍了影响药物粉末雾化和沉积性能的几个关键因素。  相似文献   

8.
The pulmonary route is an interesting route for drug administration, both for effective local therapy (asthma, chronic obstructive pulmonary disease or cystic fibrosis) and for the systemic administration of drugs (e.g., peptides and proteins). Well-designed dry powder inhalers are highly efficient systems for pulmonary drug delivery. However, they are also complicated systems, the the performance of which relies on many aspects, including the design of the inhaler (e.g., resistance to air flow and the used de-agglomeration principle to generate the inhalation aerosol), the powder formulation and the air flow generated by the patient. The technical background of these aspects, and how they may be tuned in order to obtain desired performance profiles, is reviewed. In light of the technical background, new developments and possibilities for further improvements are discussed.  相似文献   

9.
The pulmonary route is an interesting route for drug administration, both for effective local therapy (asthma, chronic obstructive pulmonary disease or cystic fibrosis) and for the systemic administration of drugs (e.g., peptides and proteins). Well-designed dry powder inhalers are highly efficient systems for pulmonary drug delivery. However, they are also complicated systems, the the performance of which relies on many aspects, including the design of the inhaler (e.g., resistance to air flow and the used de-agglomeration principle to generate the inhalation aerosol), the powder formulation and the air flow generated by the patient. The technical background of these aspects, and how they may be tuned in order to obtain desired performance profiles, is reviewed. In light of the technical background, new developments and possibilities for further improvements are discussed.  相似文献   

10.
An inhaler adapter has been designed for the characterization of the aerosol clouds from medical aerosol generators such as nebulizers, dry powder inhalers (dpis) and metered dose inhalers (mdis) with laser diffraction technology. The adapter has a pre-separator, for separation of large particles (i.e. carrier crystals) from the aerosol cloud before it is exposed to the laser beam. It also has a fine particle collector for measuring the emitted mass fraction of fines by chemical detection methods after laser diffraction sizing. The closed system enables flow control through the aerosol generators and all test conditions, including ambient temperature and relative humidity, are automatically recorded. Counter flows minimize particle deposition onto the two windows for the laser beam, which make successive measurements without cleaning of these windows possible. The adapter has successfully been tested for nebulizers, mdis and dpis. In a comparative study with ten nebulizers it was found that these devices differ considerably in droplet size (distribution) of the aerosol cloud for the same 10% aqueous tobramycin solution (volume median diameters ranging from 1.25 to 3.25 microm) when they are used under the conditions recommended by the manufacturers. The droplet size distribution generated by the Sidestream (with PortaNeb compressor) is very constant during nebulization until dry running of the device. Comparative testing of dpis containing spherical pellet type of formulations for the drug (e.g. the AstraZeneca Turbuhaler) with the adapter is fast and simple. But also formulations containing larger carrier material could successfully be measured. Disintegration efficiency of a test inhaler with carrier retainment (acting as a pre-separator) could be measured quite accurately both for a colistin sulfate formulation with 16.7% of a lactose fraction 106-150 microm and for a budesonide formulation with a carrier mixture of Pharmatose 325 and 150 M. Therefore, it is concluded that, with this special adapter, laser diffraction may be a valuable tool for comparative inhaler evaluation, device development, powder formulation and quality control. Compared to cascade impactor analysis, laser diffraction is much faster. In addition to that, more detailed and also different information about the aerosol cloud is obtained.  相似文献   

11.
The performance of a novel dry powder inhaler designed to deliver exceptionally high doses was investigated using pumactant as a model powder. Pumactant (a synthetic lung surfactant consisting of a phospholipid mixture), with a 90th percentile particle size of 2.92 microm is highly cohesive, has a high moisture affinity (6.2% w/w at 45% RH), and is predominantly amorphous. The device (pressurized aerosol dry-powder delivery [PADD]) utilizes pressurized gas to aerosolize a powder bed from a reservoir and delivers it through a conventional mouthpiece. The influence of loaded dose on dry powder delivery and can pressure on aerosolization efficiency was investigated. Analysis of the delivered dose studies suggested a linear relationship between loaded dose and delivered dose (R(2) = 0.96, for loaded doses of 0-250 mg), with a delivery efficiency of 70%. Analysis of the aerosolization efficiency using a Marple Miller type impactor suggested fine particle fractions (particles with an aerodynamic diameter of <5 microm) of approximately 30% using canister pressures of 8-14 bars. These results indicate that the PADD device may be a useful tool in delivering high-dose medicaments, as a carrier-free formulation, to the deep lung.  相似文献   

12.
A novel, compact, and highly efficient dry powder inhaler (DPI) with low mouth-throat deposition is described. The performance of this DPI was evaluated by measuring both (1) the total aerosol deposition in and distal to an idealized mouth-throat cast and (2) the fine particle fraction (FPF) using a standard Mark II Anderson impactor. Ultraviolet (UV) spectroscopy techniques were used in the aerosol deposition measurements. Two inhalation aerosol powders, namely budesonide (extracted from a Pulmicort/Turbuhaler multi-dose device, 200 microg/dose) and ciprofloxacin + lipid + lactose (in-house), were dispersed by the DPI at a steady inhalation flow rate of 60 L/min. The newly developed DPI had a total aerosol delivery distal to the mouth-throat cast of 50.5% +/- 3.04% and 69.7% +/- 1.5% for the budesonide and ciprofloxacin + lipid + lactose aerosols, respectively. This is a significant improvement over the Turbuhaler original device delivery of 34.5% +/- 5.2%, particularly considering that in vitro mouth-throat deposition dropped from 27.5% +/- 5.4% with the budesonide Turbuhaler to 11.0% +/- 3.5% with the present inhaler. The different lung deliveries from the same inhaler for the two formulations above also confirm that the overall performance of an inhaler is optimizable via powder formulations.  相似文献   

13.
Several devices have been developed to overcome the need to co-ordinate actuation with inhalation required during use of a pressurised metered dose inhaler (MDI) and to improve drug delivery to the lung. These include spacer attachments for MDIs, dry powder inhalers and breath-actuated MDIs. The breath-actuated Autohaler (3M Pharmaceuticals) is a compact, multidose inhaler device that, unlike dry powder inhalers, does not rely on the patient's inspiratory effort to aerosolise the dose of medication. Due to its simple operation, the Autohaler is suitable for patients unable to operate a conventional MDI efficiently, including the elderly, children, patients with arthritis and patients with low inspiratory flow rates. The mandatory replacement of chlorofluorocarbon propellants with non-ozone-depleting propellants has given the opportunity to improve drug delivery characteristics of MDIs. Recently, a formulation of beclomethasone dipropionate in hydrofluoroalkane-134a (HFA-BDP), has been developed in a conventional MDI that delivers most of the emitted dose to the lung. Drug deposition studies show that the HFA-BDP formulation in the Autohaler device has a similar lung deposition pattern to drug delivered from the MDI, when used correctly, and dose delivery is consistent across a wide range of inspiratory flow rates. Furthermore, HFA-BDP Autohaler has similar clinical benefits to CFC-BDP Autohaler but at less than half the dose. HFA-BDP Autohaler offers a useful CFC-free delivery option for patients challenged by the conventional MDI device.  相似文献   

14.

Purpose

The objective of this study was to explore the performance of a high efficiency dry powder inhaler (DPI) intended for excipient enhanced growth (EEG) aerosol delivery based on changes to the capsule orientation and surface modifications of the capsule and device.

Methods

DPIs were constructed by combining newly designed capsule chambers (CC) with a previously developed three-dimensional (3D) rod array for particle deagglomeration and a previously optimized EEG formulation. The new CCs oriented the capsule perpendicular to the incoming airflow and were analyzed for different air inlets at a constant pressure drop across the device. Modifications to the inhaler and capsule surfaces included use of metal dispersion rods and surface coatings. Aerosolization performance of the new DPIs was evaluated and compared with commercial devices.

Results

The proposed capsule orientation and motion pattern increased capsule vibrational frequency and reduced the aerosol MMAD compared with commercial/modified DPIs. The use of metal rods in the 3D array further improved inhaler performance. Coating the inhaler and capsule with PTFE significantly increased emitted dose (ED) from the optimized DPI.

Conclusions

High efficiency performance is achieved for EEG delivery with the optimized DPI device and formulation combination producing an aerosol with MMAD?<?1.5 μm, FPF<5μm/ED?>?90%, and ED?>?80%.  相似文献   

15.
Pulmonary deposition of 99mTc-labelled sulbutamol was determined after delivery from a novel multiple dose powder inhaler (Easyhaler®). The clinical efficacy of the inhalation powder, evaluated simultaneously with gamma camera detection, was compared with that obtained after drug delivery from a metered dose inhaler-spacer combination. The study was performed as an open, non-randomized cross-over trial. A single dose of radiolabelled inhalation powder was inhaled on the first and the inhalation aerosol, as control, on the second study day. Sulbutamol sulphate was labelled with 99mtechnetium, and the inhalation powder was formulated by mixing radioactive drug particles with carrier material. Aerodynamic properties of the radiolabelled inhalation powder were similar to those of the unlabelled salbutamol powder. Delivered dose from the breath-actuated powder inhaler was adjusted to be equal to two puffs from a conventional aerosol actuator with a short plastic mouthpiece. Twelve non-smoking asthmatic patients participated in the trial. The mean pulmonary deposition of 24% was obtained after drug delivery from Easyhaler® powder inhaler. Clinical efficacy of the medications was similar in terms of area under the FEV1 curve, maximum FEV1 and the improvement ratio. Thus it can be suggested that powder delivery from Easyhaler® powder inhaler and the aerosol delivery through the spacer are equally effective.  相似文献   

16.
A dry powder inhaler (DPI) is a dosage form that consists of a powder formulation in a device which is designed to deliver an active ingredient to the respiratory tract. It has been extensively investigated over the past years and several aspects relating to device and particulate delivery mechanisms have been the focal points for debate. DPI formulations may or may not contain carrier particles but whenever a carrier is included in a commercial formulation, it is almost invariably lactose monohydrate. Many physicochemical properties of the lactose carrier particles have been reported to affect the efficiency of a DPI. A number of preparation methods have been developed which have been claimed to produce lactose carriers with characteristics which lead to improved deposition. Alongside these developments, a number of characterization methods have been developed which have been reported to be useful in the measurement of key properties of the particulate ingredients. This review describes the various physicochemical characteristics of lactose, methods of manufacturing lactose particulates and their characterization.  相似文献   

17.
The aim of this study was to investigate the pulmonary administration of antibiotics as dry powder to patients with cystic fibrosis (CF), as an alternative for nebulization. This part of the study describes the development of a powder formulation with colistin sulfate as model substance. The aim of the new dosage form was to increase pulmonary deposition, therapeutic efficiency and, by that, compliance by the CF patients. A physical powder mixture of colistin and a size fraction of lactose (106-150 microm) was prepared and the mixture was optimized with respect to colistin content (83.3%) for use in a special test inhaler. A laser diffraction apparatus with special inhaler adapter was applied for analysis of the size distribution of the aerosol cloud from the inhaler. The size distributions of the aerosol clouds from the test inhaler at flow rates between 30 and 60 l/min for the optimized formulation showed nearly the same median diameter as that for the primary drug particles. But the X(100)-value was much lower, because of an effective large particle separation from the inspiratory air by an air classifier in the test inhaler. The results suggest that dry powder inhalation might be a suitable and highly efficient alternative for nebulization of antibiotic drugs in CF therapy.  相似文献   

18.
Active and intelligent inhaler device development   总被引:1,自引:0,他引:1  
The dry powder inhaler, which has traditionally relied on the patient's inspiratory force to deaggregate and deliver the active agent to the target region of the lung, has been a successful delivery device for the provision of locally active agents for the treatment of conditions such as asthma and chronic obstructive pulmonary disease (COPD). However, such devices can suffer from poor delivery characteristics and/or poor reproducibility. More recently, drugs for systemic delivery and more high value compounds have been put into DPI devices. Regulatory, dosing, manufacturing and economic concerns have demanded that a more efficient and reproducible performance is achieved by these devices. Recently strategies have been put in place to produce a more efficient DPI device/formulation combination. Using one novel device as an example the paper will examine which features are important in such a device and some of the strategies required to implement these features. All of these technological advances are invisible, and may be irrelevant, to the patient. However, their inability to use an inhaler device properly has significant implications for their therapy. Use of active device mechanisms, which reduce the dependence on patient inspiratory flow, and sensible industrial design, which give the patient the right clues to use, are important determinants of performance here.  相似文献   

19.
吸入装置通过不同的气溶胶发生原理,结合相应的药物形态形成了现有的药械组合式吸入制剂,目前已广泛应用于吸入治疗领域。但在临床使用过程中也逐渐暴露出一些问题,如患者使用压力定量吸入气雾剂(pressurized metered-dose inhaler,pMDI)时协调性不够,使用干粉吸入剂(dry powder inhaler,DPI)时吸力不足,患者使用依从性差等。新型吸入装置致力于通过装置性能的改善弥补吸入装置目前存在的缺点,并结合智能化和云端管理扩展功能等,提高患者的使用依从性,从而进一步提高临床治疗效果。  相似文献   

20.
Abstract

There are a multitude of formulation factors to consider when developing a solution-based pressurized metered dose inhaler (pMDI). Evaluation of these variables and their underpinning driving force has been performed over the years. Key components, including formulation composition and device design, play significant roles in determining the aerosol performance of these solution-based formulations. This review outlines research efforts that have focused on these essential governing factors, how the aerosol performance changes when these variables are modified and fundamental mechanisms affecting the delivery efficiency of such formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号