共查询到20条相似文献,搜索用时 15 毫秒
1.
Giedrius T Buracas Thomas T Liu Richard B Buxton Lawrence R Frank Eric C Wong 《Magnetic resonance in medicine》2008,59(1):140-148
Existing functional brain MR imaging methods detect neuronal activity only indirectly via a surrogate signal such as deoxyhemoglobin concentration in the vascular bed of cerebral parenchyma. It has been recently proposed that neuronal currents may be measurable directly using MRI (ncMRI). However, limited success has been reported in neuronal current detection studies that used standard gradient or spin echo pulse sequences. The balanced steady-state free precession (bSSFP) pulse sequence is unique in that it can afford the highest known SNR efficiency and is exquisitely sensitive to perturbations in free precession phase. It is reported herein that when a spin phase-perturbing periodic current is locked to an RF pulse train, phase perturbations are accumulated across multiple RF excitations and the spin magnetization reaches an alternating balanced steady state (ABSS) that effectively amplifies the phase perturbations due to the current. The alternation of the ABSS signal therefore is highly sensitive to weak periodic currents. Current phantom experiments employing ABSS imaging resulted in detection of magnetic field variations as small as 0.15nT in scans lasting for 36 sec, which is more sensitive than using gradient-recalled echo imaging. 相似文献
2.
Balanced steady-state free precession (bSSFP) suffers from a considerable signal loss in tissues. This apparent signal reduction originates from magnetization transfer (MT) and may be reduced by an increase in repetition time or by a reduction in flip angle. In this work, MT effects in bSSFP are modulated by a modification of the bSSFP sequence scheme. Strong signal attenuations are achieved with short radio frequency (RF) pulses in combination with short repetition times, whereas near full, i.e., MT-free, bSSFP signal is obtained by a considerable prolongation of the RF pulse duration. Similar to standard methods, the MT ratio (MTR) in bSSFP depends on several sequence parameters. Optimized bSSFP protocol settings are derived that can be applied to various tissues yielding maximal sensitivity to MT while minimizing contribution from other impurities, such as off-resonances. Evaluation of MT in human brain using such optimized bSSFP protocols shows high correlation with MTR values from commonly used gradient echo (GRE) sequences. In summary, a novel method to generate MTR maps using bSSFP image acquisitions is presented and factors that optimize and influence this contrast are discussed. 相似文献
3.
4.
5.
6.
Balanced phase-contrast steady-state free precession (PC-SSFP): a novel technique for velocity encoding by gradient inversion. 总被引:1,自引:0,他引:1
A technique for measuring velocity is presented that combines cine phase contrast (PC) MRI and balanced steady-state free precession (SSFP) imaging, and is thus termed PC-SSFP. Flow encoding was performed without the introduction of additional velocity encoding gradients in order to keep the repetition time (TR) as short as in typical SSFP imaging sequences. Sensitivity to through-plane velocities was instead established by inverting (i.e., negating) all gradients along the slice-select direction. Velocity sensitivity (VENC) could be adjusted by altering the first moments of the slice-select gradients. Disturbances of the SSFP steady state were avoided by acquiring different flow echoes in consecutively (i.e., sequentially) executed scans, each over several cardiac cycles, using separate steady-state preparation periods. A comparison of phantom measurements with those from established 2D-cine-PC MRI demonstrated excellent correlation between both modalities. In examinations of volunteers, PC-SSFP exhibited a higher intrinsic signal-to-noise ratio (SNR) and consequently low phase noise in measured velocities compared to conventional PC scans. An additional benefit of PC-SSFP is that it relies less on in-flow-dependent signal enhancement, and thus yields more uniform SNRs and better depictions of vessel geometry throughout the whole cardiac cycle in structures with slow and/or pulsatile flow. 相似文献
7.
Morphing steady-state free precession. 总被引:1,自引:0,他引:1
A novel concept for visualization of positive contrast originating from susceptibility-related magnetic field distortions is presented. In unbalanced steady-state free precession (SSFP) the generic, gradient-induced dephasing competes with local gradient fields generated by paramagnetic materials. Thus, within the same image, SSFP may morph its own appearance from unbalanced to balanced SSFP (bSSFP) as a result of local gradient compensation. In combination with low to very low flip angles, unbalanced SSFP signals are heavily suppressed, whereas bSSFP locally produces very high steady-state amplitudes at certain frequency offsets. As a result, bSSFP signals appear hyperintense on an almost completely dark background. In this study, the conceptual issues of local gradient compensation and frequency matching, as well as the feasibility of proper detection of marker materials for interventional MRI from hyperintense pixels locations, are evaluated both in vitro and in vivo. Signal dependencies of morphing SSFP on sequence parameters such as flip angle or repetition time are investigated theoretically and experimentally. In addition to passive tracking of interventional devices, morphing SSFP might also be a promising new concept for the generation of positive contrast from super-paramagnetic iron oxide (SPIO) particles in contrast-enhanced MRI as well as for particle tracking. 相似文献
8.
Signal-to-noise ratio behavior of steady-state free precession. 总被引:2,自引:0,他引:2
Steady-state free precession (SSFP) is a rapid gradient-echo imaging technique that has recently gained popularity and is used in a variety of applications, including cardiac and real-time imaging, because of its high signal and favorable contrast between blood and myocardium. The purpose of this work was to examine the signal-to-noise ratio (SNR) behavior of images acquired with SSFP, and the dependence of SNR on imaging parameters such as TR, bandwidth, and image resolution, and the use of multi-echo sequences. In this work it is shown that the SNR of SSFP sequences is dependent only on pulse sequence efficiency, voxel dimensions, and relaxation parameters (T1 and T2). Notably, SNR is insensitive to bandwidth unless increases in bandwidth significantly decrease efficiency. Finally, we examined the relationship between pulse sequence performance (TR and efficiency) and gradient performance (maximum gradient strength and slew rate) for several imaging scenarios, including multi-echo sequences, to determine the optimum matching of maximum gradient strength and slew rate for gradient hardware designs. For standard modern gradient hardware (40 mT/m and 150 mT/m/ms), we found that the maximum gradient strength is more than adequate for the imaging resolution that is commonly encountered with rapid scouting (3 mm x 4 mm x 10 mm voxel). It is well matched for typical CINE and real-time cardiac imaging applications (1.5 mm x 2 mm x 6 mm voxel), and is inadequate for optimal matching with slew rate for high-resolution applications such as musculoskeletal imaging (0.5 x 0.8 x 3 mm voxel). For the lower-resolution methods, efficiency could be improved with higher slew rates; this provokes interest in designing methods for limiting dB/dt peripherally while achieving high switching rates in the imaging field of view. The use of multi-echo SSFP acquisitions leads to substantial improvements in sequence performance (i.e., increased efficiency and shorter TR). 相似文献
9.
Oliver M. Weber Peter Speier Klaus Scheffler Oliver Bieri 《Magnetic resonance in medicine》2009,62(3):699-705
Magnetization transfer imaging (MTI) by means of MRI exploits the mobility of water molecules in tissue and offers an alternative contrast mechanism beyond the more commonly used mechanisms based on relaxation times. A cardiac MTI method was implemented on a commercially available 1.5 T MR imager. It is based on the acquisition of two sets of cardiac‐triggered cine balanced steady‐state free precession (bSSFP) images with different levels of RF power deposition. Reduction of RF power was achieved by lengthening the RF excitation pulses of a cine bSSFP sequence from 0.24 ms to 1.7 ms, while keeping the flip angle constant. Normal volunteers and patients with acute myocardial infarcts were imaged in short and long axis views. Normal myocardium showed an MT ratio (MTR) of 33.0 ± 3.3%. In acute myocardial infarct, MTR was reduced to 24.5 ± 9.2% (P < 0.04), most likely caused by an increase in water content due to edema. The method thus allows detection of acute myocardial infarct without the administration of contrast agents. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
10.
Magnetic resonance imaging of knee cartilage using a water selective balanced steady-state free precession sequence 总被引:1,自引:0,他引:1
Kornaat PR Doornbos J van der Molen AJ Kloppenburg M Nelissen RG Hogendoorn PC Bloem JL 《Journal of magnetic resonance imaging : JMRI》2004,20(5):850-856
PURPOSE: To compare an optimized water selective balanced steady-state free precession sequence (WS-bSSFP) with conventional magnetic resonance (MR) sequences in imaging cartilage of osteoarthritic knees. MATERIALS AND METHODS: Flip angles of sagittal and axial WS-bSSFP sequences were optimized in three volunteers. Subsequently, the knees of 10 patients with generalized osteoarthritis were imaged using sagittal and axial WS-bSSFP and conventional MR imaging techniques. We calculated contrast-to-noise ratios (CNR) between cartilage and its surrounding tissues to quantitatively analyze the various sequences. Using dedicated software we compared, in two other patients, the accuracy of cartilage volume measurements with anatomic sections of the tibial plateau. RESULTS: CNRtotal eff (CNR efficiency between cartilage and its surrounding tissue) using WS-bSSFP was maximal with a 20-25 degrees flip angle. CNRtotal eff was higher in WS-bSSFP than in conventional images: 6.1 times higher compared to T1-weighted gradient echo (GE) images, 5.1 compared to proton-density (PD) fast spin echo (FSE) images, and 4.8 compared to T2-weighted FSE images. The mean difference of cartilage volume measurement on WS-bSSFP and anatomic sections was 0.06 mL compared to 0.24 mL for T1-GE and anatomic sections. CONCLUSION: A WS-bSSFP sequence is superior to conventional MR imaging sequences in imaging cartilage of the knee in patients with osteoarthritis. 相似文献
11.
A novel fat-suppressed balanced steady-state free precession (b-SSFP) imaging method based on the transition into driven equilibrium (TIDE) sequence with variable flip angles is presented. The new method, called fat-saturated (FS)-TIDE, exploits the special behavior of TIDE signals from off-resonance spins during the flip angle ramp. As shown by simulations and experimental data, the TIDE signal evolution for off-resonant isochromats during the transition from turbo spin-echo (TSE)-like behavior to the true fast imaging with steady precession (TrueFISP) mode undergoes a zero crossing. The resulting signal notch for off-resonant spins is then used for fat suppression. The efficiency of FS-TIDE is demonstrated in phantoms and healthy volunteers on a 1.5T system. The resulting images are compared with standard TrueFISP data with and without fat suppression. It is demonstrated that FS-TIDE provides a fast and stable means for homogenous fat suppression in abdominal imaging while maintaining balanced SSFP-like image contrast and signal-to-noise ratio (SNR). The scan time of FS-TIDE is not increased compared to normal TrueFISP imaging without fat suppression and identical k-space trajectories. Because of the intrinsic fat suppression, no additional preparation is needed. Possible repetition times (TRs) are not firmly limited to special values and are nearly arbitrary. 相似文献
12.
Krishna S Nayak Brian A Hargreaves Bob S Hu Dwight G Nishimura John M Pauly Craig H Meyer 《Magnetic resonance in medicine》2005,53(6):1468-1473
Balanced steady-state free precession (SSFP) sequences are useful in cardiac imaging because they achieve high signal efficiency and excellent blood-myocardium contrast. Spiral imaging enables the efficient acquisition of cardiac images with reduced flow and motion artifacts. Balanced SSFP has been combined with spiral imaging for real-time interactive cardiac MRI. New features of this method to enable scanning in a clinical setting include short, first-moment nulled spiral trajectories and interactive control over the spatial location of banding artifacts (SSFP-specific signal variations). The feasibility of spiral balanced SSFP cardiac imaging at 1.5 T is demonstrated. In observations from over 40 volunteer and patient studies, spiral balanced SSFP imaging shows significantly improved contrast compared to spiral gradient-spoiled imaging, producing better visualization of cardiac function, improved localization, and reduced flow artifacts from blood. 相似文献
13.
Steady-state free precession (SSFP) cardiac cine images are frequently corrupted by dark flow artifacts, which can usually be eliminated by reshimming and retuning the scanner. A theoretical explanation for these artifacts is provided in terms of spins moving through an off-resonant point in the magnetic field, and the theory is validated using phantom experiments. The artifacts can be reproduced in vivo by detuning the center frequency by an amount in the range of half the inverse repetition time (TR). Since this offset is similar in magnitude to the frequency difference between the water and lipid peaks, a likely cause of the artifacts in vivo is that the center frequency is tuned incorrectly to the lipid peak rather than the water peak. 相似文献
14.
3D non-contrast-enhanced MR angiography with balanced steady-state free precession Dixon method. 总被引:1,自引:0,他引:1
Randall B Stafford Mohammad Sabati Houman Mahallati Richard Frayne 《Magnetic resonance in medicine》2008,59(2):430-433
Balanced steady-state free precession (bSSFP) is capable of producing ample fat-water separation. In the case of the bSSFP Dixon method, the phase between fat and water can be manipulated by setting repetition time (TR) to an odd-half-multiple of the cycle time and adjusting the center frequency to acquire fat-water in in-phase and opposed-phase images. Adding an image collected when fat and water are in-phase to an image in which fat and water are opposed-phase produces a water-only image. Of the water signals, arterial blood has the highest T(2)/T(1) contrast, making the arterial signal appear brighter than both venous blood and muscle in the final image. In this study, the bSSFP Dixon method was used to collect coronal water-only three-dimensional (3D) volumes at multiple anatomical stations in the legs of five healthy volunteers. The image quality was quantified by region-of-interest (ROI) analysis of signal intensities between arterial blood, venous blood, muscle, and fat. The images were also assessed for diagnostic quality by a trained radiologist. The bSSFP Dixon method was successful in producing non-contrast-enhanced (NCE) images of the blood vessels in the lower limbs. The work presented here is a proof-of-concept for the use of the bSSFP Dixon method for 3D peripheral angiography. 相似文献
15.
The purpose of this study was the simulation and measurement of balanced steady-state free precession (bSSFP) slice profiles for a detailed analysis of the influence of off-resonance effects on slice profile shape and bSSFP signal intensity. Due to the frequency response function of the bSSFP sequence, measurements that are not on-resonance result in broadened effective slice profiles with different off-resonance-dependent shapes and signal intensities. In this study, bSSFP slice profile effects and their dependence on off-resonance were investigated based on bSSFP signal simulations of phantom data as well as blood and tissue. For a better assessment of the similarity of measured and simulated slice profiles the field map was integrated in the slice profile simulations. The results demonstrate that simulations can accurately predict bSSFP slice profiles. Both measurements and simulations indicate that there is a substantial increase in signal intensity close to the banding artifacts, i.e., at spatial locations with off-resonance frequencies corresponding to a dephasing/TR = +/- pi resulting in signal void (bands). For routine bSSFP imaging, off-resonance-dependent slice broadening may thus result in a substantial difference between nominal and true slice thickness and lead to spatially varying slice thickness and signal intensities across the imaging slice. 相似文献
16.
MR temperature measurement in liver tissue at 0.23 T with a steady-state free precession sequence. 总被引:2,自引:0,他引:2
D Germain E Vahala G J Ehnholm T Vaara M Ylihautala M Savart A Laurent J Tanttu H Saint-Jalmes 《Magnetic resonance in medicine》2002,47(5):940-947
MRI can be used for monitoring temperature during a thermocoagulation treatment of tumors. The aim of this study was to demonstrate the suitability of a 3D steady-state free precession sequence (3D Fast Imaging with Steady-State Precession, 3D TrueFISP) for MR temperature measurement at 0.23 T, and to compare it to the spin-echo (SE) and spoiled 3D gradient-echo (3D GRE) sequences. The optimal flip angle for the TrueFISP sequence was calculated for the best temperature sensitivity in the image signal from liver tissue, and verified from the images acquired during the thermocoagulation of excised pig liver. Factors influencing the accuracy of the measured temperatures are discussed. The TrueFISP results are compared to the calculated values of optimized SE and 3D GRE sequences. The accuracy of TrueFISP in the liver at 0.23 T, in imaging conditions used during thermocoagulation procedures, is estimated to be +/-3.3 degrees C for a voxel of 2.5 x 2.5 x 6 mm(3) and acquisition time of 18 s. For the SE and GRE sequences, with similar resolution and somewhat longer imaging time, the uncertainty in the temperature is estimated to be larger by a factor of 2 and 1.2, respectively. 相似文献
17.
A method is presented that employs the inherent spectral selectivity of the Steady-State Free Precession (SSFP) pulse sequence to provide a spectral band of suppression. At TE = TR/2, SSFP partitions the magnetization into two phase-opposed spectral components. Z-storing one of these components simultaneously further excites the other, which is then suppressed by gradient crushing and RF spoiling. The Spectrally Selective Suppression with SSFP (S(5)FP) method is shown to provide significant attenuation of fat signals, while the water signals are essentially unaffected and provide the normal SSFP contrast. Fat suppression is achieved with relatively little temporal overhead (less than 10% reduction in temporal resolution). S(5)FP was validated using simulations, phantoms, and human studies. 相似文献
18.
Vinay M Pai 《Magnetic resonance in medicine》2007,58(2):419-424
Conventional phase-contrast (PC) MRI is limited in the temporal resolution (typically 50 ms) that can be achieved, due to the need to implement bipolar velocity encoding gradients. PC using steady-state free precession (SSFP) has recently been developed to acquire PC data at higher rates without sacrificing contrast-to-noise ratio (CNR). This work presents two multiecho SSFP PC implementations that can be used to increase the time efficiency of PCSSFP. Both approaches (extrinsic and intrinsic) enable reference image lines to be acquired within the same TR as the flow-encoded lines, thus minimizing the scan time and permitting TR-equivalent temporal resolutions. Both approaches have been implemented and tested successfully on human volunteers at 1.5T and 3T. While the intrinsic approach is useful for encoding higher velocity flows in-plane, the extrinsic implementation can be used for studying a wider range of encoding velocities for flow in the imaging plane and through the imaging plane. 相似文献
19.
Quist B Hargreaves BA Cukur T Morrell GR Gold GE Bangerter NK 《Magnetic resonance in medicine》2012,67(4):1004-1012
Balanced steady-state free precession (bSSFP) MRI is a rapid and signal-to-noise ratio-efficient imaging method, but suffers from characteristic bands of signal loss in regions of large field inhomogeneity. Several methods have been developed to reduce the severity of these banding artifacts, typically involving the acquisition of multiple bSSFP datasets (and the accompanying increase in scan time). Fat suppression with bSSFP is also challenging; most existing methods require an additional increase in scan time, and some are incompatible with bSSFP band-reduction techniques. This work was motivated by the need for both robust fat suppression and band reduction in the presence of field inhomogeneity when using bSSFP for flow-independent peripheral angiography. The large flip angles used in this application to improve vessel conspicuity and contrast lead to specific absorption rate considerations, longer repetition times, and increased severity of banding artifacts. In this work, a novel method that simultaneously suppresses fat and reduces bSSFP banding artifact with the acquisition of only two phase-cycled bSSFP datasets is presented. A weighted sum of the two bSSFP acquisitions is taken on a voxel-by-voxel basis, effectively synthesizing an off-resonance profile at each voxel that puts fat in the stop band while keeping water in the pass band. The technique exploits the near-sinusoidal shape of the bSSFP off-resonance spectrum for many tissues at large (>50°) flip angles. 相似文献
20.
Tolga Cukur Neal K Bangerter Dwight G Nishimura 《Magnetic resonance in medicine》2007,58(6):1216-1223
Balanced steady-state free precession (SSFP) is hindered by the inherent off-resonance sensitivity and unwanted bright fat signal. Multiple-acquisition SSFP combination methods, where multiple datasets with different fixed RF phase increments are acquired, have been used for shaping the SSFP spectrum to solve both problems. We present a new combination method (weighted-combination SSFP or WC-SSFP) that preserves SSFP contrast and enables banding-reduction and fat-water separation. Methods addressing the banding artifact have focused on either getting robust banding-reduction (complex-sum SSFP) or improved SNR efficiency (sum-of-squares SSFP). The proposed method achieves both robust banding-reduction and an SNR efficiency close to that of the sum-of-squares method. A drawback of fat suppression methods that create a broad stop-band around the fat resonance is the wedge shape of the stop-band leading to imperfect suppression. WC-SSFP improves the suppression of the stop-band without affecting the pass-band performance, and prevents fat signal from obscuring the tissues of interest in the presence of considerable resonant frequency variations. The method further facilitates the use of SSFP imaging by providing a control parameter to adjust the level of banding-reduction or fat suppression to application-specific needs. 相似文献