首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 178 毫秒
1.
Nicotine's action on the midbrain dopaminergic neurons is mediated by nicotinic acetylcholine receptors (nAChRs) that are present on the cell bodies and the terminals of these neurons. Previously, it was suggested that one of the nAChR subtypes located on striatal dopaminergic terminals may be an alpha3beta2 subtype, based on partial inhibition of nicotine-stimulated [(3)H]dopamine release by alpha-conotoxin MII, a potent inhibitor of heterologously expressed alpha3beta2 nAChRs. More recent studies indicated that alpha-conotoxin MII also potently blocks alpha6-containing nAChRs. In the present study, we have examined the nAChR subtype(s) modulating [(3)H]dopamine release from striatal terminals by using novel alpha-conotoxins that have 37- to 78-fold higher selectivity for alpha6-versus alpha3-containing nAChRs. All of the peptides partially (20-35%) inhibit nicotine-stimulated [(3)H]dopamine release with IC(50) values consistent with those obtained with heterologously expressed rat alpha6-containing nicotinic acetylcholine receptors. These results, together with previous studies by others, further support the idea that alpha6-containing nicotinic receptors modulate nicotine-stimulated dopamine release from rat striatal synaptosomes.  相似文献   

2.
We investigated the effects of chronic nicotine on alpha6- and beta3-containing nicotinic acetylcholine receptors (nAChRs) in two rat brain regions using three methodological approaches: radioligand binding, immunoprecipitation, and nicotine-stimulated synaptosomal release of dopamine. Nicotine was administered by osmotic minipumps for 2 weeks. Quantitative autoradiography with [(125)I]alpha-conotoxin MII to selectively label alpha6(*) nAChRs showed a 28% decrease in binding in the striatum but no change in the superior colliculus. Immunoprecipitation of nAChRs labeled by [(3)H]epibatidine in these two regions showed that chronic nicotine increased alpha4- and beta2-containing nAChRs by 39 to 67%. In contrast, chronic nicotine caused a 39% decrease in alpha6-containing nAChRs in striatum but no change in superior colliculus. No changes in beta3-containing nAChRs were seen in either region after chronic nicotine. The decreased expression of alpha6-containing nAChRs persisted for at least 3 days, recovering to baseline by 7 days after removal of the pumps. There was a small but significant decrease in total nicotine-stimulated dopamine release in striatal synaptosomes after nicotine exposure. However, the component of dopamine release that was resistant to alpha-conotoxin MII blockade was unaffected, whereas dopamine release that was sensitive to blockade by alpha-conotoxin MII was decreased by 56%. These findings indicate that the alpha6(*) nAChR is regulated differently from other nAChR subtypes, and they suggest that the inclusion of a beta3 subunit with alpha6 may serve to inhibit nicotine-induced down-regulation of these receptors.  相似文献   

3.
Extensive evidence indicates that varenicline reduces nicotine craving and withdrawal symptoms by modulating dopaminergic function at α4β2* nicotinic acetylcholine receptors (nAChRs) (the asterisk indicates the possible presence of other nicotinic subunits in the receptor complex). More recent data suggest that α6β2* nAChRs also regulate dopamine release and mediate nicotine reinforcement. The present experiments were therefore done to test the effect of varenicline on α6β2* nAChRs and their function, because its interaction with this subtype is currently unclear. Receptor competition studies showed that varenicline inhibited α6β2* nAChR binding (K(i) = 0.12 nM) as potently as α4β2* nAChR binding (K(i) = 0.14 nM) in rat striatal sections and with ~20-fold greater affinity than nicotine. Functionally, varenicline was more potent in stimulating α6β2* versus α4β2* nAChR-mediated [(3)H]dopamine release from rat striatal synaptosomes with EC(50) values of 0.007 and 0.086 μM, respectively. However, it acted as a partial agonist on α6β2* and α4β2* nAChR-mediated [(3)H]dopamine release with maximal efficacies of 49 and 24%, respectively, compared with nicotine. We also evaluated varenicline's action in striatum of monkeys, a useful animal model for comparison with humans. Varenicline again potently inhibited monkey striatal α6β2* (K(i) = 0.13 nM) and α4β2* (K(i) = 0.19 nM) nAChRs in competition studies. Functionally, it potently stimulated both α6β2* (EC(50) = 0.014 μM) and α4β2* (EC(50) = 0.029 μM) nAChR-mediated [(3)H]dopamine release from monkey striatal synaptosomes, again acting as a partial agonist relative to nicotine at both subtypes. These data suggest that the ability of varenicline to interact at α6β2* nAChRs may contribute to its efficacy as a smoking cessation aid.  相似文献   

4.
Paraquat, an herbicide widely used in the agricultural industry, has been associated with lung, liver, and kidney toxicity in humans. In addition, it is linked to an increased risk of Parkinson's disease. For this reason, we had previously investigated the effects of paraquat in mice and showed that it influenced striatal nicotinic receptor (nAChR) expression but not nAChR-mediated dopaminergic function. Because nonhuman primates are evolutionarily closer to humans and may better model the effects of pesticide exposure in man, we examined the effects of paraquat on striatal nAChR function and expression in monkeys. Monkeys were administered saline or paraquat once weekly for 6 weeks, after which nAChR levels and receptor-evoked [(3)H]dopamine ([(3)H]DA) release were measured in the striatum. The functional studies showed that paraquat exposure attenuated dopamine (DA) release evoked by alpha3/alpha6beta2(*) (nAChR that is composed of the alpha3 or alpha6 subunits, and beta2; the asterisk indicates the possible presence of additional subunits) nAChRs, a subtype present only on striatal dopaminergic terminals, with no decline in release mediated by alpha4beta2(*) (nAChR containing alpha4 and beta2 subunits, but not alpha3 or alpha6) nAChRs, present on both DA terminals and striatal neurons. Paraquat treatment decreased alpha4beta2(*) but not alpha3/alpha6beta2(*) nAChR expression. The differential effects of paraquat on nAChR expression and receptor-evoked [(3)H]DA release emphasize the importance of evaluating changes in functional measures. The finding that paraquat treatment has a negative impact on striatal nAChR-mediated dopaminergic activity in monkeys but not mice indicates the need for determining the effects of pesticides in higher species.  相似文献   

5.
Progabide and its immediate metabolite SL 75102 displace [3H]gamma-aminobutyric acid (GABA), [3H]muscimol and [3H]isoguvacine from their binding sites to membranes prepared from rat brain or human cerebellum and increase (SL 75102) [3H]flunitrazepam binding to rat cerebral cortex membranes. In contrast, these compounds have very weak or no effects on alpha or beta noradrenergic, histamine, muscarinic cholinergic or glycine receptors or on the [3H]imipramine or [3H]kainate binding sites. Neither progabide nor SL 75102 inhibit GABA synthesis, metabolism or uptake. Also, the uptake of norepinephrine, serotonin and dopamine into synaptosomes of cerebral regions is not affected by progabide. [3H]GABA release from substantia nigra slices is decreased by SL 75102 and progabide, in agreement with the hypothesis of a GABAergic autoreceptor controlling GABA release from its nerve terminals. These data suggest a specific agonist action of progabide and SL 75102 on GABA receptors.  相似文献   

6.
Tobacco use is a leading cause of preventable deaths worldwide. However, current smoking cessation therapies have very limited long-term success rates. Considerable research effort is therefore focused on identification of central nervous system changes with nicotine exposure because this may lead to more successful treatment options. Although recent work suggests that α6β2* nicotinic acetylcholine receptors (nAChRs) play a dominant role in dopaminergic function in rodent nucleus accumbens, the effects of long-term nicotine exposure remain to be determined. Here, we used cyclic voltammetry to investigate α6β2* nAChR-mediated release with long-term nicotine treatment in nonhuman primate nucleus accumbens shell. Control studies showed that nAChR-mediated dopamine release occurs predominantly through the α6β2* receptor subtype. Unexpectedly, there was a complete loss of α6β2* nAChR-mediated activity after several months of nicotine treatment. This decline in function was observed with both single- and multiple-pulse-stimulated dopamine release. Paired-pulse studies showed that the facilitation of dopamine release with multiple pulsing observed in controls in the presence of nAChR antagonist was lost with long-term nicotine treatment. Nicotine-evoked [(3)H]dopamine release from nucleus accumbens synaptosomes was similar in nicotine- and vehicle-treated monkeys, indicating that long-term nicotine administration does not directly modify α6β2* nAChR-mediated dopamine release. Dopamine uptake rates, as well as dopamine transporter and α6β2* nAChRs levels, were also not changed with nicotine administration. These data indicate that nicotine exposure, as occurs with smoking, has major effects on cellular mechanisms linked to α6β2* nAChR-mediated dopamine release and that this receptor subtype may represent a novel therapeutic target for smoking cessation.  相似文献   

7.
The mechanism of nicotinic acetylcholine receptor (nAChR)-induced hippocampal dopamine (DA) release was investigated using rat hippocampal slices. nAChRs involved in hippocampal DA and norepinephrine (NE) release were investigated using prototypical agonists and antagonists and several relatively novel compounds: ABT-594 [(R)-5-(2-azetidinylmethoxy)-2-chloropyridine], (+/-)-UB-165 [(2-chloro-5-pyridyl)-9-azabicyclo [4.2.1]non2-ene], and MG 624 [N,N,N-triethyl-2-[4-(2 phenylethenyl)phenoxy]-ethanaminium iodine]. (+/-)-Epibatidine, (+/-)-UB-165, anatoxin-a, ABT-594, (-)-nicotine, 1,1-dimethyl-4-phenyl-piperazinium iodide, and (-)-cytisine (in decreasing order of potency) evoked [(3)H]DA release in a mecamylamine-sensitive manner. Aside from (+/-)-UB-165, all the agonists displayed full efficacy relative to 100 microM (-)-nicotine in [(3)H]DA release. In contrast, (+/-)-UB-165 was a partial agonist, evoking 58% of 100 microM (-)-nicotine response. Mecamylamine, MG 624, hexamethonium, d-tubocurare, and dihydro-beta-erythroidine (in decreasing order of potency), but not alpha-conotoxin-MII, methyllycaconitine, alpha-conotoxin-ImI, or alpha-bungarotoxin, attenuated 100 microM (-)-nicotine-evoked [(3)H]DA release in a concentration-dependent manner. (+/-)-UB-165, ABT-594, and MG 624 exhibited different pharmacologic profiles in the [(3)H]NE release assay when compared with their effect on [(3)H]DA release. ABT-594 was 4.5-fold more potent, and (+/-)-UB-165 was a full agonist in contrast to its partial agonism in [(3)H]DA release. MG 624 potently and completely blocked NE release evoked by 100 microM (-)-nicotine and 10 microM (+/-)-UB-165, whereas it only partially inhibited (-)-nicotine-evoked [(3)H]DA release. In conclusion, we provide evidence that [(3)H]DA can be evoked from the hippocampus and that the pharmacologic profile for nAChR-evoked hippocampal [(3)H]DA release suggests the involvement of alpha3beta4(*) and at least one other nAChR subtype, thus distinguishing it from that of nAChR-evoked hippocampal [(3)H]NE release.  相似文献   

8.
The nicotine metabolite cotinine is an abundant long-lived bio-active compound that may contribute to the overall physiological effects of tobacco use. Although its mechanism of action in the central nervous system has not been extensively investigated, cotinine is known to evoke dopamine release in the nigrostriatal pathway through an interaction at nicotinic receptors (nAChRs). Because considerable evidence now demonstrates the presence of multiple nAChRs in the striatum, the present experiments were done to determine the subtypes through which cotinine exerts its effects in monkeys, a species that expresses similar densities of striatal alpha4beta2* (nAChR containing the alpha4 and beta2 subunits, but not alpha3 or alpha6) and alpha3/alpha6beta2* (nAChR composed of the alpha3 or alpha6 subunits and beta2) nAChRs. Competition binding studies showed that cotinine interacts with both alpha4beta2* and alpha3/alpha6beta2* nAChR subtypes in the caudate, with cotinine IC(50) values for inhibition of 5-[(125) I]iodo-3-[2(S)-azetinylmethoxy]pyridine-2HCl ([(125)I]A-85380) and (125)I-alpha-conotoxinMII binding in the micromolar range. This interaction at the receptor level is of functional significance because cotinine stimulated both alpha4beta2* and alpha3/alpha6beta2* nAChR [(3)H]dopamine release from caudate synaptosomes. Our results unexpectedly showed that nicotine evokes [(3)H]dopamine release from two alpha3/alpha6beta2* nAChR populations, one of which was sensitive to cotinine and the other was not. This cotinine-insensitive subtype was only present in the medial caudate and was preferentially lost with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced nigrostriatal damage. In contrast, cotinine and nicotine elicited equivalent levels of alpha4beta2* nAChR-mediated dopamine release. These data demonstrate that cotinine functionally discriminates between two alpha3/alpha6beta2* nAChRs in monkey striatum, with the cotinine-insensitive alpha3/alpha6beta2* nAChR preferentially vulnerable to nigrostriatal damage.  相似文献   

9.
Several neurochemical and electrophysiological studies have shown that neuronal nicotinic receptors are desensitized by pretreatment with lower agonist concentrations than are required to activate the receptors, but the extent of desensitization and agonist concentration required to produce desensitization vary depending upon receptor subtype. Recently, we reported that nicotinic agonists will stimulate the release of [3H]gamma-aminobutyric acid (GABA) from synaptosomes prepared from mouse brain. The studies described herein evaluated desensitization of [3H]GABA release produced by pretreatment with 12 nicotinic agonists. Pretreatment produced near total desensitization that developed slowly (onset T(1/2) = 3.46 min) and was totally reversible (recovery T(1/2) = 4.95 min). Nine of the 12 compounds tested induced total or near total desensitization at concentrations that were less than those required to produce a reliably measured increase in [3H]GABA release. Nicotine produced total block with an IC(50) value of 26 nM. This value is two orders of magnitude lower than the EC(50) for nicotine-induced [3H]GABA release (1630 nM). The three compounds that showed an overlap of the desensitization and activation concentration-effect curves (cytisine, anabasine, nornicotine) are all partial agonists. Comparison of the desensitization properties of the [3H]GABA release with an ion ((86)Rb+) efflux that we have measured previously suggests that the receptor that mediates GABA release and (86)Rb(+) efflux is the same, most likely the alpha4beta2 subtype.  相似文献   

10.
The present study determined whether repeated administration of the antidepressant and selective norepinephrine (NE) uptake inhibitor reboxetine resulted in an adaptive modification of the function of the NE transporters (NETs), serotonin (5-HT) transporters, or dopamine (DA) transporters. Because antidepressants may be effective tobacco smoking cessation agents and because antidepressants have recently been shown to interact with nicotinic acetylcholine receptors (nAChRs), the interaction of reboxetine with nAChRs was also evaluated. Repeated administration of reboxetine (10 mg/kg i.p., twice daily for 14 days) did not alter the potency or selectivity of reboxetine inhibition of [(3)H]NE, [(3)H]DA, or [(3)H]5-HT uptake into striatal or hippocampal synaptosomes (IC(50) values = 8.5 nM, 89 microM, and 6.9 microM, respectively). In a separate series of experiments, reboxetine did not inhibit (K(i) > 1 microM) [(3)H]methyllycaconitine, [(3)H]cytisine, or [(3)H]epibatidine binding to rat whole brain membranes. However, at concentrations that did not exhibit intrinsic activity, reboxetine potently inhibited (IC(50) value = 7.29 nM) nicotine-evoked [(3)H]NE overflow from superfused hippocampal slices via a noncompetitive mechanism. In the latter experiments, the involvement of NET was eliminated by inclusion of desipramine (10 microM) in the superfusion buffer. Reboxetine also inhibited (IC(50) value = 650 nM) nicotine-evoked (86)Rb(+) efflux at reboxetine concentrations that did not exhibit intrinsic activity in this assay. Thus, in addition to inhibition of NET function, reboxetine inhibits nAChR function, suggesting that it may have potential as a smoking cessation agent.  相似文献   

11.
Bupropion, an efficacious antidepressant and smoking cessation agent, inhibits dopamine and norepinephrine transporters (DAT and NET, respectively). Recently, bupropion has been reported to noncompetitively inhibit alpha3beta2, alpha3beta4, and alpha4beta2 nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus oocytes or established cell lines. The present study evaluated bupropion-induced inhibition of native alpha3beta2* and alpha3beta4* nAChRs using functional neurotransmitter release assays, nicotine-evoked [(3)H]overflow from superfused rat striatal slices preloaded with [(3)H]dopamine ([(3)H]DA), and nicotine-evoked [(3)H]overflow from hippocampal slices preloaded with [(3)H]norepinephrine ([(3)H]NE). The mechanism of inhibition was evaluated using Schild analysis. To eliminate the interaction of bupropion with DAT or NET, nomifensine or desipramine, respectively, was included in the superfusion buffer. A high bupropion concentration (100 microM) elicited intrinsic activity in the [(3)H]DA release assay. However, none of the concentrations (1 nM-100 microM) examined evoked [(3)H]NE overflow and, thus, were without intrinsic activity in this assay. Moreover, bupropion inhibited both nicotine-evoked [(3)H]DA overflow (IC(50) = 1.27 microM) and nicotine-evoked [(3)H]NE overflow (IC(50) = 323 nM) at bupropion concentrations well below those eliciting intrinsic activity. Results from Schild analyses suggest that bupropion competitively inhibits nicotine-evoked [(3)H]DA overflow, whereas evidence for receptor reserve was obtained upon assessment of bupropion inhibition of nicotine-evoked [(3)H]NE overflow. Thus, bupropion acts as an antagonist at alpha3beta2* and alpha3beta4* nAChRs in rat striatum and hippocampus, respectively, across the same concentration range that inhibits DAT and NET function. The combination of nAChR and transporter inhibition produced by bupropion may contribute to its clinical efficacy as a smoking cessation agent.  相似文献   

12.
Nitric oxide has been shown to react under physiologic conditions with norepinephrine (NE) to produce 6-nitro-norepinephrine (6-NO(2)-NE), a compound that enhances NE release in the brain. Previous studies suggest that 6-NO(2)-NE is formed in the spinal cord and stimulates spinal NE release to produce analgesia. The purpose of the current studies was to examine the mechanisms by which 6-NO(2)-NE stimulates NE release in the spinal cord. Crude synaptosomes were prepared from spinal cords of male Sprague-Dawley rats and loaded with [(3)H]NE. Incubation of synaptosomes with 6-NO(2)-NE resulted in a release of NE, with a threshold of 1 microM 6-NO(2)-NE and a maximum effect of 30% fractional release. NE transporter inhibitors desipramine and nomifensine blocked NE release from 6-NO(2)-NE, and desipramine exhibited an IC(50) of 9.6 microM. NE release from 6-NO(2)-NE was dependent on external Na(+), but not Ca(2+) or the activity of guanylate cyclase. 6-NO(2)-NE also blocked uptake of [(3)H]NE into synaptosomes, with an IC(50) of 8.3 microM. These data are consistent with a direct action of 6-NO(2)-NE on noradrenergic terminals in the spinal cord to release NE. This action is independent of guanylate cyclase activation, and most likely shares a common mechanism with classic monoamine releasers such as amphetamine that cause direct release of NE from vesicles into the nerve terminal cytoplasm, leading to extracellular release by reverse transport.  相似文献   

13.
In mammals, the most important synchronizer for endogenous rhythms is the environmental light/dark cycle. In this report we have explored the ability of light/dark cycle and melatonin, the pineal hormone released during the night, to modulate cerebellar cholinergic input by interfering with the nicotinic acetylcholine receptors' (nAChRs) availability. Through the analysis of the response to selective cholinergic agonists and antagonists, we observed that nAChRs containing the alpha7 gene product mediate the release of [(3)H]glutamate from rat cerebellum slices. The [(3)H]glutamate overflow induced by alpha7 nAChR activation was higher during the dark phase, although the number of alpha-[(125)I]bungarotoxin binding sites, but not the [(3)H]nicotine binding sites (B(max)), was reduced. On the other hand, glutamate-evoked [(3)H]glutamate release was not modified by the hour of the day. Finally, we show that the nocturnal increase in nicotine-evoked [(3)H]glutamate release is imposed by a nocturnal surge of melatonin, as it is abolished when pineal melatonin production is inhibited by either maintaining the animals in constant light for 48 h or by injecting propranolol just before lights off for 2 days. The difference between light and dark [(3)H]glutamate-evoked release is restored in propranolol-treated animals that received melatonin during the dark period. In conclusion, we show that nicotine-evoked [(3)H]glutamate release in rat cerebellum presents a diurnal variation, driven by nocturnal pineal melatonin surge.  相似文献   

14.
15.
Release of [3H]dopamine ([3H]DA) from striatal synaptosomes is evoked most commonly by elevating potassium levels in the presence of calcium. However, it has been difficult to show that DA agonists or antagonists can modify K+-evoked release of [3H]DA. DA. In this study [3H]DA release evoked by exposure of synaptosomes (isolated and superfused previously with 0.0 mM Ca++ and 0.1 mM ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid) to 1.25 mM Ca++ can be modulated by the DA (D2) agonists apomorphine, pergolide and quinpirole and antagonists l-sulpiride and domperidone. The release was evoked under low potassium (6 mM or less) concentrations and the potassium concentration in the superfusion medium was not elevated before or during Ca++ exposure. Analysis of the superfusates obtained during Ca++ exposure revealed that approximately 80% of the tritium released was [3H]DA. The ability of DA (D2) agonists to inhibit the Ca++-evoked release from synaptosomes superfused with 9 mM K+ was greatly reduced. Therefore, prolonged depolarization may block DA (D2) regulation of [3H]DA release from synaptosomes. The Ca++-evoked release of [3H]DA was reduced greatly when 1 microM tetrodotoxin was present indicating sodium channels play a role in triggering the processes involved in Ca++-evoked [3H]DA release.  相似文献   

16.
Two markers for noradrenergic neurons: 1) desmethylimipramine sensitive norepinephrine (NE) uptake and 2) dopamine beta-hydroxylase activity were compared in various brain regions of normal and genetically epilepsy-prone rats (GEPR). These studies were designed to characterize further the nature of the noradrenergic deficit in GEPRs, which has been described as a reduction in steady-state NE levels. The high affinity (desmethylimipramine-sensitive) uptake of 3H-NE into crude synaptosomes was found to be significantly reduced in widespread areas of the GEPR forebrain including cortex, hippocampus, amygdala and hypothalamus. GEPRs also displayed a reduced uptake of 3H-NE in synaptosomes from the inferior colliculus, a structure that has been implicated in the audiogenic seizure, but other regions of the brain stem (reticular formation, cochlear nucleus, cerebellum) failed to reveal abnormalities in NE uptake. Reductions in dopamine beta-hydroxylase activity seemed to parallel the reductions in NE uptake regionally (except for the caudate nucleus), and both deficits (uptake and dopamine beta-hydroxylase) were similar in magnitude to the decrements in steady-state NE levels reported previously. The present findings therefore support the concept that there is a reduction in the number of noradrenergic terminals in most structures receiving noradrenergic innervations in the GEPR brain.  相似文献   

17.
The quaternary ammonium compound N,N'-dodecyl-bispicolinium dibromide (bPiDDB) potently and selectively inhibits nicotinic receptors (nAChRs) mediating nicotine-evoked [(3)H]dopamine release and decreases nicotine self-administration, suggesting that this polar, charged molecule penetrates the blood-brain barrier (BBB). This report focuses on 1) BBB penetration of bPiDDB; 2) the mechanism of permeation; and 3) comparison of bPiDDB to the cations choline and N-octylnicotinium iodide (NONI), both of which are polar, charged molecules that undergo facilitated BBB transport. The BBB permeation of [(3)H]choline, [(3)H]NONI, and [(14)C]bPiDDB was evaluated using in situ rat brain perfusion methods. Cerebrovascular permeability surface-area product (PS) values for [(3)H]choline, [(3)H]NONI, and [(14)C]bPiDDB were comparable (1.33 +/- 0.1, 1.64 +/- 0.15, and 1.3 +/- 0.3 ml/s/g, respectively). To ascertain whether penetration was saturable, unlabeled substrate was added to the perfusion fluid. Unlabeled choline (500 microM) reduced the PS of [(3)H]choline to 0.15 +/- 0.06 microl/s/g (p < 0.01). Likewise, unlabeled bPiDDB (500 microM) reduced the PS of [(14)C]bPiDDB to 0.046 +/- 0.005 microl/s/g (p < 0.01), whereas unlabeled NONI reduced the PS for [(3)H]NONI by approximately 50% to 0.73 +/- 0.31 microl/s/g. The PS of [(14)C]bPiDDB was reduced (p < 0.05) in the presence of 500 microM choline, indicating that the BBB choline transporter may be responsible for the transport of bPiDDB into brain. Saturable kinetic parameters for [(14)C]bPiDDB were similar to those for [(3)H]choline. The current results suggest that bPiDDB uses the BBB choline transporter for approximately 90% of its permeation into brain, and they demonstrate the carrier-mediated BBB penetration of a novel bisquaternary ammonium nAChR antagonist.  相似文献   

18.
Previous studies identified partial inhibitors and allosteric modulators of 5-hydroxytryptamine ([5-amino-3-(3,4-dichlorophenyl)-1,2-dihydropyrido[3,4-b]pyrazin-7-yl]carbamic acid ethyl ester [SoRI-6238], 4-(2-[bis(4-fluorophenyl)methoxy]ethyl)-1-(2-trifluoromethyl-benzyl)-piperidine [TB-1-099]) and dopamine transporters N-(diphenylmethyl)-2-phenyl-4-quinazolinamine, [SoRI-9804]). We report here the identification of three novel allosteric modulators of the dopamine transporter [N-(2,2-diphenylethyl)-2-phenyl-4-quinazolinamine [SoRI-20040], N-(3,3-diphenylpropyl)-2-phenyl-4-quinazolinamine [SoRI-20041], and [4-amino-6-[(diphenylmethyl)amino]-5-nitro-2-pyridinyl]carbamic acid ethyl ester [SoRI-2827]]. Membranes were prepared from human embryonic kidney cells expressing the cloned human dopamine transporter (hDAT). [(125)I]3beta-(4'-Iodophenyl)tropan-2beta-carboxylic acid methyl ester ([(125)I]RTI-55) binding and other assays followed published procedures. SoRI-20040, SoRI-20041, and SoRI-2827 partially inhibited [(125)I]RTI-55 binding, with EC(50) values ranging from approximately 1.4 to 3 microM and E(max) values decreasing as the [(125)I]RTI-55 concentrations increased. All three compounds decreased the [(125)I]RTI-55 B(max) value and increased the apparent K(d) value in a manner well described by a sigmoid dose-response curve. In dissociation rate experiments, SoRI-20040 (10 microM) and SoRI-20041 (10 microM), but not SoRI-2827 (10 microM), slowed the dissociation of [(125)I]RTI-55 from hDAT by approximately 30%. Using rat brain synaptosomes, all three agents partially inhibited [(3)H]dopamine uptake, with EC(50) values ranging from 1.8 to 3.1 microM and decreased the V(max) value in a dose-dependent manner. SoRI-9804 and SoRI-20040 partially inhibited amphetamine-induced dopamine transporter-mediated release of [(3)H]1-methyl-4-phenylpyridinium ion from rat caudate synaptosomes in a dose-dependent manner. Viewed collectively, we report several compounds that allosterically modulate hDAT binding and function, and we identify novel partial inhibitors of amphetamine-induced dopamine release.  相似文献   

19.
Because the mesolimbic dopamine system plays a critical role in nicotine addiction/reinforcement and because nicotinic receptors regulate dopamine release, we initiated a study to evaluate the long-term effects of nicotine (>6 months at the final dose) on nicotinic acetylcholine receptor (nAChR) sites and function in the nucleus accumbens of nonhuman primates. Nicotine was given in the drinking water as this mode of administration is long-term but intermittent, thus resembling smoking in this aspect. We determined the effects of nicotine treatment on function and binding of the alpha3/alpha6beta2* and alpha4beta2* nAChRs subtypes in nucleus accumbens, a region directly implicated in the addictive effects of nicotine. To evaluate function, we measured nicotine and K+-evoked [3H]dopamine release from nucleus accumbens synaptosomes. Changes in alpha4beta2* and alpha3/alpha6beta2* nAChRs were measured using 125I-epibatidine, [125I]A85380 [5-[125I]iodo-3(2(S)-azetidinylmethoxy) pyridine] and 125I-alpha-conotoxin MII autoradiography. Chronic nicotine treatment, which led to plasma nicotine levels in the range of smokers, significantly increased nucleus accumbens alpha4beta2* nAChR sites and function compared with control. By contrast, this treatment did not significantly change alpha3/alpha6beta2* nAChR sites or evoked dopamine release in this region compared with control. Thus, these data are distinct from previous results in striatum in which the same nicotine treatment paradigm decreased striatal alpha3/alpha6beta2* nAChR sites and function. The finding that long-term nicotine treatment selectively modulates alpha4beta2* and not alpha3/alpha6beta2* nAChR expression in primate nucleus accumbens is consistent with the results of studies in nicotinic receptor mutant mice implicating the alpha4beta2* nAChR subtype in nicotine-mediated addiction.  相似文献   

20.
The effects of endogenous and exogenous agonists at excitatory amino acid receptors mediating enhancement of [3H]norepinephrine [( 3H]NE) release have been investigated using superfused rat hippocampal synaptosomes. In Mg(++)-free medium L-glutamic acid (L-Glu), L-aspartic acid (L-Asp), N-methyl-D-aspartic acid (NMDA), kainic acid, (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and quisqualic acid (QA) all increased the release of [3H]NE. L-Glu produced the largest effect. In the presence of Mg++ (1.2 mM), the effect of L-Glu decreased by about 40%; L-Asp and NMDA lost completely their activity while the effects of kainic acid, QA and AMPA did not change significantly. Similarly to NMDA, the effect of L-Asp was augmented by glycine and blocked by NMDA receptor antagonists, while it was insensitive to the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). The effect of L-Glu on [3H] NE release was partly decreased by the NMDA receptor channel blocker (+)-5-methyl-10,11-dihydro-5-H-dibenzo[a,d]cycloepten-5,10-imine (MK-801) and partly by CNQX; when present together, the two antagonists completely abolished the L-Glu effect. The QA enhancement of [3H]NE release was antagonized by CNQX but it was insensitive to other classical non-NMDA receptor antagonists. In conclusion: 1) release-enhancing NMDA and non-NMDA receptors exist on noradrenergic axon terminals of rat hippocampus; 2) L-Asp appears to be a potent selective NMDA receptor agonist while L-Glu can activate also non-NMDA receptors; 3) the NE-releasing receptor activated by QA may represent a QA/AMPA receptor subtype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号