首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lassarre C  Ricort JM 《Endocrinology》2003,144(11):4811-4819
IGFs are potent mitogens that play a crucial role in cell proliferation and/or differentiation and tumorigenesis. Insulin receptor substrate-1 (IRS-1) is a key protein in the IGF signaling pathway in the estrogen-dependent MCF-7 breast carcinoma cell line. In this study, three growth factors [fibroblast growth factor (FGF), epidermal growth factor (EGF), and platelet-derived growth factor (PDGF)] were tested for their ability to modulate IRS-1 protein expression and the IGF-I signaling pathway. FGF and, to a lesser extent, EGF were found to increase IRS-1 protein, whereas PDGF had no effect. This indicates that growth factors can specifically modulate IRS-1 protein content. The increases provoked by EGF and FGF were dependent on the MAPK signaling pathway but independent of phosphatidylinositol 3-kinase (PI 3-kinase) signaling and required de novo protein synthesis. We noted that the kinetics of MAPK activation was continuous in response to FGF but transient in response to EGF. In addition, transfection of cells with a constitutively active form of MAPK kinase, which results in continuous MAPK activity, increased IRS-1 expression. Taken together, these results suggest that stimulation of IRS-1 expression was therefore stronger when MAPK activity was sustained. Pretreatment of cells with EGF, FGF, or PDGF for 24 h reduced IGF-I-induced tyrosine phosphorylation per molecule of IRS-1. However, IGF-I-induced PI 3-kinase activity was decreased by 24 h of pretreatment with EGF or PDGF but not with FGF. Our results therefore demonstrate that different growth factors are capable of specifically modulating the IGF-I signaling via IRS-1. They further suggest that the FGF-induced increase in IRS-1 counterbalances the inhibition of IRS-1 tyrosine phosphorylation to allow normal stimulation of IGF-I-induced PI 3-kinase activity.  相似文献   

2.
Aims/hypothesis: PI(3,4,5)P3 produced by PI3-kinase seems to be a key mediator for insulin's metabolic actions. We have recently cloned rat SHIP2 cDNA which is abundantly expressed in target tissues of insulin. Here, we clarify the role of SHIP2 possessing 5'-phosphatase activity toward PI(3,4,5)P3 in insulin signalling in the skeletal muscle. Methods: The role of SHIP2 in insulin-induced glycogen synthesis was studied by expressing wild-type (WT)-SHIP2 and a 5'-phosphatase defective (ΔIP)-SHIP2 into L6 myotubes by means of adenovirus mediated gene transfer. Results: The early events of insulin signalling including tyrosine phosphorylation of the insulin receptor and IRS-1, IRS-1 association with the p85 subunit, and PI3-kinase activity were not affected by expression of WT- and ΔIP-SHIP2. Although PI(3,4,5)P3 and PI(3,4)P2 are known to possibly activate a downstream molecule of PI3-kinase Akt in vitro, overexpression of WT-SHIP2 inhibited insulin-induced phosphorylation and activation of Akt. Conversely, Akt activity was increased by expression of ΔIP-SHIP2. GSK3β located downstream of Akt is an important molecule to further transmit insulin signal for glycogen synthesis in skeletal muscles. In accordance with the results of Akt, insulin-induced phosphorylation and inactivation of GSK3β, subsequent activation of glycogen synthase and glycogen synthesis were decreased by expression of WT-SHIP2, whereas these events were increased by expression of ΔIP-SHIP2. Conclusion/interpretation: Our results indicate that SHIP2 plays a negative regulatory role via the 5'-phosphatase activity in insulin signalling, and that PI(3,4,5)P3 rather than PI(3,4)P2 is important for in vivo regulation of insulin-induced Akt activation leading to glycogen synthesis in L6 myotubes. [Diabetologia (2001) 44: 1258–1267] Received: 5 February 2001 and in revised form: 25 June 2001  相似文献   

3.
To examine the role of SHIP in insulin-induced mitogenic signaling, we used a truncated SHIP lacking the SH2 domain (deltaSH2-SHIP) and a Y917/1020F-SHIP (2F-SHIP) in which two tyrosines contributing to Shc binding were mutated to phenylalanine. Wild-type (WT)-, deltaSH2-, and 2F-SHIP were transiently transfected into Rat1 fibroblasts overexpressing insulin receptors (HIRc). Insulin-stimulated tyrosine phosphorylation of WT-SHIP and deltaSH2-SHIP, whereas tyrosine phosphorylation of 2F-SHIP was not detectable, indicating that 917/1020-Tyr are key phosphorylation sites on SHIP. Although SHIP can bind via its 917/1020-Tyr residues and SH2 domain to Shc PTB domain and 317-Tyr residue, respectively, insulin-induced SHIP association with Shc was more greatly decreased in 2F-SHIP cells than that in deltaSH2-SHIP cells. Insulin stimulation of Shc association with Grb2, which is important for p21ras-MAP kinase activation, was decreased by overexpression of WT- and 2F-SHIP. Importantly, insulin-induced Shc x Grb2 association was not detectably reduced in deltaSH2-SHIP cells. In accordance with the extent of Shc association with Grb2, insulin-induced MAP kinase activation was relatively decreased in both WT-SHIP and 2F-SHIP cells, but not in deltaSH2-SHIP cells. To examine the functional role of SHIP in insulin's biological action, insulin-induced mitogenesis was compared among these transfected cells. Insulin stimulation of thymidine incorporation and bromodeoxyuridine incorporation was decreased in WT-SHIP cells compared with that of control HIRc cells. Expression of 2F-SHIP also significantly reduced insulin-induced mitogenesis, whereas it was only slightly affected by overexpression of deltaSH2-SHIP. Furthermore, the reduction of insulin-induced mitogenesis in WT-SHIP cells was partly compensated by coexpression of Shc. These results indicate that SHIP plays a negative regulatory role in insulin-induced mitogenesis and that the SH2 domain of SHIP is important for its negative regulatory function.  相似文献   

4.
Biedi C  Panetta D  Segat D  Cordera R  Maggi D 《Endocrinology》2003,144(12):5497-5503
Caveolae are lipid raft microdomains that regulate endocytosis and signal transduction. IGF-I receptor (IGF-IR) localizes in caveolae and tyrosine phosphorylates caveolin 1, supporting a role for these subcellular regions in the compartmentalization of IGF-I signaling. Src homology 2/alpha-collagen related protein (Shc) is the main mediator of IGF-I mitogenic action, coupling IGF-IR phosphorylation to Ras-MAPK activation. Here we show that IGF-I induces Shc tyrosine phosphorylation in the caveolae with a time course significantly different from that observed in the nonraft cellular fractions. In the same time, IGF-I recruits growth factor receptor bound protein 2 (Grb2) to caveolae and activates p42/p44 MAPKs in these microdomains. Src family kinases regulate IGF-I action through an Shc-dependent mechanism. In R-IGF-IRWT cells, IGF-I causes Fyn enrichment in the caveolae with a time course consistent with Shc phosphorylation and Grb2 recruitment in these regions. Finally, we have observed that after IGF-I stimulation, IGF-IR and Fyn colocalize in lipid raft caveolin 1-enriched microdomains. As insulin and IGF-I share common substrates, the effect of insulin on these cellular processes was measured. Here we show that insulin also induces Shc phosphorylation and Grb2 recruitment to caveolae, but with a significantly different time course compared with IGF-I. Our results suggest that 1) IGF-I causes the colocalization of signaling proteins in caveolae through a phosphorylation-regulated mechanism; and 2) the time course of phosphorylation and recruitment of substrates in caveolae by insulin receptor and IGF-IR could determine the specific actions of these receptors.  相似文献   

5.
In the critically ill, glucocorticoids induce myopathy, combining profound protein catabolism and mild myotubular death. Insulin-like growth factors (IGFs) inhibit muscle catabolism through activation of phosphatidylinositol 3-kinase (PI3K). Using rat L6 myoblasts, we show that IGF-I also acts through PI3K to inhibit apoptosis induced by hyperosmolar metabolic stress with 300 mM mannitol. We find that the glucocorticoid dexamethasone inhibits this antiapoptotic effect of IGF-I by impairing PI3K signaling. Dexamethasone induces overexpression of the PI3K subunit p85alpha, which, in turn, competes with the complete PI3K heterodimer for binding at insulin receptor substrate-1, inhibiting PI3K activation. Dexamethasone blocks IGF-I-induced phosphorylation of Akt, a PI3K-dependent process. Increased cellular p85alpha abundance, induced by either 10 microM dexamethasone or transient transfection with a plasmid coding for p85alpha, significantly inhibits IGF-I rescue from apoptosis induced by mannitol, as indicated by both loss of cell viability and increased activity of caspase-3 by fluorogenic assay. Conversely, constitutively active PI3K inhibits death induced by mannitol, even in the presence of dexamethasone. These findings may have particular relevance in the pathogenesis of acute steroid myopathy in critical illness, in which catabolic glucocorticoid effects combine with acute metabolic stressors, including sepsis, fasting, and chemical denervation.  相似文献   

6.
Monno S  Newman MV  Cook M  Lowe WL 《Endocrinology》2000,141(2):544-550
Insulin-like growth factor I (IGF-I) is an important mediator of breast cancer cell growth, although the signaling pathways important for IGF-I-mediated effects in breast cancer cells are still being elucidated. We had demonstrated previously that increased intracellular cAMP in MCF-7 breast cancer cells inhibited cell growth and IGF-I-induced gene expression, as determined using a reporter gene assay. This effect of cAMP on IGF-I signaling was independent of IGF-I-induced activation of the mitogen-activated protein kinases extracellular signal-regulated kinases 1 and 2 (ERK1 and -2). To determine whether this effect of cAMP may be mediated via another mitogen-activated protein kinase, the ability of IGF-I to activate the c-Jun N-terminal kinases (JNKs) was investigated. Treatment of MCF-7 cells with 100 ng/ml IGF-I increased the level of phosphorylated JNK, as determined by Western blot analysis. JNK phosphorylation was not evident until 15 min after treatment with IGF-I, and peak levels of phosphorylation were present at 30-60 min. This was in contrast to ERK phosphorylation, which was present within 7.5 min of IGF-I treatment. Determination of JNK activity using an immune complex assay demonstrated a 3.3- and 3.5-fold increase in JNK1 and -2 activity, respectively, 30 min after treatment with 100 ng/ml IGF-I. The use of PD98059, which inhibits activation of ERK1 and -2, and LY 294002, an inhibitor of phosphatidylinositol 3-kinase, demonstrated that IGF-I-induced activation of JNK1 is independent of ERK and phosphatidylinositol 3-kinase activation. In contrast, increasing intracellular cAMP with forskolin resulted in abrogation of IGF-I-induced JNK activity. In summary, these data demonstrate that IGF-I activates the JNKs in MCF-7 breast cancer cells and, taken together with the results of our previous study, suggest that JNK may contribute to IGF-I-mediated gene expression and, possibly, cell growth in MCF-7 breast cancer cells.  相似文献   

7.
Aims/hypothesis SHIP2 is a physiologically important negative regulator of insulin signalling hydrolysing the PI3-kinase product, PI(3,4,5)P3, which also has an impact on insulin resistance. In the present study, we examined the effect of inhibiting the endogenous SHIP2 function on the insulin resistance caused by chronic insulin treatment.Methods The endogenous function of SHIP2 was inhibited by expressing a catalytically inactive SHIP2 (IP-SHIP), and compared with the effect of treatments designed to restore the levels of IRS-1 in insulin signalling systems of 3T3-L1 adipocytes.Results Chronic insulin treatment induced the large (86%) down-regulation of IRS-1 and the modest (36%) up-regulation of SHIP2. Subsequent stimulation by insulin of Akt phosphorylation, PKC activity, and 2-deoxyglucose (2-DOG) uptake was markedly decreased by the chronic insulin treatment. Coincubation with the mTOR inhibitor, rapamycin, effectively inhibited the proteosomal degradation of IRS-1 caused by the chronic insulin treatment. Although the coincubation with rapamycin and advanced overexpression of IRS-1 effectively ameliorated subsequent insulin-induced phosphorylation of Akt, insulin stimulation of PKC activity and 2-DOG uptake was partly restored by these treatments. Similarly, expression of IP-SHIP2 effectively ameliorated the insulin-induced phosphorylation of Akt without affecting the amount of IRS-1. Furthermore, the decreased insulin-induced PKC activity and 2-DOG uptake following chronic insulin treatment were ameliorated by the expression of IP-SHIP2 more effectively than by the treatment with rapamycin.Conclusions/interpretation Our results indicate that the inhibition of endogenous SHIP2 is effective in improving the state of insulin resistance caused by chronic insulin treatment.  相似文献   

8.
SH2-containing inositol 5'-phosphatase 2 (SHIP2) is a 5'-lipid phosphatase hydrolyzing the phosphatidylinositol (PI) 3-kinase product PI(3,4,5)P(3) to PI(3,4)P(2) in the regulation of insulin signaling, and is shown to be increased in peripheral tissues of diabetic C57BL/KSJ-db/db mice. To clarify the impact of SHIP2 in the pathogenesis of insulin resistance with type 2 diabetes, we generated transgenic mice overexpressing SHIP2. The body weight of transgenic mice increased by 5.0% (P < 0.05) compared with control wild-type littermates on a normal chow diet, but not on a high-fat diet. Glucose tolerance and insulin sensitivity were mildly but significantly impaired in the transgenic mice only when maintained on the normal chow diet, as shown by 1.2-fold increase in glucose area under the curve over control levels at 9 months old. Insulin-induced phosphorylation of Akt was decreased in the SHIP2-overexpressing fat, skeletal muscle, and liver. In addition, the expression of hepatic mRNAs for glucose-6-phosphatase and phosphoenolpyruvate carboxykinase was increased, that for sterol regulatory element-binding protein 1 was unchanged, and that for glucokinase was decreased. Consistently, hepatic glycogen content was reduced in the 9-month-old transgenic mice. Structure and insulin content were histologically normal in the pancreatic islets of transgenic mice. These results indicate that increased abundance of SHIP2 in vivo contributes, at least in part, to the impairment of glucose metabolism and insulin sensitivity on a normal chow diet, possibly by attenuating peripheral insulin signaling and by altering hepatic gene expression for glucose homeostasis.  相似文献   

9.
A common alternative therapy for benign prostatic hyperplasia (BPH) is the extract from the fruit of saw palmetto (SPE). BPH is caused by nonmalignant growth of epithelial and stromal elements of the prostate. IGF action is important for prostate growth and development, and changes in the IGF system have been documented in BPH tissues. The main signaling pathways activated by the binding of IGF-I to the IGF-I receptor (IGF-IR) are the ERK arm of the MAPK cascade and the phosphoinositol-3-kinase (PI3K)/protein kinase B (PKB/Akt) cascade. We tested the hypothesis that SPE suppresses growth and induces apoptosis in the P69 prostate epithelial cell line by inhibiting IGF-I signaling. Treatment with 150 microg/ml SPE for 24 h decreased IGF-I-induced proliferation of P69 cells and induced cleavage of the enzyme poly(ADP-ribose)polymerase (PARP), an index of apoptosis. Treatment of serum-starved P69 cells with 150 microg/ml SPE for 6 h reduced IGF-I-induced phosphorylation of Akt (assessed by Western blot) and Akt activity (assessed by an Akt kinase assay). Western blot analysis showed that SPE reduced IGF-I-induced phosphorylation of the adapter protein insulin receptor substrate-1 and decreased downstream effects of Akt activation, including increased cyclin D1 levels and phosphorylation of glycogen synthase kinase-3 and p70(s6k). There was no effect on IGF-I-induced phosphorylation of MAPK, IGF-IR, or Shc. Treatment of starved cells with SPE alone induced phosphorylation the proapoptotic protein JNK. SPE treatment may relieve symptoms of BPH, in part, by inhibiting specific components of the IGF-I signaling pathway and inducing JNK activation, thus mediating antiproliferative and proapoptotic effects on prostate epithelia.  相似文献   

10.
Our objective was to define the signaling mechanisms by which mitogens such as insulin-like growth factor-I (IGF-I) regulate vascular smooth muscle cell (VSMC) apoptosis. We confirmed that IGF-I inhibits serum withdrawal-induced apoptosis of cultured VSMCs in a dose-dependent and time-dependent fashion. To test the hypothesis that the phosphatidylinositol (PI) 3-kinase signaling pathway regulates VSMC survival, we examined the relationship between PI 3-kinase activity and cell fate. PI 3-kinase was elevated in viable VSMCs maintained in serum-containing medium, declined significantly in response to serum withdrawal, and increased in response to IGF-I-induced survival. Moreover, blockade of PI 3-kinase with 2 structurally dissimilar inhibitors (wortmannin or LY294002) abolished the capacity of IGF-I to maintain VSMC viability. Similarly, transient transfection of a dominant-negative Deltap85 PI 3-kinase mutant construct abrogated the capacity of IGF-I to prevent VSMC death. Thus, PI 3-kinase is a critical antiapoptotic signal in VSMCs. To define the distal element of the antiapoptotic cascade, we tested the hypothesis that IGF-I inhibits the influence of the proapoptotic gene Bad. Indeed, IGF-I stimulates increased expression of the inactive, phosphorylated form of Bad by a PI 3-kinase-dependent pathway. Moreover, the proapoptotic effect of Bad was attenuated by the stimulation of IGF-I. Thus, growth factors appear to prevent VSMC death by activating signal transduction pathways linked to apoptotic regulatory genes.  相似文献   

11.
Vascular smooth muscle cells play a key role in the development of atherosclerosis. Culture of vascular smooth muscle A10 cells with high glucose for 4 weeks enhanced platelet-derived growth factor (PDGF)-induced BrdU incorporation. Since a long period of high glucose incubation was required for the effect, and it was inhibited by co-incubation with azaserine, the role of hexosamine biosynthesis in the development of atherosclerosis in diabetes was studied in A10 cells. Addition of glucosamine to the culture media enhanced PDGF-stimulated BrdU incorporation, and PDGF-induced tyrosine phosphorylation of the PDGF beta-receptor was increased by glucosamine treatment. Of the subsequent intracellular signaling pathways, PDGF-induced PDGF beta-receptor association with PLC gamma was not affected, whereas tyrosine phosphorylation of Shc, subsequent association of Shc with Grb2, and MAP kinase activation were relatively decreased. In contrast, PDGF-induced PDGF beta-receptor association with the p85 regulatory subunit of PI3-kinase and PI3-kinase activation were increased by 20% (P<0.01) and 36% (P<0.01), respectively. The intracellular signaling molecules responsible for the glucosamine effect were further examined using pharmacological inhibitors. Pretreatment with PLC inhibitor (U73122) had negligible effects, and MEK1 inhibitor (PD98059) showed only a slight inhibitory effect on the PDGF-induced BrdU incorporation. In contrast, pretreatment with PI3-kinase inhibitor (LY294002) significantly inhibited glucosamine enhancement of PDGF-induced BrdU incorporation. These findings suggest that glucosamine is involved in the development of atherosclerosis by enhancing PDGF-induced mitogenesis specifically via the PI3-kinase pathway.  相似文献   

12.
13.
14.
Insulin-like growth factor-1 (IGF-1) is an important differentiation and survival factor for granulosa cells. The purpose of this study was to test the hypothesis that IGF-1 promotes survival of porcine granulosa cells by signaling though the phosphatidylinositol (PI) 3-kinase/Akt signal transduction pathway. Treatment with IGF-1 (100 ng/ml) for 10 min stimulated PI 3-kinase and Akt protein kinase activity. IGF-I stimulated the phosphorylation and activation of Akt in a time- and concentration-dependent manner. The PI 3-kinase inhibitors wortmannin and LY294002 blocked IGF-1 induced increases in PI 3-kinase activity and phosphorylation of Akt. Additionally, IGF-1 treatment prevented apoptosis. The survival response to IGF-I was blocked by treatment with either wortmannin or LY294002. These data suggest that IGF-I-induced phosphorylation of Akt is mediated through PI 3-kinase and that inactivation of this pathway results in granulosa cell apoptosis. We conclude that the P1 3-kinase/Akt signaling serves as a functional survival pathway in the ovary.  相似文献   

15.
16.
Insulin-like growth factor-I (IGF-I) is a mitogenic polypeptide that induces proliferation of MCF-7 breast cancer cells, and cotreatment with the phosphoinositide 3-kinase (PI3-K) inhibitor LY294002 and the antiestrogen ICI 182780 inhibits IGF-I-induced growth. The role of estrogen receptor alpha (ERalpha) in mediating responses induced by IGF-I was investigated in cells transfected with small inhibitory RNA for ERalpha (iERalpha). The results showed that IGF-I-dependent phosphorylation of Akt and mitogen-activated protein kinase, induction of G(1)-S-phase progression and enhanced expression of cyclin D1 and cyclin E were dependent on ERalpha. Moreover, these same IGF-I-induced responses were also inhibited by the antiestrogen ICI 182780 and this was in contrast to a previous report suggesting that ICI 182780 did not affect IGF-I-dependent activation of PI3-K or induction of cyclin D1 expression. ICI 182780 exhibits antimitogenic activity and iERalpha inhibits G(1)-S-phase progression and proliferation of MCF-7 cells treated with IGF-I, suggesting that the effects of the antiestrogen are primarily related to downregulation of ERalpha.  相似文献   

17.
Because of the probable causal relationship between constitutive p210(bcr/abl) protein tyrosine kinase activity and manifestations of chronic-phase chronic myelogenous leukemia (CML; myeloid expansion), a key goal is to identify relevant p210 substrates in primary chronic-phase CML hematopoietic progenitor cells. We describe here the purification and mass spectrometric identification of a 155-kD tyrosine phosphorylated protein associated with src homologous and collagen gene (SHC) from p210(bcr/abl)-expressing hematopoietic cells as SHIP2, a recently reported, unique SH2-domain-containing protein closely related to phosphatidylinositol polyphosphate 5-phosphatase SHIP. In addition to an N-terminal SH2 domain and a central catalytic region, SHIP2 (like SHIP1) possesses both potential PTB(NPXY) and SH3 domain (PXXP) binding motifs. Thus, two unique 5-ptases with striking structural homology are coexpressed in hematopoietic progenitor cells. Stimulation of human hematopoietic growth factor responsive cell lines with stem cell factor (SCF), interleukin-3 (IL-3), and granulocyte-macrophage colony-stimulating factor (GM-CSF) demonstrate the rapid tyrosine phosphorylation of SHIP2 and its resulting association with SHC. This finding suggests that SHIP2, like that reported for SHIP1 previously, is linked to downstream signaling events after activation of hematopoietic growth factor receptors. However, using antibodies specific to these two proteins, we demonstrate that, whereas SHIP1 and SHIP2 selectively hydrolyze PtdIns(3,4,5)P3 in vitro, only SHIP1 hydrolyzes soluble Ins(1,3,4,5)P4. Such an enzymatic difference raises the possibility that SHIP1 and SHIP2 may serve different functions. Preliminary binding studies using lysates from p210(bcr/abl)-expressing cells indicate that both Ptyr SHIP2 and Ptyr SHIP1 bind to the PTB domain of SHC but not to its SH2 domain. Interestingly, SHIP2 was found to selectively bind to the SH3 domain of ABL, whereas SHIP1 selectively binds to the SH3 domain of Src. Furthermore, in contrast to SHIP1, SHIP2 did not bind to either the N-terminal or C-terminal SH3 domains of GRB2. These observations suggest (1) that SHIP1 and SHIP2 may have a different hierarchy of binding SH3 containing proteins and therefore may modulate different signaling pathways and/or localize to different cellular compartments and (2) that they may be substrates for tyrosine phosphorylation by different tyrosine kinases. Because recent evidence has clearly implicated both PI(3,4, 5)P3 and PI(3,4)P2 in growth factor-mediated signaling, our finding that both SHIP1 and SHIP2 are constitutively tyrosine phosphorylated in CML primary hematopoietic progenitor cells may thus have important implications in p210(bcr/abl)-mediated myeloid expansion.  相似文献   

18.
Caveolin (Cav)-1, the major caveolar protein, directly interacts with IGF-I receptor (IGF-IR) and its intracellular substrates. To determine the role of Cav-1 in IGF-IR signaling, we transfected H9C2 cells with small interfering RNA specific for Cav-1-siRNA. The selective down-regulation of Cav-1 (90%) was associated with a smaller reduction of Cav-2, whereas Cav-3 expression was unaffected. A significant reduction of IGF-IR tyrosine phosphorylation in Cav-1-siRNA H9C2 cells was found compared with H9C2 control cells (Ctr-siRNA). The reduced IGF-IR autophosphorylation resulted in a decrease of insulin receptor substrate-1, Shc, and Akt activation. In addition, in Cav-1-siRNA H9C2 cells, IGF-I did not prevent apoptosis, suggesting that Cav-1 is required to mediate the antiapoptotic effect of IGF-I in cardiomyoblasts. The down-regulation of Cav-1 decreased IGF-IR activation and affected the ability of IGF-I to prevent apoptosis after serum withdrawal also in human umbilical vein endothelial cells. These results demonstrate that: 1) Cav-1 down-regulation negatively affects IGF-IR tyrosine phosphorylation; 2) this effect causes a reduced activation of insulin receptor substrate-1, Shc, and Akt; and 3) Cav-1 is involved in IGF-IR antiapoptotic signaling after serum deprivation.  相似文献   

19.
IGF binding protein (IGFBP)-3 is an important regulator of mammary epithelial cell (MEC) growth and can enhance the ability of both IGF-I and epidermal growth factor ligands such as TGFalpha to stimulate MEC proliferation. Here we investigate the role of the phosphatidylinositol-3 kinase (PI3K) and MAPK pathways in the regulation of IGFBP-3 expression by IGF-I and TGFalpha in bovine MECs. Both growth factors stimulated DNA synthesis, although IGF-I was the stronger mitogen. IGF-I and TGFalpha also stimulated IGFBP-3 mRNA and protein levels. TGFalpha stimulated rapid, transient activation of Akt that was maximal at 5 min and diminished by 15 min. In contrast, IGF-I-induced Akt activation was maximal between 15 and 90 min and was sustained for 6 h. Although ERK 1/2 was maximally stimulated by TGFalpha between 5 and 15 min, IGF-I did not stimulate discernible activation of ERK 1/2. In addition, TGFalpha but not IGF-I induced rapid phosphorylation of Shc, whereas only IGF-I activated insulin receptor substrate-1. Pretreatment with the PI3K inhibitor LY294002 or knockdown of p85 with small interfering RNA inhibited IGF-I or TGFalpha-stimulated IGFBP-3 expression. Similarly, MAPK kinase-1 inhibitors PD98059 and U0126 each abolished TGFalpha-stimulated increases in IGFBP-3 mRNA levels. In contrast to TGFalpha, IGF-I retained the ability to partially increase IGFBP-3 mRNA levels in the presence of MAPK kinase-1 inhibitors, indicating that IGF-I may activate alternative substrates of the PI3K pathway that are involved in IGFBP-3 regulation. In conclusion, stimulation of IGFBP-3 mRNA levels by mitogens is regulated through both the PI3K and MAPK pathways in bovine MECs.  相似文献   

20.
Insulin-like growth factor-I (IGF-I) plays an important role in regulating vascular smooth muscle cell (VSMC) proliferation, directed migration, differentiation, and apoptosis. The signaling mechanisms used by IGF-I to elicit these actions, however, are not well defined. In this study, we examined the role(s) of protein kinase C (PKC) in mediating the IGF-I actions in cultured porcine VSMCs. Out of the eleven known members of PKC family, PKC-alpha, -betaI, -epsilon, -eta, -lambda, -theta, and -zeta, were detectable by Western immunoblot analysis in these cells. Further analysis indicated that the subcellular distribution of several PKC isoforms is regulated by IGF-I. While IGF-I stimulated membrane translocation of PKC-eta, -epsilon, and -zeta and regulated the cytosolic levels of PKC-betaI, it had no such effect on PKC-alpha and -lambda. To examine whether PKC activation is required for the IGF-I-regulated biological responses, phorbol myristate acetate (PMA) and GF109203X were used to down-regulate or inhibit PKC activity. Both PMA (1 microM) and GF109203X (20 microM) nearly completely suppressed the total PKC activity after a 30-min incubation (> 90%), and this inhibition lasted for at least 24 h. Down-regulation or inhibition of PKC activity abolished the IGF-I-induced DNA synthesis, migration and IGFBP-5 gene expression. In contrast, the IGFBP-5 expression induced by forskolin was unaffected by PKC down-regulation or inhibition, suggesting that PKC activation is required for the IGF-regulated but not the cAMP-regulated events. Because the actions of IGF-I on DNA synthesis and IGFBP-5 gene expression in VSMCs have been shown to be mediated through the phosphatidylinositol 3-kinase (PI3 kinase) signaling pathway in porcine VSMCs, the potential role of PKC in IGF-I-induced activation of PI3 kinase and PKB/Akt were examined. Treatment with either PMA or GF109203X did not significantly affect the effects of IGF-I on PI3 kinase activation or PKB/Akt phosphorylation. These results indicated that PKC-betaI, -eta, -epsilon, and -zeta may play an essential role(s) in IGF-I regulation of VSMC migration, DNA synthesis and gene expression, and that these PKC isoforms may either act independently of the PI3 kinase pathway or act further downstream of PKB/Akt in the IGF signaling network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号