首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From mice infected with the DA strain of Theiler's murine encephalomyelitis virus (TMEV), CD8+ cytotoxic T lymphocytes (CTLs) could be detected after stimulation with TMEV infected antigen presenting cells (APCs). These CTLs killed not only TMEV infected but also uninfected syngeneic cells. Killing was associated with interferon (IFN)-gamma production in ELISPOT assays. The CTLs were efficiently induced by vaccinia virus encoding DA virus capsid proteins, but not by APCs infected with the GDVII strain of TMEV. The CTLs produced IFN-gamma in response to TMEV infected, but not uninfected, astrocytes. The CTLs could be maintained in the presence of interleukin (IL)-2. We hypothesized that, in DA virus infection, CD8+ CTLs specific for viral capsid protein could recognize self protein on oligodendrocytes by molecular mimicry, leading to demyelination.  相似文献   

2.
Canine distemper virus does not infect oligodendrocytes in vitro   总被引:1,自引:0,他引:1  
Dissociated canine brain cell cultures were infected with virulent canine distemper virus (CDV). Double immunofluorescent labelling was done to simultaneously demonstrate viral antigen and specific glial cell markers. Virus containing oligodendrocytes were not found at any stage of the infection. A certain proportion of the infected cells were shown to be astrocytes. It was concluded that CDV has no obvious tropism for oligodendrocytes which could explain the mechanism of demyelination in distemper in vivo.  相似文献   

3.
Canine Distemper Virus (CDV) produces an encephalitis in dogs that varies with viral strain. We have studied the cell tropisms of two virulent strains (CDV-SH and CDV A75-17) and an attenuated strain, Rockborn (CDV-RO), in cultured canine brain cells. Infected cell types were identified by double immunofluorescent labeling of specific cell markers and viral antigens. All viral strains studied produced infection in astrocytes, fibroblasts, and macrophages. Neurons were not infected by CDV A75-17 but were rapidly infected by CDV-SH and CDV-RO. Multipolar oligodendrocytes were very rarely infected by any of the virus strains. In contrast, a morphologically distinct subset of bipolar oligodendrocytes were commonly infected by CDV-SH and CDV-RO. The kinetics of infection in the astrocytes, oligodendrocytes, neurons, and macrophages varied between strains. Both CDV-SH and CDV-RO rapidly infected bipolar oligodendrocytes, astrocytes, neurons, and macrophages by 14 days post infection while infection by CDV A75-17 was delayed until after 28-35 days post infection. The differences in the growth kinetics and cell tropisms for some brain cells, exhibited by the three viral strains examined in this in vitro study, may relate to the different CNS symptoms that these strains produce in vivo.  相似文献   

4.
Kang MH  So EY  Park H  Kim BS 《Glia》2008,56(9):942-953
To investigate viral replication and cell-cell spreading in astrocytes, recombinant Theiler's murine encephalomyelitis virus (TMEV) expressing green fluorescent protein (GFP) during the replication was generated. GFP and TMEV proteins were processed correctly in infected cells and production of viral proteins could be tracked by fluorescent microscopy. Viral replication of both wild-type TMEV and GFP-TMEV was dependent on the activation of NF-kappaB and partially MAP kinase, based on chemical inhibition studies. Viral replication was significantly reduced in primary astrocytes from NF-kappaB1 (p105)-deficient mice compared with that from wild-type control mice, whereas cytokine production was enhanced. These results suggest an association of canonical NF-kappaB subunits in viral replication, but not cytokine production. Viral replication was also suppressed in both IKKalpha and IKKbeta-deficient mouse embryonic fibroblasts (MEFs), compared with that in wild-type MEF. However, the inhibition was significantly greater in IKKbeta-deficient MEF, suggesting that IKKbeta plays a stronger role in supporting viral replication. Interestingly, viral replication and spreading in primary astrocytes from susceptible SJL/J mice were several-fold higher than those in astrocytes from resistant C57BL/6 mice, suggesting that higher viral replication levels in astrocytes may also contribute to the viral persistence in the central nervous system (CNS) of susceptible SJL/J mice. A relatively higher level of activated NF-kappaB was found in the nuclei of virus-infected SJL astrocytes compared with C57BL/6 astrocytes suggest that the NF-kappaB activation level affects on viral replication.  相似文献   

5.
The pathogenicity and cell tropism of mouse hepatitis virus (MHV-JHM-strain) in the developing mouse (Balb/c) and rat (Wistar and Lewis) brain were analysed. Intracranial infection of Balb/c mice at postnatal day 5 induced a lethal encephalitis in all animals. Of Wistar rats infected at day 2 or 5 after birth, 30 to 70%, respectively, survived. The distribution of viral antigen was studied in frozen brain sections of animals that died after infection; astrocytes were found to be the major virus-infected cell type throughout the central nervous system. More than 75% of the surviving rat pups developed paralysis, but viral antigen was detected in only few brain cells and not in astrocytes. The cell tropism of MHV-JHM was examined further in virus-infected glial cell cultures derived from brains of rats or mice. In the glial cultures derived from Wistar rats, only oligodendrocytes were infected, whereas in cultures derived from mouse or Lewis rat brain viral antigen was detected in both astrocytes and oligodendrocytes. Infection of astrocytes led to the formation of syncytia and degradation of the cytoskeleton. Infected rat oligodendrocytes gradually disappeared from the cultures because of cell death. These phenomena indicate that, besides an indirect autoimmune response triggered by infected astrocytes, direct virus-induced injury to astrocytes or to oligodendrocytes can have a dominant role in the neuropathogenicity of mouse hepatitis virus. The present results underscore the importance of species and developmental stage of experimental animals in the neurotropism and pathogenicity of MHV-JHM.  相似文献   

6.
Two HIV-positive male patients presented with a variety of symptoms including hemiparesis, unsteadiness, progressive loss of vision and poor memory. There were multiple non-enhancing lesions shown by CT scan in the white matter of the cerebral hemispheres. Specimens obtained by burr-hole biopsy showed the features of progressive multifocal leucoencephalopathy (PML) in both cases. Electron microscopy demonstrated round and rod shaped particles of papovavirus in the nuclei and cytoplasm of oligodendrocytes and in processes of astrocytes where abnormal and florid modes of viral replication were seen. Additional features observed were viral particles suggestive of an enterovirus in Case 1 and, in both specimens, massive membrane proliferation within both nuclei and cytoplasm of infected cells together with the presence of tubuloreticular structures (TRS) in the cytoplasm of endothelial cells. At post-mortem, the brain of patient 2 showed PML and HIV encephalitis. The presence of HIV was confirmed by immunohistochemical methods. We suggest that in AIDS patients the abnormality of the immune system induced by HIV causes abnormal replication patterns of papovavirus in the brain. In addition, these cases confirm the frequent occurrence in AIDS patients of TRS, now considered to be a marker for HIV.  相似文献   

7.
Human T-lymphotropic virus type I (HTLV-I) has been considered as an agent responsible for tropical spastic paraparesis and HTLV-I associated myelopathy. However, the pathogenesis of the diseases remains unclear. In a previous study we demonstrated that HTLV-I could infect adult human astrocytes and oligodendrocytes in vitro, although the rates of infected cells were low, at a rate of 0.1% and 0.01-0.05% respectively. Since mother-to-child transmission has been proposed as one of the major pathways for the prevalence of HTLV-I endemic, in the present study we investigated the susceptibility of human fetal astrocytes to HTLV-I in culture. After two days of co-culturing fetal brain cells with irradiated MT-2 cells (an HTLV-I-producing T-cell line), immunofluorescence staining revealed many positive astrocytes for HTLV-I p19 antigen. Multinucleated giant cells doubly immunoreactive to glial fibrillary acidic protein and HTLV-I antigen were frequently observed and showed a characteristic feature of hairy or fluffy external appearance. The percentage of infected astrocytes became as high as 19.4% at Day 21 of co-culture and then decreased. Electron microscopic examination revealed type C virus-like particles in astrocytes. These results indicate that human fetal astrocytes are more susceptible to HTLV-I infection than adult human astrocytes in tissue culture.  相似文献   

8.
The BeAn strain of Theiler's murine encephalomyelitis virus (TMEV) persists in the CNS and produces a chronic inflammatory demyelinating disease that is an animal model for human multiple sclerosis (MS). The mechanisms leading to TMEV-induced demyelination are still under study but most likely involve both immune-mediated and virus induced damage to cells in the CNS, both depending on viral persistence. It is therefore important to identify the cells in which continued virus production is permitted. In this study, we looked at virus infection in primary astrocytes, microglia and oligodendrocytes, derived from brains of neonatal susceptible SJL/J mice. As evidenced by Western blots and immunocytochemistry, we were able to detect viral antigens in all these brain-derived cells. In addition, we extended the study to spinal cord tissues from mice suffering TMEV-induced disease. Immunohistochemistry staining with anti-TMEV sera and antibodies to specific cell markers detected viral antigens in all these cells. We then asked the question whether viral antigen present in these cells, particularly in microglia/macrophages, represented true viral replication or not. By using different techniques, including immunoprecipitation experiments and the very sensitive method of negative RNA detection through RNase protection assay, we show that both astrocytes and oligodendroglia permit de novo viral replication and viral protein synthesis but with only minimal cytopathic effects. Of these two cell types, astrocytes carry the brunt of viral replication. In microglia, on the other hand, viral replication is restricted since only minimal amounts of negative RNA copies can be demonstrated, while there are clear signs that some of these cells undergo apoptosis. These findings show that the main cell for viral replication is the astrocyte, rather than the microglia/macrophage. Most of the viral antigen present in macrophages, therefore, is probably the result of phagocytosis, rather than actual viral replication. In view of the demonstrated presence of viral replication in astrocytes and of great amounts of viral antigens in microglia/macrophages, it is possible that both types of cells act as antigen presenting cells during this immunopathological disease.  相似文献   

9.
Although neurological manifestations associated with dengue infections have been reported in endemic countries, the viral or host characteristics determining the infection or alteration of nervous function have not been described. In order to investigate neurobiological conditions related to central nervous system dengue virus (DENV) infection, we established a mouse model of neuroinfection. A DENV-4 isolate was first adapted to neuroblastoma cells, later inoculated in suckling mice brain, and finally, this D4MB-6 viral variant was inoculated intraperitoneally in Balb/c mice at different postnatal days (pnd). Virus-induced fatal encephalitis in 2 and 7 pnd mice but infected at 14 and 21 pnd mice survived. The younger mice presented encephalitis at the sixth day postinfection with limb paralysis and postural instability concomitant with efficient viral replication in brain. In this mice model, we found activated microglial cells positive to viral antigen. Neurons, oligodendrocytes, and endothelial cells were also infected by the D4MB-6 virus in neonatal mice, which showed generalized and local plasma leakage with blood?Cbrain barrier (BBB) severe damage. These results suggest that there was a viral fitness change which led to neuroinfection only in immune or neurological immature mice. Infection of neurons, endothelial, and microglial cells may be related to detrimental function or architecture found in susceptible mice. This experimental neuroinfection model could help to have a better understanding of neurological manifestations occurring during severe cases of dengue infection.  相似文献   

10.
11.
12.
13.
Membrane cofactor protein (CD46) is a regulator of complement activation that also serves as the entry receptor for human herpes virus 6 (HHV-6) and measles virus (MV) into human cells. While it is clear that oligodendrocytes and astrocytes are cell types commonly infected by these viruses, it is unclear whether oligodendrocytes express CD46, or which are the cellular mechanisms underlying the infection. We show that adult oligodendrocytes, as well as astrocytes and microglial cells, express CD46 on the cellular surface. Moreover, we employed a quantitative fusion assay to demonstrate that HHV-6A infection of T lymphocytes enables cell-cell fusion of these cells to astrocytes or to oligodendroglial cells. This fusion is mediated by the interaction between viral glycoproteins expressed on the membrane of the infected cells and CD46 on the glial targets, and is also observed using cells expressing recombinant MV glycoproteins. These data suggest a mechanism that involves cell-cell fusion by which certain viruses could spread the infection from the periphery to the cells in the nervous system.  相似文献   

14.
Infection with the Daniel strain of Theiler's murine encephalomyelitis (TMEV-DA) virus induces persistent demyelinating lesions in mice and serves as a model for multiple sclerosis. During the acute phase of the disease, however, viral infection leads to cell death in vivo. Viral-induced death may result directly from viral infection of neural cells, or indirectly, by activation of the immune system. To examine the direct effects of TMEV infection on neural cells, myelinated explant cultures of the murine cerebellum were infected with 10(5) pfu of TMEV-DA for periods ranging from 1 to 72 h. Our results indicate that TMEV-DA replicates in cultured neural tissue. Initially, viral antigen is localized to a few isolated neural cells. However, within 72 h antigen was observed in multiple foci that included damaged cells and extracellular debris. Viral infection led to a rapid and cyclical induction of necrosis with a time period that was consistent with the lytic phase of the viral life-cycle. Simultaneously, we observed an increase in apoptosis 48 h post-infection. Electron micrographic analysis indicated that viral-infected cultures contained cells with fragmented nuclei and condensed cytoplasm, characteristic of apoptosis. The localization of apoptosis to the cerebellar granule cell layer, identified these cells as presumptive granule neurons. Viral infection, however, did not lead to myelin damage, though damaged axons were visible in TMEV-infected cultures. These results suggest that during the acute phase of infection, TMEV targets neural cells for apoptosis without directly disrupting myelin. Myelin damage may therefore result from the activation of the immune system.  相似文献   

15.
Infection with the Daniel strain of Theiler’s murine encephalomyelitis (TMEV-DA) virus induces persistent demyelinating lesions in mice and serves as a model for multiple sclerosis. During the acute phase of the disease, however, viral infection leads to cell death in vivo. Viral-induced death may result directly from viral infection of neural cells, or indirectly, by activation of the immune system. To examine the direct effects of TMEV infection on neural cells, myelinated explant cultures of the murine cerebellum were infected with 105 pfu of TMEV-DA for periods ranging from 1 to 72 h. Our results indicate that TMEV-DA replicates in cultured neural tissue. Initially, viral antigen is localized to a few isolated neural cells. However, within 72 h antigen was observed in multiple foci that included damaged cells and extracellular debris. Viral infection led to a rapid and cyclical induction of necrosis with a time period that was consistent with the lytic phase of the viral life-cycle. Simultaneously, we observed an increase in apoptosis 48 h post-infection. Electron micrographic analysis indicated that viral-infected cultures contained cells with fragmented nuclei and condensed cytoplasm, characteristic of apoptosis. The localization of apoptosis to the cerebellar granule cell layer, identified these cells as presumptive granule neurons. Viral infection, however, did not lead to myelin damage, though damaged axons were visible in TMEV-infected cultures. These results suggest that during the acute phase of infection, TMEV targets neural cells for apoptosis without directly disrupting myelin. Myelin damage may therefore result from the activation of the immune system.  相似文献   

16.
To examine the function of JC virus (JCV) agnoprotein, we examined the brains of cases of progressive multifocal leukoencephalopathy (PML), which is caused by JCV infection, using a newly generated antibody. The antibody reacted with 8 kDa protein specific for JCV agnoprotein by Western blotting. In vitro analyses showed that JCV capsid protein VP1 and large T antigen (T-Ag) were localized in the nuclei, but that agnoprotein was mainly detected in the cytoplasm of JCV-infected cells with an occasional nuclear staining. In the PML brain, an immunoreactive signal for agnoprotein was distributed in the perinuclear areas and cytoplasmic processes with occasional punctate staining in demyelinating lesions as well as adjacent myelinated areas. Agnoprotein presented mostly in the infected oligodendrocytes and partly in the astrocytes. Using double immunostaining, agnoprotein was seen to be expressed in the cytoplasmic processes of the cells, the nuclei of which were labeled with VP1 and T-Ag, where virus particles existed. Thus, JCV agnoprotein was mostly expressed in the infected oligodendrocytes and mainly localized in the cytoplasmic processes apart from virus particles in the demyelinated lesions.  相似文献   

17.
Multiple neural cell types are infected in vitro by border disease virus   总被引:1,自引:0,他引:1  
Border disease (BD) of sheep results from a congenitally acquired nonarbotogavirus infection which causes a highly selective central nervous system (CNS) pathological lesion consisting of diffuse decreased myelination without inflammation or neuronal destruction. Thus, a selective disruption of oligodendroglial function appears to occur. In order to investigate the in vitro cell tropism of BD virus, primary cultures derived from fetal and adult ovine CNS and peripheral nervous system were inoculated with BD virus. Infected cell types were determined by dual immunofluorescent labeling for viral and cell type specific antigens. Infection of all the major cell types represented in these cultures, including oligodendrocytes, astrocytes, fibroblasts, dorsal root ganglion neurons and Schwann cells was found. Oligodendrocytes were only infected earlier and appeared to remain infected longer than astrocytes and fibroblasts. Infectious virus was produced by all cultures and continued to be produced even after the disappearance of nearly all immunocytochemically detectable viral antigen within cells. These studies suggest that the selective dysfunction of the oligodendrocyte in BD is not based on a selective viral tropism.  相似文献   

18.
Summary Mice were infected by the vaginal route with the MS strain of herpes simplex virus type 2 (HSV-2). Serial vaginal cultures were used to confirm infection and to select mice for this study. Two mice were killed by perfusion on days 2–6 post infection (p.i.) and lumbar and sacral cord with cauda were fixed and embedded for electron microscopy. Semithin Epon-sections were stained for viral antigen using a rabbit anti-HSV-2 antiserum and the Avidin-Biotin (ABC) method. Thin sections from antigen-positive blocks were examined by electron microscopy, and the number and types of infected cells detected by these two methods were compared. A good correlation was found between detection of infected cells by these methods. Infected cells included neurons of dorsal root ganglia and spinal cord, satellite cells of dorsal root ganglia, non-myelinating Schwann cells, astrocytes, oligodendrocytes and arachnoidal cells. Infected cells were first detected in the cauda on day 3 p.i. and in the spinal cord on day 5 p.i. The temporal and spatial distribution of infected cells was consistent with neural spread to and within the CNS. The pathological lesions showed a good correlation with the distribution and number of infected cells and are probably due to a direct virus effect. The similar sensitivity of the Epon-ABC method to electron microscopy in detecting infected cells indicates that this method may have useful applications in both experimental and diagnostic work.  相似文献   

19.
Carpentier PA  Williams BR  Miller SD 《Glia》2007,55(3):239-252
Impaired immune surveillance and constitutive immunosuppressive properties make the central nervous system (CNS) a particular challenge to immune defense, and require that CNS-resident cells be capable of rapidly recognizing and responding to infection. We have previously shown that astrocytes respond to treatment with a TLR3 ligand, poly I:C, with the upregulation of innate immune functions. In the current study, we examine the activation of innate immune functions of astrocytes by Theiler's murine encephalomyelitis virus (TMEV), a picornavirus, which establishes a persistent infection in the CNS of susceptible strains of mice and leads to the development of an autoimmune demyelinating disease that resembles human multiple sclerosis. Astrocytes infected with TMEV are activated to produce type I interferons, the cytokine IL-6, and chemokines CCL2 and CXCL10. We further examined the mechanisms that are responsible for the activation of astrocytes in response to direct viral infection and treatment with poly I:C. We found that the cytoplasmic dsRNA-activated kinase PKR is important for innate immune responses to TMEV infection, but has no role in their induction by poly I:C delivered extracellularly. In contrast, we found that TLR3 has only a minor role in responses to TMEV infection, but is important for responses to poly I:C. These results highlight the differences between responses induced by direct, nonlytic virus infection and extracellular poly I:C. The activation of astrocytes through these different pathways has implications for the initiation and progression of viral encephalitis and demyelinating diseases such as multiple sclerosis.  相似文献   

20.
Summary The murine papovavirus K causes fatal pneumonia in infant mice, but an asymptomatic infection in older mice. In order to establish whether the virus affects the central nervous system in the course of systemic infection, we carried out morphological and immunohistochemical studies on the experimentally infected mice. BALB/c mice, less than 4 days of age, were inoculated with K virus either intraperitoneally or intracerebrally. When the animals were moribund, usually 10 days or so, after inoculation, their brains were removed and examined. Acutely infected mice showed only minor changes: intranuclear eosinophilic inclusions in very rare capillary endothelial cells of the brain. However, immunoperoxidase studies, using specific antibody to K virus, revealed that a number of brain cells had positive nuclear staining. These nuclei were distributed throughout the brain, without an apparent site of predilection. Double-immunostaining showed that virtually all cells whose nuclei were positive for viral antigen were endothelial, because their cytoplasm was positive for factor-VIII or vimentin. There were no nuclei positive for viral antigen in astrocytes, as determined by positive staining for glial fibrillary acidic protein or glutamine synthetase. By electron microscopy, clusters of K virus particles were found only in the nuclei of brain capillary endothelial cells. Although these endothelial cells showed degeneration of varying degree, their basement membranes remained relatively intact and there was no disorganization in the endfeet of contiguous astrocytes. Neurons and glial cells had normal ultrastructures. Therefore, this study has demonstrated that there is involvement of central nervous system during systemic K virus infection and that the infection involves predominantly brain capillary endothelial cells.Supported by Deutsche Forschungsgemeinschaft and Alexander von Humboldt FoundationDepartment of Neuropathology, Institute of Brain Research, University of Tokyo, Tokyo, Japan  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号