首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 357 毫秒
1.
The hairpin loop structure and the downstream spacer element of histone mRNA precursors are both needed for efficient 3' end formation in vivo and in vitro. Though generally considered as a single processing signal, these two motifs are involved in different types of interaction with the processing machinery. Whereas RNA duplex formation between the downstream spacer element and the U7 small nuclear RNA is essential for processing, we show here that base pairing between the histone stem-loop structure and the U7 RNA is not relevant. Our experiments demonstrate that a processing factor other than the U7 RNA makes contact with the highly conserved hairpin structure of the histone precursor. The recognition of the target site by the processing factor is structure and sequence specific. Prevention of this interaction results in an 80% decrease of 3' cleavage efficiency in vitro. The hairpin binding factor is Sm-precipitable and can be partially separated from the U7 small nuclear ribonucleoprotein particle on a Mono Q column.  相似文献   

2.
A short RNA oligonucleotide comprising the 5' splice site consensus sequence (5'SS RNA oligo) efficiently inhibits splicing of mRNA precursors in HeLa cell nuclear extracts. Addition of 5'SS RNA oligo inhibits early, but not late, steps in the splicing reaction, affecting the process of spliceosome assembly. In the presence of 5'SS RNA oligo a majority of U4/U5/U6 triple small nuclear ribonucleoprotein (snRNP) complex present in HeLa nuclear extracts associates with U2 snRNP to form a multi-snRNP complex, which could account for the observed inhibition of splicing by the oligo. This same set of snRNPs has been shown to assemble on pre-mRNAs during in vitro splicing to form splicing complex B. Removal of the 5' end of U1 snRNA, which is complementary to the 5' splice site, does not prevent association of snRNPs into U2/U4/U5/U6 complex in the presence of 5'SS RNA oligo. This suggests that interactions other than U1 snRNA.5'SS RNA oligo base pairing are used in recognition of the oligo sequence. 5'SS RNA oligo-induced assembly of the multi-snRNP complex may thus serve as a model to study the mechanism of 5' splice site recognition during splicing.  相似文献   

3.
U6 small nuclear RNA (snRNA), a component of eukaryotic spliceosomes, is required for splicing of nuclear pre-mRNAs. Whereas trimethylguanosine cap-containing U sn-RNAs are transcribed by RNA polymerase II, the U6 RNA is transcribed by RNA polymerase III and contains a nonnucleotide cap structure on its 5' end. We characterized the cap structure of human U6 snRNA and show that the gamma phosphate of the 5' guanosine triphosphate is methylated. The mobilities of in vivo-modified gamma phosphate from the 5' end of HeLa U6 RNA were identical to the synthetic monomethyl phosphate (CH3-O-P) in two-dimensional chromatography and two-dimensional electrophoresis. The cap structure of U6 RNA is distinct from all other cap structures characterized thus far.  相似文献   

4.
5.
U3 small nuclear RNA is hydrogen-bonded to high molecular weight nucleolar RNA and can be isolated from greater than 60S pre-ribosomal ribonucleoprotein particles, suggesting that it is involved in processing of ribosomal RNA precursors (pre-rRNA) or in ribosome biogenesis. Here we have used in vivo psoralen cross-linking to identify the region of pre-rRNA interacting with U3 RNA. Quantitative hybridization selection/depletion experiments with clones of rRNA-encoding DNA (rDNA) and cross-linked nuclear RNA showed that all of the cross-linked U3 RNA was associated with a region that includes the external transcribed spacer (ETS) at the 5' end of the human rRNA precursor. To further identify the site of interaction within the approximately 3.7-kilobase ETS, Southern blots of rDNA clones were sandwich-hybridized with cross-linked RNA and then probed for cross-linked U3 RNA. These experiments showed that U3 RNA was cross-linked to a 258-base sequence between nucleotides +438 and +695, just downstream of the ETS early cleavage site (+414). The localization of U3 to this region of the rRNA precursor was not expected from previous models for a base-paired U3-rRNA interaction and suggests that U3 plays a role in the initial pre-rRNA processing event.  相似文献   

6.
Upon chromatographic fractionation of HeLa cell nuclear extracts, small RNAs of 145 and 66/65 nucleotides, respectively, were detected that are distinct from the abundant small RNAs present in the extract. These RNAs are precipitated by antibodies directed against the trimethylguanosine cap structure, characteristic for small nuclear RNAs (snRNAs) of the U type. The RNAs of 145 and 66/65 nucleotides appear to be associated with at least one of the proteins common to the major small nuclear ribonucleoprotein particles U1 to U6, since they are specifically bound by anti-Sm antibodies. These criteria characterize the RNAs that are 145 and 66/65 nucleotides in length as U-type snRNAs. Upon gel filtration, the RNAs are found within particles of molecular weights approximately equal to 150,000 and 115,000, respectively. The RNA of 145 nucleotides represents a different minor snRNA, designated U11, whereas the RNA of 66/65 nucleotides may correspond to either mammalian U7 or U10 RNA.  相似文献   

7.
The La protein binds the 3' ends of many newly synthesized noncoding RNAs, protecting these RNAs from nucleases and influencing folding, maturation, and ribonucleoprotein assembly. Although 3' end binding by La involves the N-terminal La domain and adjacent RNA recognition motif (RRM), the mechanisms by which La stabilizes diverse RNAs from nucleases and assists subsequent events in their biogenesis are unknown. Here we report that a conserved feature of La proteins, an intrinsically disordered C terminus, is required for the accumulation of certain noncoding RNA precursors and for the role of the Saccharomyces cerevisiae La protein Lhp1p in assisting formation of correctly folded pre-tRNA anticodon stems in vivo. Footprinting experiments using purified Lhp1p reveal that the C terminus is required to protect a pre-tRNA anticodon stem from chemical modification. Although the C terminus of Lhp1p is hypersensitive to proteases in vitro, it becomes protease-resistant upon binding pre-tRNAs, U6 RNA, or pre-5S rRNA. Thus, while high affinity binding to 3' ends requires the La domain and RRM, a conformationally flexible C terminus allows La to interact productively with a diversity of noncoding RNA precursors. We propose that intrinsically disordered domains adjacent to well characterized RNA-binding motifs in other promiscuous RNA-binding proteins may similarly contribute to the ability of these proteins to influence the cellular fates of multiple distinct RNA targets.  相似文献   

8.
Pre-mRNA splicing is a crucial step in eukaryotic gene expression and is carried out by a highly complex ribonucleoprotein assembly, the spliceosome. Many fundamental aspects of spliceosomal function, including the identity of catalytic domains, remain unknown. We show that a base-paired complex of U6 and U2 small nuclear RNAs, in the absence of the ≈200 other spliceosomal components, performs a two-step reaction with two short RNA oligonucleotides as substrates that results in the formation of a linear RNA product containing portions of both oligonucleotides. This reaction, which is chemically identical to splicing, is dependent on and occurs in proximity of sequences known to be critical for splicing in vivo. These results prove that the complex formed by U6 and U2 RNAs is a ribozyme and can potentially carry out RNA-based catalysis in the spliceosome.  相似文献   

9.
10.
Pseudouridine formation in U2 small nuclear RNA.   总被引:10,自引:0,他引:10       下载免费PDF全文
U2 small nuclear RNA contains 13 pseudouridine (psi) nucleotides, of which 11 are clustered in 5' regions involved in base-pairing interactions with other RNAs in the spliceosome. As a first step toward understanding the psi formation pathway in U2 RNA, we investigated psi formation on unmodified human U2 RNA in a HeLa cell extract system. Psi formation was found to occur specifically within only those RNase T1 oligonucleotide fragments of U2 RNA known to contain psi in vivo. Using 5-fluorouridine (FUrd)-containing U2 RNAs as specific inhibitors of psi formation in non-FUrd-substituted substrate U2 RNA, we found that wild-type FUrd-containing U2 RNA as well as several FUrd-containing mutant U2 RNAs completely inhibited psi formation. In contrast, certain other mutant U2 RNAs containing FUrd displayed reduced inhibitory capacity. In these cases psi modifications occurred in specific RNase T1 fragments of the substrate U2 RNA only if the FUrd-containing competitor RNA was mutated at or near this site. Formation of psi at one site in U2 RNA appeared to be neither dependent on prior psi formation at another site or sites nor required for subsequent psi formation elsewhere in the molecule. This autonomous mode of psi formation may be driven by multiple psi synthase enzymes acting independently at different sites in U2 RNA.  相似文献   

11.
During assembly of the spliceosome, the U4 small nuclear RNA (snRNA) interacts with the spliceosome as a preformed U4/U6-U5 triple small nuclear ribonucleoprotein (snRNP) complex. Subsequently, U4 becomes loosely associated with the spliceosome, whereas U5 and U6 remain tightly associated, suggesting unwinding of the U4/U6 duplex. We show that this step of the assembly process can be blocked by limiting the ATP concentration in the splicing reaction. We also show that the yeast precursor mRNA processing protein PRP19 becomes associated with the spliceosome during this transition. Thus, PRP19 may function in this step of spliceosome assembly.  相似文献   

12.
To gain insight into the ribonucleoprotein (RNP) structure of small nuclear RNAs, HeLa cell poly(A)+ mRNA was translated in a reticulocyte lysate, and the in vitro binding of 35S-labeled proteins to individual small nuclear RNA species was examined by using human autoimmune antibodies. A Mr 32,000 protein binds to U1 RNA but not to U2, U4, U5, or U6. The resulting U1 RNP complex is recognized both by Sm and RNP antibodies. U2 RNA also forms a complex with protein, which is recognized by Sm antibody. Thus, the lack of binding of the Mr 32,000 protein to U2 RNA is not due to a failure of U2 to bind specific proteins in the in vitro system. Similar translation-assembly experiments with Drosophila poly(A)+ mRNA reveal that a Mr 26,000 protein identified previously in Drosophila U1 RNP [Wieben, E. D. & Pederson, T. (1982) Mol. Cell. Biol. 2, 914-920] also binds to U1 RNA in vitro. When the translation products of HeLa or Drosophila mRNA are presented with U1 RNA of the other species, the Mrs 32,000 and 26,000 proteins recognize binding sites on the heterologous U1 and, in both cases, form complexes recognized by RNP antibody. These results establish that a Mr 32,000 protein is unique to U1 RNA in human cells and that the U1 RNA binding sites for this and a Mr 26,000 homologue have been highly conserved in evolution. These sites may be the identical 13 nucleotides at the 5' ends of human and Drosophila U1 RNA or a highly conserved aspect of U1 secondary structure.  相似文献   

13.
We have determined that 10Sa RNA (one of the small stable RNAs found in Escherichia coli) has an interesting structural feature: the 5' end and the 3' end of 10Sa RNA can be arranged in a structure that is equivalent to a half-molecule (acceptor stem and TFC stem-loop) of alanine tRNA of E. coli. Primer-extension analysis of 10Sa RNA extracted from a bacterial mutant with temperature-sensitive RNase P function revealed that the precursor to 10Sa RNA (pre-10Sa RNA) is folded into a pre-tRNA-like structure in vivo such that it can be cleaved by RNase P to generate the 5' end of the mature 10Sa RNA. The purified 10Sa RNA can be charged with alanine in vitro. Disruption of the gene encoding 10Sa RNA (ssrA) caused a reduction in the rate of cell growth, which was especially apparent at 45 degrees C, and a reduction in motility on semisolid agar. These phenotypic characteristics of the deletion strain (delta ssrA) allowed us to investigate the effects of some mutations in 10Sa RNA in vivo, although the exact function of 10Sa RNA still remains unclear. When the G.U pair (G3.U357) in 10Sa RNA, which may be equivalent to the determinant G.U pair of alanine tRNA, was changed to a G.A or G.C pair, the ability to complement the phenotypic mutations of the delta ssrA strain was lost. Furthermore, this inability to complement the mutant phenotypes that was caused by the substitution of the determinant bases by a G.A pair could be overcome by the introduction of a gene encoding alanyl-tRNA synthetase (alaS) on a multicopy plasmid. The evidence suggests that the proposed structural features of 10Sa RNA are indeed manifested in vivo.  相似文献   

14.
Alternative splicing of precursor messenger RNAs (pre-mRNAs) is an important mechanism for the regulation of gene expression. The members of the SR protein family of pre-mRNA splicing factors have distinct functions in promoting alternative splice site usage. Here we show that SR proteins are required for the first step of spliceosome assembly, interaction of the U1 small nuclear ribonucleoprotein complex (U1 snRNP) with the 5' splice site of the pre-mRNA. Further, we find that individual SR proteins have distinct abilities to promote interaction of U1 snRNP with alternative 5' splice junctions. These results suggest that SR proteins direct 5' splice site selection by regulation of U1 snRNP assembly onto the pre-mRNA.  相似文献   

15.
16.
Nuclear pre-mRNA splicing in Saccharomyces cerevisiae, as in higher eukaryotes, occurs in large RNA-protein complexes called spliceosomes. The small nuclear RNA components, U1, U2, U4, U5, and U6, have been extensively studied; however, very little is known about the protein components of yeast spliceosomes. Here we use antibodies against the precursor RNA processing protein PRP8, a protein component of the U5 small nuclear ribonucleoprotein particle, to detect its association with spliceosomes throughout the splicing reaction and in a post-splicing complex containing the excised intron. In addition, an indirect immunological approach has been developed that confirms the presence of precursor RNA processing protein PRP8 in isolated spliceosomes. This method has possible general application for the analysis of ribonucleoprotein particle complexes.  相似文献   

17.
18.
Stable addition of U2 small nuclear ribonucleoprotein (snRNP) to form the prespliceosome is the first ATP-dependent step in splicing, and it requires the DEXD/H box ATPase Prp5p. However, prespliceosome formation occurs without ATP in extracts lacking the U2 snRNP protein Cus2p. Here we show that Prp5p is required for the ATP-independent prespliceosome assembly that occurs in the absence of Cus2p. Addition of recombinant Cus2p can restore the ATP dependence of prespliceosome assembly, but only if it is added before Prp5p. Prp5p with an altered ATP-binding domain (Prp5-GNTp) can support growth in vivo, but only in a cus2 deletion strain, mirroring the in vitro results. Other Prp5 ATP-binding domain substitutions are lethal, even in the cus2 deletion strain, but can be suppressed by U2 small nuclear RNA mutations that hyperstabilize U2 stem IIa. We infer that the presence of Cus2p and stem IIa-destabilized forms of U2 small nuclear RNA places high demands on the ATP-driven function of Prp5p. Because Prp5p is not dispensable in vitro even in the absence of ATP, we propose that the core Prp5p function in bringing U2 to the branchpoint is not directly ATP-dependent. The positive role of Cus2p in rescuing mutant U2 can be reconciled with its antagonistic effect on Prp5 function in a model whereby Cus2p first helps Prp5p to activate the U2 snRNP for prespliceosome formation but then is displaced by Prp5p before or during the stabilization of U2 at the branchpoint.  相似文献   

19.
Efficient 3′-end processing of cell cycle-regulated mammalian histone premessenger RNAs (pre-mRNAs) requires an upstream stem–loop and a histone downstream element (HDE) that base pairs with the U7 small ribonuclearprotein. Insertions between these elements have two effects: the site of cleavage moves in concert with the HDE and processing efficiency declines. We used Xenopus oocytes to ask whether compensatory length insertions in the human U7 RNA could restore the fidelity and efficiency of processing of mouse histone insertion pre-mRNAs. An insertion of 5 nt into U7 RNA that extends its complementary to the HDE compensated for both defects in processing of a 5-nt insertion substrate; a noncomplementary insertion into U7 did not. Yet, the noncomplementary insertion mutant U7 was shown to be active on insertion substrates further mutated to allow base pairing. Our results suggest that the histone pre-mRNA becomes rigidified upstream of its HDE, allowing the bound U7 small ribonucleoprotein to measure from the HDE to the cleavage site. Such a mechanism may be common to other RNA measuring systems. To our knowledge, this is the first demonstration of length suppression in an RNA processing system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号