首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Previously, we established a culture system of the accessory olfactory bulb in order to investigate the functional role of each accessory olfactory bulb neurons in pheromonal signal processing. In the present study, we developed a co-culture system of cultured accessory olfactory bulb neurons with partially dissociated cells of the vomeronasal organ. The dissociated cells of the vomeronasal organ form spherical structures surrounding a central cavity in culture, referred to as the vomeronasal pockets. The projection and activity of olfactory receptor neurons affect the differentiation and maturation of main olfactory bulb neurons. It was also reported induction of tyrosine hydroxylase expression in main olfactory bulb neurons when they were co-cultured with explants of the olfactory epithelium. Thus, we investigated the effects of co-culture with vomeronasal pockets on the differentiation and/or maturation of cultured accessory olfactory bulb neurons in relation to tyrosine hydroxylase expression. The number of tyrosine hydroxylase-containing neurons developmentally increased over time in the accessory olfactory bulb culture. This increase was significantly enhanced by coculture with vomeronasal pockets. Interestingly, a significant change in tyrosine hydroxylase expression was not observed when main olfactory bulb neurons were co-cultured with vomeronasal pockets. Moreover, significant changes in tyrosine hydroxylase expression were not observed when accessory olfactory bulb neurons were co-cultured with olfactory epithelium explants, as was previously observed in co-culture of main olfactory bulb neurons and olfactory epithelium explants. These results suggest that the differentiation and/or maturation of accessory olfactory bulb neurons is modified by vomeronasal organ neurons via specific interactions between the sensory organ and its target.  相似文献   

2.
C A Dudley  R L Moss 《Neuroscience》1999,91(4):1549-1556
Chemosensory cues known as pheromones play a key role in rodent reproductive physiology and social interactions. Pheromone molecules are detected by receptor cells located in the vomeronasal organ and conveyed exclusively to the accessory olfactory bulb, and then to limbic and hypothalamic sites for integration with other factors modulating reproductive physiology. We report here that chemosensory cues from the female mouse selectively activate a subpopulation of cells located in the anterior part of the accessory olfactory bulb of the male mouse. Exposure of male mice to female-soiled bedding resulted in a massive induction of c-fos expression, which was primarily confined to neurons located in the anterior part of the accessory olfactory bulb and was eliminated by removal of the vomeronasal organ. Exposure of the male to soiled bedding from a different stain of male mice also elevated c-fos expression, but immunoreactive cells were more evenly distributed along the anterior-posterior axis of the accessory olfactory bulb. No treatment effects were observed in the main olfactory bulb. Previous studies have indicated that vomeronasal receptor neurons are divided into two populations based on location within the organ, site of termination in the accessory olfactory bulb, second messenger content and putative pheromone receptor expression. The present study suggests that the two populations of vomeronasal receptor neurons detect different chemosensory stimuli. Since male mouse- and female mouse-specific urinary substances modulate different aspects of male mouse behavior, the present results suggest that anatomically segregated populations of vomeronasal organ receptor cells modulate distinct behavioral patterns.  相似文献   

3.
Histamine mediates many types of physiologic signals in multicellular organisms. To clarify the developmental role of histamine, we have examined the developmental expression of L-histidine decarboxylase (HDC) mRNA and the production of histamine during mouse development. The predominant expression of HDC in mouse development was seen in mast cells. The HDC expression was evident from embryonal day 13 (Ed13) until birth, and the mast cells were seen in most peripheral tissues. Several novel sites with a prominent HDC mRNA expression were revealed. In the brain, the choroid plexus showed HDC expression at Ed14 and the raphe neurons at Ed15. Close to the parturition, at Ed19, the neurons in the tuberomammillary (TM) area and the ventricular neuroepithelia also displayed a clear HDC mRNA expression and histamine immunoreactivity (HA-ir). From Ed14 until birth, the olfactory and nasopharyngeal epithelia showed an intense HDC mRNA expression and HA-ir. In the olfactory epithelia, the olfactory receptor neurons (ORN) were shown to have very prominent histamine immunoreactivity. The bipolar nerve cells in the epithelium extended both to the epithelial surface and into the subepithelial layers to be collected into thick nerve bundles extending caudally toward the olfactory bulbs. Also, in the nasopharynx, an extensive subepithelial network of histamine-immunoreactive nerve fibers were seen. Furthermore, in the peripheral tissues, the degenerating mesonephros (Ed14) and the convoluted tubules in the developing kidneys (Ed15) showed HDC expression, as did the prostate gland (Ed15). In adult mouse brain, the HDC expression resembled the neuronal pattern observed in rat brain. The expression was restricted to the TM area in the ventral hypothalamus, with the main expression in the five TM subgroups called E1-E5. A distinct mouse HDC mRNA expression was also seen in the ependymal wall of the third ventricle, which has not been reported in the rat. The tissue- and cell-specific expression patterns of HDC and histamine presented in this work indicate that histamine could have cell guidance or regulatory roles in development.  相似文献   

4.
In the last years several studies have shown that vascular endothelial growth factor (VEGF) is present in neural stem cells and mature neurons from different neural tissues where it may play an important role as a neuroproliferative and/or antiapoptotic factor. The olfactory neuroepithelium has the capability to replace dying neurons with new neurons formed by cell division from stem cells in the basal region of the epithelium. The present study demonstrates, for the first time, that VEGF is present in the olfactory epithelium, nerves and bulbs (both main and accessory) during the development of the toad Bufo arenarum. In this report, we detected VEGF immunoreactivity in mature olfactory neurons from early larval stages until the beginning of the metamorphic climax. VEGF expression decreases dramatically after metamorphosis. VEGF receptor Flk-1 was localized by immunohistochemistry, from premetamorphic larval stages until the climax in the neurons of the olfactory epithelium with a more intense labeling in the basal cell layer. Double-label immunofluorescence studies localized VEGF to the cytoplasm and the nucleus of mature neurons whereas Flk-1 was expressed in cell membranes. Flk-1 was present in neurons of both the main and accessory olfactory bulbs. After the end of metamorphosis, Flk-1 expression was limited to basal cells in the olfactory epithelium and Bowman’s glands. The main and accessory olfactory bulbs showed the same pattern of Flk-1 immunostaining before and after the end of metamorphosis. The presence of VEGF and its receptor in the olfactory system suggests that VEGF may play an important role during neural development.  相似文献   

5.
The proto-oncogene BCL-6 is expressed in olfactory sensory neurons   总被引:1,自引:0,他引:1  
  相似文献   

6.
In the mouse, individual olfactory neurons express one of a thousand distinct olfactory receptor genes. Furthermore, only one allele of the expressed gene is transcribed. This phenomenon, random allelic inactivation, along with the observation that the olfactory receptor genes reside in large chromosomal arrays, suggests a role for long-range gene regulation in olfactory receptor gene choice. We have constructed a 300-kb yeast artificial chromosome (YAC) transgene in which a single receptor gene is marked while maintaining its coding region. This 300-kb piece of DNA functions as an independent olfactory receptor gene locus in directing olfactory receptor gene choice in both the olfactory system and the accessory olfactory system (vomeronasal organ, VNO). Furthermore, the transgene, like endogenous olfactory receptor loci, is subject to allelic inactivation.  相似文献   

7.
Immunocytochemical localization of GABA neurons and dopamine neurons in the rat olfactory bulb was obtained with sheep antiserum to glutamate decarboxylase (GAD) and rabbit antiserum to tyrosine hydroxylase (TH). GAD-positive neurons include periglomerular cells, granule cells, superficial and deep short axon cells. TH-positive neurons represent periglomerular cells. Two-color immunocytochemistry shows that GABA and dopamine periglomerular cells are separate populations. The accessory olfactory bulb has rare dopamine cells and few superficial short axon cells. Radial gradients of GAD-immunostaining are evident in the main but not in the accessory olfactory bulb.  相似文献   

8.
Gould BR  Zingg HH 《Neuroscience》2003,122(1):155-167
The hypothalamic nonapeptide oxytocin (OT) has an established role as a circulating hormone but can also act as a neurotransmitter and as a neuromodulator by interacting with its central OT receptor (OTR). To understand the role of the OTR in the mouse brain we investigated the expression of the OTR gene at the cellular level. We targeted the lacZ reporter gene to the OTR gene locus downstream of the endogenous OTR regulatory elements. Using lactating mouse mammary gland as a control for OTR promoter directed specificity of lacZ gene expression, X-gal histochemistry on tissue sections confirmed that gene expression was restricted to the myoepithelial cells. We also identified for the first time in mice the expression of the OTR gene in neighbouring adipocytes. Further, investigation in the mouse brain identified numerous nuclei containing neurons expressing the OTR gene. Whilst some of these regions had been described for rat or sheep, the OTR-LacZ reporter mouse enabled the identification of novel sites of central OTR gene expression. These regions include the accessory olfactory bulb, the medial septal nucleus, the posterolateral cortical amygdala nucleus, the posterior aspect of the basomedial amygdala nucleus, the medial part of the supramammillary nucleus, the dorsotuberomammillary nucleus, the medial and lateral entorhinal cortices, as well as specific dorsal tegmental, vestibular, spinal trigeminal, and solitary tract subnuclei. By mapping the distribution of OTR gene expression, depicted through histochemical detection of beta-galactosidase, we were able to identify single OTR gene expressing neurons and small neuron clusters that would have remained undetected by conventional approaches.These novel sites of OTR gene expression suggest additional functions of the oxytocinergic system in the mouse. These results lay the foundation for future investigation into the neural role of the OTR and provide a useful model for further study of oxytocin functions in the mouse.  相似文献   

9.
Connective tissue growth factor (CTGF) belongs to a family of secreted, extracellular matrix-associated proteins that are involved in the regulation of cellular functions such as adhesion, migration, mitogenesis, differentiation and survival. Recent studies have also suggested the up-regulation of CTGF in response to trauma, scar formation and excitotoxicity in the CNS. To further elucidate the localization and regulation of this molecule in the rat brain we performed in situ hybridization experiments and found a very strong and selective expression of CTGF messenger ribonucleic acid (mRNA) on the band of layer VII neurons throughout the adult cerebral cortex. Similarly strong neuronal expression was also present in the dorsal endopiriform nucleus, extending rostrally from the ventrocaudal cortical layer VII, and in the deep layers of the olfactory glomeruli and the accessory olfactory nucleus. Double in situ hybridization confirmed selective CTGF mRNA expression on a subpopulation (approximately 35%) of microtubule-associated protein 2 mRNA-positive neurons in the cortical layer VII and the dorsal endopiriform nucleus. The nucleus of lateral olfactory tract showed moderate signal intensity; other parts of the forebrain, mesencephalon and brain stem only revealed a very weak level of CTGF mRNA expression. Non-neuronal expression was rare, considerably weaker than on cortical layer VII neurons, and normally associated with blood vessels. Developmental analysis of CTGF mRNA expression in embryonic and postnatal mouse also showed a moderately late onset at embryonic day 16-18, and confirmed the presence of CTGF mRNA in cortical layer VII in a second rodent species. Interestingly, injury experiments using direct cerebral trauma or injection of excitotoxic kainic acid into rat brain failed to up-regulate CTGF mRNA after injury and during the ensuing period of neuronal cell death, gliosis and neural scar tissue formation. Altogether, the current data suggest a constitutive role of CTGF, particularly in the adult cerebral cortex. In view of the strong ascending projections of subplate neurons into cortical layer 1, this molecule may be involved in the modulation of synaptic input to apical dendrites of pyramidal neurons.  相似文献   

10.
11.
12.
Male mice excrete large quantities of major urinary proteins that have been proposed to have an important pheromonal role either alone or by way of their bound ligands. We have found that these major urinary proteins are not only likely to mediate the pregnancy blocking effects of male urine, but that they also convey the strain recognition signal of the male pheromone. Recent molecular biological investigations have characterized two classes of pheromonal receptor in the vomeronasal organ that appear to project separately to anterior and posterior regions of the accessory olfactory bulb. However, it is not known whether these separate pathways handle fundamentally different types of pheromonal information. We have attempted to investigate this question using the expression of the immediate-early gene egr-1 as a marker for activity of neurons in the accessory olfactory bulb of female mice in response to putative pheromonal constituents. Exposure to 2,3 dihydro-exo-brevicomin and 2-sec-butyl-4,5-dihydro-thiazole, the main ligands bound to the major urinary proteins, elicited expression of egr-1 in clusters of presumed mitral neurons at the medial and lateral margins of the posterior accessory olfactory bulb. Whole male urine and a preparation of major urinary proteins that had been stripped of their ligands induced egr-1 expression in mitral cells of the anterior half of the accessory olfactory bulb in addition to the posterior clusters.

This would suggest that the anterior and posterior halves of the accessory olfactory bulb are processing different aspects of the male pheromone signal with the anterior region, which responds preferentially to major urinary proteins, being principally concerned with the strain recognition component.  相似文献   


13.
All three olfactory epithelia, the olfactory epithelium proper (OE), the septal organ of Masera (SO), and the vomeronasal organ of Jacobson (VNO) originate from the olfactory placode. Here, their diverse neurochemical phenotypes were analyzed using the immunohistochemical expression pattern of different neuronal markers. The olfactory bulb (OB) served as neuronal control. Neuronal Nuclei Marker (NeuN) is neither expressed in sensory neurons in any of the three olfactory epithelia, nor in relay neurons (mitral/tufted cells) of the OB. However, OB interneurons (periglomerular/granule cells) labeled, as did supranuclear structures of VNO supporting cells and VNO glands. Protein Gene Product 9.5 (PGP9.5 = C-terminal ubiquitin hydrolase L1 = UCHL1) expression is exactly the opposite: all olfactory sensory neurons express PGP9.5 as do OB mitral/tufted cells but not interneurons. Neuron Specific Enolase (NSE) expression is highest in the most apically located OE and SO sensory neurons and patchy in VNO. In contrast, the cytoplasm of the most basally located neurons of OE and SO immunoreacted for Growth Associated Protein 43 (GAP-43/B50). In VNO neurons GAP-43 labeling is also nuclear. In the cytoplasm, Olfactory Marker Protein (OMP) is most intensely expressed in SO, followed by OE and least in VNO neurons; further, OMP is also expressed in the nucleus of basally located VNO neurons. OB mitral/tufted cells express OMP at low levels. Neurons closer to respiratory epithelium often expressed a higher level of neuronal markers, suggesting a role of those markers for neuronal protection against take-over. Within the VNO the neurons show clear apical–basal expression diversity, as they do for factors of the signal transduction cascade. Overall, expression patterns of the investigated neuronal markers suggest that OE and SO are more similar to each other than to VNO.  相似文献   

14.
Fixed vomeronasal and olfactory epithelia from normal adult garter snakes were microdissected, fractured, and examined with a scanning electron microscope. The method permits a detailed comparative study of the structural organization and morphological characteristics of the constituent cells of the vomeronasal and olfactory epithelia. Despite similarities in the nomenclature of the constituent cells in both epithelia, significant differences exist in their surface morphology. A unique columnar structure composed of non-neuronal elements is present in the vomeronasal epithelium. These columns house the bipolar neurons and undifferentiated cells. Such a columnar organization is absent in the olfactory epithelium. In the vomeronasal epithelium the bipolar neurons possess microvillous terminals at their dendritic tips, while the dendritic tips of the bipolar neurons of the olfactory epithelium possess cilia. Vomeronasal supporting cells are covered with microvilli, while olfactory supporting cells are covered with cytoplasmic protuberances in addition to the microvilli. In the vomeronasal epithelium the pear-shaped neurons have a grossly smooth surface and are organized into clusters, while in the olfactory epithelium the elliptical bipolar neurons are spinous, aligned side-by-side and interdigitate. The basal (undifferentiated) cell layer in the vomeronasal epithelium has a high packing density and is composed of several layers of irregularly shaped cells. In the olfactory epithelium the basal cell layer is loosely organized and composed of a single layer of oval cells. This information on the three-dimensional cell structure of both epithelia provides a basis for experimental observations on changes in morphology of the bipolar neurons during genesis, development, maturation, degeneration, and regeneration in postnatal, adult animals.  相似文献   

15.
Selective binding of soybean agglutinin to the olfactory system of Xenopus   总被引:1,自引:0,他引:1  
B Key  P P Giorgi 《Neuroscience》1986,18(2):507-515
The binding patterns of four different lectins conjugated to horseradish peroxidase were investigated in the nervous system of juvenile Xenopus borealis. Only the lectin soybean agglutinin revealed a very selective binding pattern, which was restricted to the olfactory system. The olfactory and vomeronasal epithelia, the olfactory and accessory olfactory nerves and the olfactory and accessory olfactory bulbs were all labelled. The ventral portions of the olfactory nerve and bulb were however more intensely labelled than their dorsal portions. The rest of the brain and spinal cord did not bind this lectin except for a small discrete set of unmyelinated axons travelling in the medial forebrain bundle. Ultrastructural investigations revealed that soybean agglutinin was confined to the cell surface of olfactory neurons. The selective binding of this lectin of olfactory neurons suggests that specific cell surface glycoconjugates binding soybean agglutinin may have either a functional or developmental role in the olfactory system of Xenopus.  相似文献   

16.
17.
The subventricular zone (SVZ) is the largest germinal zone in the mature rodent brain, and it continuously produces young neurons that migrate to the olfactory bulb. Neural stem cells in this region generate migratory neuroblasts via highly proliferative transit-amplifying cells. The Wnt/beta-catenin signaling pathway partially regulates the proliferation and neuronal differentiation of neural progenitor cells in the embryonic brain. Here, we studied the role of beta-catenin signaling in the adult mouse SVZ. beta-Catenin-dependent expression of a destabilized form of green fluorescent protein was detected in progenitor cells in the adult SVZ of Axin2-d2EGFP reporter mice. Retrovirus-mediated expression of a stabilized beta-catenin promoted the proliferation of Mash1+ cells and inhibited their differentiation into neuroblasts. Conversely, the expression of Dkk1, an inhibitor of Wnt signaling, reduced the proliferation of Mash1+ cells. In addition, an inhibitor of GSK3 beta promoted the proliferation of Mash1+ cells and increased the number of new neurons in the olfactory bulb 14 days later. These results suggest that beta-catenin signaling plays a role in the proliferation of progenitor cells in the SVZ of the adult mouse brain.  相似文献   

18.
Vomeronasal receptor neurons (VRNs) proliferate and differentiate continuously in the vomeronasal organ (VNO) throughout life. In adult mice, new VRNs are generated mainly in the marginal region, located in the boundary region between sensory and nonsensory epithelia. The Notch signaling pathway is involved in differentiation in the developing nervous system. To understand the Notch signaling pathway involved in generating VRNs, we focused on the relationship between the expression pattern of Notch1 and the localization of proliferating cells in both developing and regenerating mice VNO, and examined the Notch signaling pathway involved in the development of VNO by in situ hybridization of Notch1 and immunocytochemistry of 5-bromo-2'-deoxyuridine. During embryonic and neonatal development, proliferating cells and Notch1-expressing (+) cells were observed evenly throughout VNO. A large number of proliferating cells and Notch1 (+) cells were observed in embryonic VNO, but gradually decreased during development. The localization of proliferating cells was similar to that of Notch1 (+) cells at each developmental stage. In adult VNO, there are a few proliferating cells and Notch1 (+) cells, which were only in the marginal region of VNO. Seven days after removal of the accessory olfactory bulb (AOB), VRNs proliferated throughout VNO. Although the number of Notch1 (+) cells also increased in VNO, the majority of these were concentrated in the dorsal region of VNO, suggesting that it has two types of differentiating cell. These results suggest that Notch1 plays a role in the differentiation of VRNs during development and regeneration of VRNs after removal of AOB.  相似文献   

19.
Spermatogenic immunoglobulin superfamily (SgIGSF) is a cell adhesion molecule originally discovered in mouse testis. SgIGSF is expressed not only in spermatogenic cells but also in lung and liver epithelial cells and in neurons and glia of the central and peripheral nervous systems. In the present study, we examined the expression and localization of SgIGSF in mouse olfactory epithelium before and after transection of the olfactory nerves, by RT-PCR, Western blotting and immunohistochemistry. In normal olfactory mucosa, SgIGSF showed 100 kDa in molecular weight, which was identical with that in the lung but different from that in the brain. SgIGSF was expressed on the membrane of all olfactory, sustentacular and basal cells, but more abundantly in the apical portions of the olfactory epithelium where the dendrites of olfactory cells are in contact with sustentacular cells. After olfactory nerve transection, mature olfactory cells disappeared in 4 days but were regenerated around 7-15 days by proliferation and differentiation of basal cells into mature olfactory cells through the step of immature olfactory cells. During this period, both the mRNA and protein for SgIGSF showed a transient increase, with peak levels at 7 days and 11 days, respectively, after the transection. Immunohistochemistry showed that the enriched immunoreactivity for SgIGSF at 7-11 days was localized primarily to the membrane of immature olfactory cells. These results suggested that, during regeneration of the olfactory epithelium, the adhesion molecule SgIGSF plays physiological roles in differentiation, migration, and maturation of immature olfactory cells.  相似文献   

20.
High Expression of Stanniocalcin in Differentiated Brain Neurons   总被引:2,自引:1,他引:1       下载免费PDF全文
Stanniocalcin (STC) is a glycoprotein hormone first found in fish, in which it regulates calcium homeostasis and protects against hypercalcemia. Human and mouse stc cDNA were recently cloned. We found a dramatically upregulated expression of STC during induced neural differentiation in a human neural crest-derived cell line, Paju. Immunohistochemical staining of sections from human and adult mouse brain revealed abundant presence of STC in the neurons with no activity in the glial cells. STC expression was not seen in immature brain neurons of fetal or newborn mice. Given that STC has been found to regulate calcium/phosphate metabolism in some mammalian epithelia, we suggest that STC may act as a regulator of calcium homeostasis in terminally differentiated brain neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号