首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Porcine circovirus type 2 (PCV2) infection induces autophagy and apoptosis. These cellular responses could be connected with endoplasmic reticulum (ER) stress. It remains unknown if PCV2 induces ER stress and if autophagy or apoptosis is primary to PCV2 infection or secondary responses following ER stress. Here, we demonstrate that PCV2 triggered unfolded protein response (UPR) in PK-15 cells by activating the PERK/eIF2α pathway without concomitant activation of IRE1 or ATF6. Since ATF4 and CHOP were induced later than PERK/eIF2α, it is clear that persistent PCV2 infection could lead to selective activation of PERK via the PERK-eIF2α-ATF4-CHOP axis. Therefore, PERK activation could be part of the pro-apoptotic signaling via induced expression of CHOP by PCV2. Since PERK inhibition by GSK2606414 or RNA silencing or suppression of eIF2α dephosphorylation by salubrinal limited viral replication, we suppose that PCV2 deploys UPR to enhance its replication. Over-expression of GRP78 or treatment with tauroursodeoxycholic acid could enhance viral capsid expression and/or viral titers, indicating that these chaperones, endogenous or exogenous, could help correct folding of viral proteins. Our findings provide the first evidence that ER stress plays a role in the pathogenesis of PCV2 infection probably as part of autophagic and apoptotic responses.  相似文献   

6.
7.
The unfolded protein response (UPR) is an evolutionarily conserved mechanism by which all eukaryotic cells adapt to the accumulation of unfolded proteins in the endoplasmic reticulum (ER). Inositol-requiring kinase 1 (IRE1) and PKR-related ER kinase (PERK) are two type I transmembrane ER-localized protein kinase receptors that signal the UPR through a process that involves homodimerization and autophosphorylation. To elucidate the molecular basis of the ER transmembrane signaling event, we determined the x-ray crystal structure of the luminal domain of human IRE1alpha. The monomer of the luminal domain comprises a unique fold of a triangular assembly of beta-sheet clusters. Structural analysis identified an extensive dimerization interface stabilized by hydrogen bonds and hydrophobic interactions. Dimerization creates an MHC-like groove at the interface. However, because this groove is too narrow for peptide binding and the purified luminal domain forms high-affinity dimers in vitro, peptide binding to this groove is not required for dimerization. Consistent with our structural observations, mutations that disrupt the dimerization interface produced IRE1alpha molecules that failed to either dimerize or activate the UPR upon ER stress. In addition, mutations in a structurally homologous region within PERK also prevented dimerization. Our structural, biochemical, and functional studies in vivo altogether demonstrate that IRE1 and PERK have conserved a common molecular interface necessary and sufficient for dimerization and UPR signaling.  相似文献   

8.
9.
10.
The unfolded protein response (UPR) is activated by endoplasmic reticulum stress resulting from an accumulation of unfolded or mis-folded proteins. The UPR is divided into three arms, involving the activation of ATF-6, PERK and IRE-1, that together act to restrict new protein synthesis and increase the production of chaperones. Recent studies have implicated the PERK and IRE-1 components of the UPR in adipocyte differentiation. In this study, we investigate the importance of ATF6α during adipogenesis using stable knockdown of this protein in the model adipogenic cell line, C3H10T1/2. Reduction of ATF6α expression by >70% resulted in impaired expression of key adipogenic genes and reduced lipid accumulation following the induction of adipogenesis. In contrast, loss of ATF6α did not impair the ability of cells to undergo osteogenic differentiation. Overall, our data indicate that all three arms of the UPR, including ATF6α, must be intact to permit adipogenesis to occur.  相似文献   

11.
12.
13.
Accumulation of misfolded proteins in the endoplasmic reticulum (ER) triggers the unfolded protein response (UPR), an intracellular signaling pathway that adjusts the protein folding capacity of the ER according to need. If homeostasis in the ER protein folding environment cannot be reestablished, cells commit to apoptosis. The ER-resident transmembrane kinase-endoribonuclease inositol-requiring enzyme 1 (IRE1) is the best characterized UPR signal transduction molecule. In yeast, Ire1 oligomerizes upon activation in response to an accumulation of misfolded proteins in the ER. Here we show that the salient mechanistic features of IRE1 activation are conserved: mammalian IRE1 oligomerizes in the ER membrane and oligomerization correlates with the onset of IRE1 phosphorylation and RNase activity. Moreover, the kinase/RNase module of human IRE1 activates cooperatively in vitro, indicating that formation of oligomers larger than four IRE1 molecules takes place upon activation. High-order IRE1 oligomerization thus emerges as a conserved mechanism of IRE1 signaling. IRE1 signaling attenuates after prolonged ER stress. IRE1 then enters a refractive state even if ER stress remains unmitigated. Attenuation includes dissolution of IRE1 clusters, IRE1 dephosphorylation, and decline in endoribonuclease activity. Thus IRE1 activity is governed by a timer that may be important in switching the UPR from the initially cytoprotective phase to the apoptotic mode.  相似文献   

14.
15.

Aims/hypothesis

Although obesity is associated with endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) in adipose tissue, it is not known how UPR signalling affects adipogenesis. To test whether signalling through protein kinase RNA-like ER kinase/eukaryotic initiation factor 2 alpha (PERK/eIF2α) or inositol-requiring enzyme 1 alpha/X-box binding protein 1 (IRE1α/XBP1) is required for adipogenesis, we studied the role of UPR signalling in adipocyte differentiation in vitro and in vivo in mice.

Methods

The role of UPR signalling in adipogenesis was investigated using 3T3-L1 cells and primary mouse embryonic fibroblasts (MEFs) by activation or inhibition of PERK-mediated phosphorylation of the eIF2α- and IRE1α-mediated splicing of Xbp1 mRNA. Body weight change, fat mass composition and adipocyte number and size were measured in wild-type and genetically engineered mice fed a control or high-fat diet (HFD).

Results

ER stress repressed adipocyte differentiation in 3T3-L1 cells. Impaired eIF2α phosphorylation enhanced adipocyte differentiation in MEFs, as well as in mice. In contrast, increased eIF2α phosphorylation reduced adipocyte differentiation in 3T3-L1 cells. Forced production of CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP), a downstream target of eIF2α phosphorylation, inhibited adipogenesis in 3T3-L1 cells. Mice with deletion of Chop (also known as Ddit3) (Chop ?/?) gained more fat mass than wild-type mice on HFD. In addition, Chop deletion in genetically obese Lepr db/db mice increased body fat mass without altering adipocyte size. In contrast to the eIF2α–CHOP pathway, activation or deletion of Ire1a (also known as Ern1) did not alter adipocyte differentiation in 3T3-L1 cells.

Conclusions/interpretation

These results demonstrate that eIF2α–CHOP suppresses adipogenesis and limits expansion of fat mass in vivo in mice, rendering this pathway a potential therapeutic target.  相似文献   

16.
Protein synthesis is increased by several-fold in stimulated pancreatic beta cells. Synthesis and folding of (pro)insulin takes place in the endoplasmic reticulum (ER), and beta cells trigger the unfolded protein response (UPR) to upgrade the functional capacity of the ER. Prolonged or excessive UPR activation contributes to beta cell dysfunction and death in type 2 diabetes, but there is another side of the UPR that may be of particular relevance for autoimmune type 1 diabetes, namely, the cross-talk between the UPR and innate immunity/inflammation. Recent evidence, discussed in this review, indicates that both saturated fats and inflammatory mediators such as cytokines trigger the UPR in pancreatic beta cells. The UPR potentiates activation of nuclear factor κB, a key regulator of inflammation. Two branches of the UPR, namely IRE1/XBP1s and PERK/ATF4/CHOP, mediate the UPR-induced sensitisation of pancreatic beta cells to the proinflammatory effects of cytokines. This can contribute to the upregulation of local inflammatory mechanisms and the aggravation of insulitis. The dialogue between the UPR and inflammation may provide an explanation for the parallel increase in the prevalence of childhood obesity and type 1 diabetes.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号