首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cause of the Gulf War Syndrome may be related to soldiers being exposed to insecticides (e.g., permethrin (P)), insect repellents (e.g., N,N-diethyl-m-toluamide (DEET)), an organophosphate nerve agent simulant (e.g., diisopropyl fluorpohosphate (DFP)), and/or prophylactic treatment (e.g., pyridostigmine bromide (PB)) against potential nerve gas attacks. The purpose of this study was to assess the dermal disposition of [14C]permethrin in ethanol or ethanol:water (3:2) in the isolated perfused porcine skin flap (IPPSF) model with simultaneous dermal exposure to DEET or DFP. These IPPSFs were also simultaneously perfused arterially with or without PB, DFP, or DFP + PB. The results indicated that DFP + PB significantly increased [14C]permethrin absorption compared to controls (1.06% dose vs 0.14% dose). PB significantly increased [14C]permethrin disposition in the stratum corneum (SC) in aqueous mixtures only (9.40 vs 3.35% dose), while topical DEET or topical DFP reduced [14C]permethrin levels in the SC especially in nonaqueous mixtures. PB also significantly enhanced [14C]permethrin penetration into all skin tissues and perfusate in aqueous mixtures, while DEET reversed this effect. PB appeared to influence [14C]permethrin disposition in flowthrough diffusion cells, suggesting that the mechanism of this interaction may be associated predominantly with epidermal permeability, although muscarinic effects in the vasculature in IPPSFs should not be ruled out and requires further investigation. These experiments suggest that intraarterial perfusion of PB and/or DFP and topical application of DFP or DEET can alter the disposition of [14C]permethrin in skin and possibly its bioavailability in soldiers simultaneously exposed to these chemicals.  相似文献   

2.
Topical exposure to permethrin has often been implicated as a mitigating factor in the illnesses reported in Gulf War veterans. These studies were designed to assess the effect of co-exposure to low level sulfur mustard, JP-8 jet fuel, N,N-diethyl-m-toluamide (DEET) and fabric occlusion on the percutaneous absorption and skin disposition of topically applied 14C-permethrin (40 microg/cm(2)) in the isolated perfused porcine skin flap (IPPSF) model. Extent of dermal absorption in vehicle controls in the IPPSF was comparable to literature values for humans. These studies demonstrated a two-fold increased 14C-permethrin percutaneous absorption and almost three-fold increased penetration when JP-8 was present, compared to a one-third decreased permethrin flux in the presence of sulfur mustard. Complete occlusion slightly increased 14C-permethrin absorption, while occlusion with fabric showed no significant effect. A previously noted effect of DEET to inhibit permethrin absorption was still seen in the presence of sulfur mustard exposure. These studies suggest that co-exposure to JP-8 or sulfur mustard may modulate transdermal flux of 14C-permethrin. However, the JP-8 increase in absorption and penetration was less than the five-fold increase previously seen with arterial infusion of pyridostigmine bromide and diisopropylfluorophosphate in the IPPSF. The toxicologic significance of this moderate increase in permethrin absorption remains unclear.  相似文献   

3.
1. The in vitro human plasma activity and liver microsomal metabolism of pyridostigmine bromide (PB), a prophylactic treatment against organophosphate nerve agent attack, N,N-diethyl-m-toluamide (DEET), an insect repellent, and permethrin, a pyrethroid insecticide, either alone or in combination were investigated. 2. The three chemicals disappeared from plasma in the following order: permethrin > PB > DEET. The combined incubation of DEET with either permethrin or PB had no effect on permethrin or PB. Binary incubation with permethrin decreased the metabolism of PB and its disappearance from plasma and binary incubation with PB decreased the metabolism of permethrin and its clearance from plasma. Incubation with PB and/or permethrin shortened the DEET terminal half-life in plasma. These agents behaved similarly when studied in liver microsomal assays. The combined incubation of DEET with PB or permethrin (alone or in combination) diminished DEET metabolism in microsomal systems. 3. The present study evidences that PB and permethrin are metabolized by both human plasma and liver microsomal enzymes and that DEET is mainly metabolized by liver oxidase enzymes. Combined exposure to test chemicals increases their neurotoxicity by impeding the body's ability to eliminate them because of the competition for detoxifying enzymes.  相似文献   

4.
1.?The in vitro human plasma activity and liver microsomal metabolism of pyridostigmine bromide (PB), a prophylactic treatment against organophosphate nerve agent attack, N,N-diethyl-m-toluamide (DEET), an insect repellent, and permethrin, a pyrethroid insecticide, either alone or in combination were investigated.

2.?The three chemicals disappeared from plasma in the following order: permethrin > PB > DEET. The combined incubation of DEET with either permethrin or PB had no effect on permethrin or PB. Binary incubation with permethrin decreased the metabolism of PB and its disappearance from plasma and binary incubation with PB decreased the metabolism of permethrin and its clearance from plasma. Incubation with PB and/or permethrin shortened the DEET terminal half-life in plasma. These agents behaved similarly when studied in liver microsomal assays. The combined incubation of DEET with PB or permethrin (alone or in combination) diminished DEET metabolism in microsomal systems.

3.?The present study evidences that PB and permethrin are metabolized by both human plasma and liver microsomal enzymes and that DEET is mainly metabolized by liver oxidase enzymes. Combined exposure to test chemicals increases their neurotoxicity by impeding the body's ability to eliminate them because of the competition for detoxifying enzymes.  相似文献   

5.
Paraquat, a commonly used herbicide, has been shown to be toxic in exposed field workers. The objectives of this study were to (a) assess the cutaneous toxicity of paraquat in vivo in pig skin and in vitro in the isolated perfused porcine skin flap (IPPSF) and (b) quantitate its absorption in the IPPSF. The amounts of 3, 24, and 200 mg of paraquat were topically applied (5 cm2 surface area) on the ventral abdomen of pigs and biopsied after 6-8 hr for light microscopy (LM) and transmission electron microscopy (TEM). IPPSFs were topically dosed with the same concentrations and perfused for 8 hr (n = 4/treatment). The dosed area of the skin was sampled for LM, TEM, and enzyme histochemistry. IPPSFs were also treated topically with [14C]paraquat dichloride at the aforementioned concentrations (n = 4/dose) and hourly perfusate samples were collected for radiolabel determination and assessment of biochemical and physiological parameters. The epidermal changes were similar both in vivo and in vitro. The changes included epidermal intercellular edema which increased with dose and epidermal-dermal separation at the 200-mg dose. Acid phosphatase and nonspecific esterase activities were increased in the upper layers of the epidermis, while alkaline phosphatase showed a greater activity in the stratum basale layer. Glucose utilization of all treated IPPSFs was lower than that of the controls and a variation in the vascular resistance profiles was seen in all the treated flaps. Radiotracer studies indicated that a majority of the compound remained on top of the application site and minimal absorption or penetration into skin was observed. Thus, at high concentrations and prolonged exposure, paraquat may have deleterious effects on epidermal morphology in the absence of significant percutaneous absorption.  相似文献   

6.
Exposure to N,N-diethyl-m-toluamide (DEET) commonly occurs in the general population and has been implicated as a contributory factor to the Gulf War Illness. The focus of the present studies was to determine the effect of coexposure factors, potentially encountered in a military environment, that could modulate transdermal flux of topically applied DEET. Factors investigated were vehicle, dose, coexposure to permethrin, low-level sulfur mustard, occlusion, and simultaneous systemic exposure to pyridostigmine bromide and the nerve agent stimulant diisopropylfluorophosphate (DFP). Studies were conducted using the isolated perfused porcine skin flap (IPPSF), with a few mechanistically oriented studies conducted using in vitro porcine skin and silastic membrane diffusion cells. DEET was quantitated using high-performance liquid chromatography. The vehicle-control transdermal DEET flux in the IPPSF was approximately 2 micrograms/cm2/h for both 7.5 and 75% DEET concentrations, a value similar to that reported in humans. DEET absorption was enhanced by coinfusion of pyridostigmine bromide and DFP, by the presence of sulfur mustard, or by dosing under complete occlusion. The greatest increase in baseline flux was fivefold. In vitro diffusion cell studies indicated that silastic membranes had two orders of magnitude greater permeability than porcine skin, and showed vehicle effects on flux that were not detected in the IPPSF. These results suggest that coexposure to a number of chemicals that potentially could be encountered in a military environment may modulate the percutaneous absorption of topically applied DEET beyond that seen for normal vehicles at typically applied concentrations.  相似文献   

7.
Military personnel deployed in the Persian Gulf War (PGW) were exposed to a combination of chemicals, including pyridostigmine bromide (PB), DEET, and permethrin. We investigated the dose-response effects of these chemicals, alone or in combination, on the sensorimotor performance and cholinergic system of male Sprague-Dawley rats. Animals were treated with a daily dermal dose of DEET and/or permethrin for 60 days and/or PB (gavage) during the last 15 days. Neurobehavioral performance was assessed on day 60 following the beginning of the treatment with DEET and permethrin. The rats were sacrificed 24 h after the last treatment for biochemical evaluations. PB alone, or in combination with DEET, or DEET and permethrin resulted in deficits in beam-walk score and longer beam-walk times compared to controls. PB alone, or in combination with DEET, permethrin, or DEET and permethrin caused impairment in incline plane performance and forepaw grip strength. PB alone at all doses slightly inhibited plasma butyrylcholinesterase activity, whereas combination of PB with DEET or permethrin increased its activity. Brainstem acetylcholinesterase (AChE) activity significantly increased following treatment with combinations of either DEET or permethrin at all doses, whereas the cerebellum showed a significant increase in AChE activity following treatment with a combination of PB/DEET/permethrin. Co-exposure to PB, DEET, and permethrin resulted in significant inhibition in AChE in midbrain. PB alone or in combination with DEET and permethrin at all doses increased ligand binding for m2 muscarinic acetylcholine receptor in the cortex. In addition, PB and DEET together or a combination of PB, DEET, and permethrin significantly increased ligand binding for nicotinic acetylcholine receptor. These results suggest that exposure to various doses of PB, alone and in combination with DEET and permethrin, leads to sensorimotor deficits and differential alterations of the cholinergic system in the CNS.  相似文献   

8.
A rapid and highly sensitive gas chromatography-mass spectrometry (GC-MS) method for simultaneous determination of N,N-diethyl-m-toluamide (DEET) and permethrin with (2)H(10)-phenanthrene (98 atom %) as an internal standard and a separate external standard high-performance liquid chromatography (HPLC) method for pyridostigmine bromide (PB) determination in human plasma were developed and validated. The GC-MS method for DEET and permethrin quantification utilizes a one-step extraction with tert-butylmethylether. The HPLC method for PB quantification involves a solid-phase extraction and UV detection. The range of the analytical method for DEET and permethrin was 1 ng/mL to 100 ng/mL and for PB was 5 ng/mL to 100 ng/mL. Recovery from plasma proved to be more than 80%. The intraday precision ranged from 1.3% to 8% for DEET, from 2.1% to 11.4% for permethrin, and from 3.0% to 4.8% for PB. The interday precision was 3% for DEET, ranged from 5% to 9% for permethrin, and from 5% to 9% for PB. The accuracy for the limit of quantification was 92% +/- 8% relative standard deviation (RSD) for DEET, 112% +/- 11% RSD for permethrin, and 109% +/- 5% RSD for PB. All 3 compounds were stable in human plasma at -80 degrees C for at least 12 months and after 2 freeze-thaw cycles with RSD values ranging from 7.1% (DEET, 80 ng/mL) to 8.1% (DEET, 8 ng/mL), from 2.3% (permethrin, 80 ng/mL) to 11.6 % (permethrin, 8 ng/mL), and from 0.2% (PB, 80 ng/mL) to 3.6% (PB, 8 ng/mL). Both methods were successfully applied to pharmacokinetic/ pharmacodynamic studies of combined exposure of DEET (skin application), permethrin (treated uniforms), and PB (30 mg orally three times/day for four doses) in healthy volunteers (n = 81).  相似文献   

9.
In this study, we determined levels of 3-nitrotyrosine in rat urine following administration of a single oral dose of 13 mg/kg pyridostigmine bromide (PB) (3-dimethylaminocarbonyloxy-N-methylpyridinum bromide), a single dermal dose of 400 mg/kg N,N-diethyl-m-toluamide (DEET) and a single dermal dose of 1.3 mg/kg permethrin, alone and in combination. Urine samples were collected from five treated and five control rats at 4, 8, 16, 24, 48, and 72 h following dosing. Solid-phase extraction coupled with high-performance liquid chromatography with ultraviolet detection at 274 nm was used for the determination of tyrosine and 3-nitrotyrosine. A single oral dose of PB and a single dermal dose of DEET or their combination significantly (P<0.05) increased levels of 3-nitrotyrosine starting 24 h after dosing compared with control urine samples. The maximum increase of 3-nitroytyrosine was detected 48 h after combined administration of PB and DEET. The ratio of 3-nitrotyrosine to tyrosine in urine excreted 48 h after dosing was 0.19+/-0.04, 0.20+/-0.05, 0.28+/-0.03, 0.32+/-0.04, 0.19+/-0.05, 0.42+/-0.04, 0.27+/-0.03, 0.36+/-0.04, and 0.48+/-0.04 following administration of water, ethanol, PB, DEET, permethrin, PB+DEET, PB+permethrin, DEET+permethrin, and PB+DEET+permethrin, respectively. The results indicate that an oral dose of PB and a dermal administration of DEET, alone and in combination, could generate free radical species, and thus increase levels of 3-nitrotyrosine in rat urine. Induction of 3-nitrotyrosine, a marker of oxidative stress, following exposure to these compounds could be significant in understanding the proposed enhanced toxicity following combined exposure to these compounds.  相似文献   

10.
Since their return from Persian Gulf War (PGW), many veterans have complained of symptoms including muscle and joint pain, ataxia, chronic fatigue, headache, and difficulty with concentration. The causes of the symptoms remain unknown. Because these veterans were exposed to a combination of chemicals including pyridostigmine bromide (PB), DEET, and permethrin, we investigated the effects of these agents, alone and in combination, on the sensorimotor behavior and central cholinergic system of rats. Male Sprague-Dawley rats (200-250 gm) were treated with DEET (40 mg/kg, dermal) or permethrin (0.13 mg/kg, dermal), alone and in combination with PB (1.3 mg/kg, oral, last 15 days only), for 45 days. Sensorimotor ability was assessed by a battery of behavioral tests that included beam-walk score, beam-walk time, incline plane performance, and forepaw grip on days 30 and 45 following the treatment. On day 45 the animals were sacrificed, and plasma and CNS cholinesterase, and brain choline acetyl transferase, muscarinic and nicotinic acetylcholine receptors were evaluated. Animals treated with PB, alone or in combination with DEET and permethrin, showed a significant deficit in beam-walk score as well as beam-walk time as compared with controls. Treatment with either DEET or permethrin, alone or in combination with each other, did not have a significant effect on beam-walk score. All chemicals, alone or in combination, resulted in a significant impairment in incline plane testing on days 30 and 45 following treatment. Treatment with PB, DEET, or permethrin alone did not have any inhibitory effect on plasma or brain cholinesterase activities, except that PB alone caused moderate inhibition in midbrain acetylcholinesterase (AChE) activity. Treatment with permethrin alone caused significant increase in cortical and cerebellar AChE activity. A combination of DEET and permethrin or PB and DEET led to significant decrease in AChE activity in brainstem and midbrain and brainstem, respectively. A significant decrease in brainstem AChE activity was observed following combined exposure to PB and permethrin. Coexposure with PB, DEET, and permethrin resulted in significant inhibition in AChE in brainstem and midbrain. No effect was observed on choline acetyl transferase activity in brainstem or cortex, except combined exposure to PB, DEET, and permethrin caused a slight but significant increase in cortical choline acetyltransferase activity. Treatment with PB, DEET, and permethrin alone caused a significant increase in ligand binding for m2 muscarinic acetylcholine receptor (mAChR) in the cortex. Coexposure to PB, DEET, and permethrin did not have any effect over that of PB-induced increase in ligand binding. There was no significant change in ligand binding for nicotinic acetylcholine receptor (nAChR) associated with treatment with the chemical alone; a combination of PB and DEET or coexposure with PB, DEET, and permethrin caused a significant increase in nAChR ligand binding in the cortex. Thus, these results suggest that exposure to physiologically relevant doses of PB, DEET, and permethrin, alone or in combination, leads to neurobehavioral deficits and region-specific alterations in AChE and acetylcholine receptors.  相似文献   

11.
The release of cytochrome c from the mitochondrial intermembrane space can induce apoptosis. The levels of mitochondrial cytochrome c in rat brain following a single dermal dose of 400 mg/kg of DEET, and of 1.3 mg/kg of permethrin, alone or in combination were determined. Rats were sacrificed at a time interval of 0.5, 1, 2, 4, 8, 16, 24, 48, or 72 h after dosing. Brain mitochondria were isolated and the levels of cytochrome c were measured using reversed-phase high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection. Average percentage recovery of cytochrome c spiked with control rat brain mitochondria was 83.2 +/- 8.9%. Limits of detection and quantitation were 1 and 5 ng, respectively. The results showed that a single dermal dose of a combination of DEET and permethrin significantly increased the release of brain mitochondrial cytochrome c starting 24 h after treatment. DEET and permethrin alone did not affect the release of cytochrome c. The results indicate that combined exposure to DEET and permethrin might induce the apoptotic processes in rat brain as seen by the release of cytochrome c.  相似文献   

12.
Previous research has shown the isolated perfused porcine skin flap (IPPSF) to be a novel in vitro experimental model for investigating xenobiotic percutaneous absorption. In this study, the IPPSF was used to biochemically and morphologically assess the dermatotoxicity of 2-chloroethyl methyl sulfide (CEMS), a monofunctional analog of the vesicant, sulfur mustard. IPPSFs were perfused in a recirculating perfusion system and were treated with 97% CEMS (n = 4) or served as controls (n = 4). Additional IPPSFs were perfused in a nonrecirculating perfusion system and were treated with CEMS (n = 4) or were controls (n = 4). After dosing, each IPPSF was perfused for 8 hr. Cumulative glucose utilization (GU) and lactate production/glucose utilization ratio (L/GU ratio) were used as viability parameters. The average rate of GU for CEMS was significantly lower than control (p less than 0.05) in the recirculating and nonrecirculating IPPSFs. The L/GU ratio for CEMS was not significantly different (p greater than 0.05) from control for either perfusion system. CEMS resulted in a marked increase in vascular resistance versus control in both perfusion systems. Gross vesicles and bullae formation occurred in six of the CEMS-treated IPPSFs. Light microscopy revealed subepidermal vesicle formation above the basement membrane and extensive basal cell pyknosis in all IPPSFs treated with CEMS. No macroscopic or microscopic lesions were noted in the control flaps. Transmission electron microscopy revealed separation between the lamina lucida and the lamina densa of the basal lamina, with intracellular vacuolization and mitochondrial swelling occurring in the stratum basale and stratum spinosum cells of IPPSFs treated with CEMS. These lesions are similar to those described after human exposure to sulfur mustard. Full characterization of the morphological and biochemical changes seen after topical exposure of the IPPSF to vesicants may shed light on the pathogenesis of cutaneous toxicity of these compounds in vivo and serve as a relevant model to assess protective strategies against vesicant exposure.  相似文献   

13.
Levels of the biomarker of DNA oxidative damage 8-hydroxy-2'-deoxyguanosine (8-OHdG) in rat urine following dermal exposure to DEET (N,N-diethyl-m-toluamide) and permethrin, alone and in combination have been determined. A group of five rats for each time point were treated with a single dermal dose of 400 mg/kg of DEET, 1.3 mg/kg of permethrin or their combination. Urine samples were collected 2,4,8,16,24,48, and 72 h following application. Control urine samples of rats treated with ethanol were also collected at the same time intervals. Solid phase extraction coupled with high performance liquid chromatography (HPLC) with UV detection at 254 nm was used for determination of 2'-deoxyguanosine, and (8-OHdG). The limits of detection (LOD) were 0.5 ng of both 2'-deoxyguanosine and 8-OHdG. Their average percentage recoveries from urine samples were between 70-85%. A single dermal dose of DEET or in combination with permethrin significantly induced levels of (8-OHdG) that are excreted in the urine over the time course of the study compared to control urine samples. Permethrin did not cause significant increase in the amount of 8-OHdG in the urine. Levels of 8-OHdG in urine excreted at 24 h were 1009+/-342, 1701+/-321, 1140+/-316, and 1897+/-231 ng following treatment with ethanol, DEET, permethrin, and DEET+permethrin, respectively. The results indicate that dermal administration of DEET could generate free radical species hence cause DNA oxidative damage in rats.  相似文献   

14.
In this study we examined the interaction of the anti-nerve agent drug pyridostigmine bromide (PB, 3,3-dimethylaminocarbonyloxy- N-methylpyridiniyum bromide), the insect repellent DEET ( N, N-diethyl- m-toluamide), and the insecticide permethrin [3-(2,2-dichloroethyl)-2,2-dimethylcyclopropanecarboxylic acid (3-phenoxyphenyl)methyl ester] in binding to human serum albumin (HSA). Concentrations between 500 ng/ml and 10 microg/ml PB, DEET and permethrin, alone or in combination, were incubated with HSA at 37 degrees C for 60 min. Concentrations of PB, DEET and permethrin were determined using high performance liquid chromatography (HPLC). The results showed that 81.2+/-4.2%, and 84.6+/-2.5% of the initial concentration of PB was bound to HSA when incubated alone or in combination with DEET or permethrin, respectively. DEET and permethrin did not significantly interact with HSA after 1 h of incubation. Incubation of combinations of two or three compounds did not significantly alter the binding pattern of any of the compounds with HSA. These results showed that PB is highly bound to albumin protein, while the competition between PB, DEET and permethrin on binding sites of HSA as a possible site of interaction following combined administration in vivo is not likely.  相似文献   

15.
Exposure to chemical vesicants such as sulfur mustard (HD) continues to be a threat to military forces requiring protectant strategies to exposure to be evaluated. Methyl salicylate (MS) has historically been the simulant of choice to assess HD exposure. The purpose of this study was to compare the percutaneous absorption and skin deposition of MS to HD in the isolated perfused porcine skin flap (IPPSF). The HD data were obtained from a previously published study in this model wherein 400 microg cm(-2) of ](14)C[-MS or ](14)C[-HD in ethanol were topically applied to 16 IPPSFs and experiments were terminated at 2, 4 or 8 h. Perfusate was collected at increasing time intervals throughout perfusion. Radioactivity was determined in perfusate and skin samples. Perfusate flux profiles were fitted to a bi-exponential model Y(t) = A(e(-bt) - e(-dt)) and the area under the curve (AUC), peak flux and time to peak flux were determined. Sulfur mustard had more pronounced and rapid initial flux parameters (P < 0.05). The AUCs determined from observed and model-predicted parameters were not statistically different, although the mean HD AUC was 40--50% greater than MS. The HD skin and fat levels were up to twice those seen with MS, but had lower stratum corneum and residual skin surface concentrations (P < 0.05). Compared with other chemicals studied in this model, HD and MS cutaneous disposition were very similar, supporting the use of MS as a dermal simulant for HD exposure.  相似文献   

16.
DEET and permethrin were implicated in the development of illnesses in some veterans of the Persian Gulf War. This study was designed to investigate the effects of daily dermal application of these chemicals, alone or in combination, on the permeability of the blood-brain barrier (BBB) and blood-testes barrier (BTB) and on sensorimotor performance in male Sprague-Dawley rats. Groups of five rats were treated with a dermal daily dose of 4, 40, or 400 mg/kg DEET in ethanol or 0.013, 0.13, or 1.3 mg/kg permethrin in ethanol for 60 d. A group of 10 rats received a daily dermal dose of ethanol and served as controls. BBB permeability was assessed by injection of an iv dose of the quaternary ammonium compound [3H]hexamethonium iodide. While permethrin produced no effect on BBB permeability, DEET alone caused a decrease in BBB permeability in brainstem. A combination of DEET and permethrin significantly decreased the BBB permeability in the cortex. BTB permeability was decreased by treatment with DEET alone and in combination with permethrin. The same animals underwent a battery of functional behavior tests 30, 45, and 60 d after exposure to evaluate their sensorimotor abilities. All treatments caused a significant decline in sensorimotor performance in a dose- and time-dependent manner. These results show that daily dermal exposure to DEET, alone or in combination with permethrin, decreased BBB permeability in certain brain regions, and impaired sensorimotor performance.  相似文献   

17.
Cutting fluids are widely used in the metal-machining industry to lubricate and reduce heat generation when metals are cut by a metal-cutting tool. These cutting fluids have caused occupational irritant contact dermatitis (OICD), and many of the additives used in these cutting fluid mixtures are thought to be responsible for OICD in workers. The purpose of this study was to assess single or various combinations of these additives in initiating the OICD response following an acute 8-hour exposure in porcine skin in vivo and in vitro using the isolated perfused porcine skin flap (IPPSF) and human epidermal keratinocytes (HEK). Pigs (n = 4) were exposed to 5% mineral oil (MO) or 5% polyethylene glycol (PEG) aqueous mixtures containing various combinations of 2% triazine (TRI), 5% triethanolamine (TEA), 5% linear alkylbenzene sulfonate (LAS), or 5% sulfurized ricinoleic acid (SRA). Erythema and edema were evaluated and skin biopsies for histopathology were obtained at 4 and 8 hours. IPPSFs (n = 4) were exposed to control MO or PEG mixtures and complete MO or PEG mixtures, and perfusate samples were collected hourly to determine interleukin- (IL-) 8 release. The only significant (p < 0.05) mixture effects observed in IPPSFs were with SRA + MO that caused an increase in IL-8 release after 1 or 2 hours' exposure. In vivo exposure to TRI alone appeared to increase erythema, edema, and dermal inflammation compared to the other additives, while SRA alone was least likely to initiate a dermal inflammatory response. In 2-component mixture exposures, the presence of TRI appeared to increase the dermal inflammatory response at 4 and 8 hours especially with the PEG mixtures. In the 3- and 4-component mixtures, MO mixtures are more likely to incite an inflammatory response than PEG mixtures. TRI exhibited the highest toxicity toward HEK, which correlates well to the in vivo irritation and morphology results. In summary, these preliminary studies suggest that the biocide, TRI, is the more potent of the 4 performance additives in causing dermal irritation, and this may vary depending on whether the worker is exposed to a synthetic (PEG)- or MO-based fluid. These findings will however require further clinical studies to validate these acute dermal effects as well as human cumulative irritation following exposure to similar cutting fluid formulations in the workplace.  相似文献   

18.
Dermal exposure to jet fuels has received increased attention with the recent release of newer fuels with novel performance additives. The purpose of these studies was to assess the percutaneous absorption and cutaneous disposition of topically applied (25 microl/5 cm(2)) neat Jet-A, JP-8, and JP-8(100) jet fuels by monitoring the absorptive flux of the marker components 14C naphthalene and (3)H dodecane simultaneously applied nonoccluded to isolated perfused porcine skin flaps (IPPSF) (n = 4). Absorption of 14C hexadecane was estimated from JP-8 fuel. Absorption and disposition of naphthalene and dodecane were also monitored using a nonvolatile JP-8 fraction reflecting exposure to residual fuel that might occur 24 h after a jet fuel spill. In all studies, perfusate, stratum corneum, and skin concentrations were measured over 5 h. Naphthalene absorption had a clear peak absorptive flux at less than 1 h, while dodecane and hexadecane had prolonged, albeit significantly lower, absorption flux profiles. Within JP-8, the rank order of absorption for all marker components was (mean +/- SEM % dose) naphthalene (1.17 +/- 0.07) > dodecane (0.63 +/- 0.04) > hexadecane (0.18 +/- 0.08). In contrast, deposition within dosed skin showed the reverse pattern. Naphthalene absorption into perfusate was similar across all fuel types, however total penetration into and through skin was highest with JP-8(100). Dodecane absorption and total penetration was greatest from JP-8. Absorption of both markers from aged JP-8 was lower than other fuels, yet the ratio of skin deposition to absorption was greatest for this treatment group. In most exposure scenarios, absorption into perfusate did not directly correlate to residual skin concentrations. These studies demonstrated different absorption profiles for the three marker compounds, differential effects of jet fuel types on naphthalene and dodecane absorption, and uncoupling of perfusate absorption from skin disposition.  相似文献   

19.
Concurrent exposure to pyridostigmine bromide (PB), permethrin (PERM) and/or N,N-diethyl-m-toluamide (DEET) may have contributed to the development of a syndrome that appears to have afflicted military personnel who served during the Gulf War. The present experiment sought to evaluate the behavioral effects of these compounds alone, or in various combinations, in male and female rats. Subjects were exposed to a multiple fixed-ratio (FR) 50, fixed-interval (FI) 2-min schedule of reinforcement. PB dose-dependently decreased FR and FI response rates. FR responding was disrupted by lower doses and there were no differences between the sexes. PERM vehicle administration decreased response rates maintained by both schedules of reinforcement; this was offset by an increase in response rate after the administration of the intermediate dose of PERM. The highest dose of PERM decreased both FR and FI response rates. FR rates in male rats were more disrupted than those in female rats. Only the highest dose of DEET decreased FR and FI response rates in male and female rats. FR rates were more disrupted in female rats than in male rats. Synergistic effects were only observed when FI response rates decreased in male rats upon exposure to half the low dose of PB with half the low dose of PERM or half the low dose of PB with half the low dose of DEET. The results of this experiment thus show that small doses of PB, PERM and DEET disrupt well-established, schedule-controlled behavior in male and female rats in a schedule- and gender-dependent manner; schedule-dependent and gender-dependent synergistic effects were also observed. The mechanism by which the compounds exert these behavioral effects remains to be determined.  相似文献   

20.
Drug interactions have been suggested as a cause of Gulf War Syndrome. Pyridostigmine bromide (PB), a prophylactic treatment against potential nerve gas attack, the insect repellent DEET, and permethrin (PERM) impregnated in soldiers' uniforms may have interacted and caused greater than expected toxicity. We tested those 3 drugs singly and in combinations on male and female Sprague-Dawley rats in open field arenas to find the effects on rate of locomotion and thigmotaxis. Administration rates were 10 mg PB/kg; 50, 200, or 500 mg DEET/kg; 15, 30, or 60 mg PERM/kg; 5 mg PB/kg + 100 mg DEET/kg; 5 mg PB/kg + 15 mg PERM/kg; 100 mg DEET/kg + 15 mg PERM/kg; or vehicle by gavage and i.p. injection. Locomotor behavior was quantified by video-computer analysis for 2 h post-treatment. Female rats were tested in either pro- or metestrus. Drug interactions were determined by the isobolographic method. Blood serum drug concentrations were estimated by high performance liquid chromatography or gas chromatography-mass spectrometry. Single drug effects were very limited within the ranges tested. Double-drug administrations at half the single-drug rates resulted in statistically significant interactions in male rats for both locomotion rate and thigmotaxis. Combination of PB + PERM and DEET + PERM significantly affected speed, whereas only the combination of DEET + PERM significantly affected thigmotaxis. Female rats did not show significant interactions. Our data suggest that serum concentrations of PB and DEET may have been higher in females than males. Administration of PB + DEET may have reduced the serum concentration of DEET, and administration of PB + PERM may have increased the serum concentration of PERM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号