首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carboxylesterases are essential enzymes in the hydrolysis and detoxification of numerous pharmaceuticals and pesticides. They are vital in mediating organophosphate toxicity and in activating many prodrugs such as the chemotherapeutic agent CPT-11. It is therefore important to study the catalytic mechanism responsible for carboxylesterase-induced hydrolysis, which can be accomplished through the use of potent and selective inhibitors. Trifluoromethyl ketone (TFK)-containing compounds are the most potent esterase inhibitors described to date. The inclusion of a thioether moiety beta to the carbonyl further increased TFK inhibitor potency. In this study, we have synthesized the sulfone analogues of a series of aliphatic and aromatic substituted thioether TFKs to evaluate their potency and solubility properties. This structural change shifted the keto/hydrate equilibrium from <9% hydrate to >95% hydrate, forming almost exclusively the gem-diol. These new compounds were evaluated for their inhibition of carboxylesterase activity in three different systems, rat liver microsomes, commercial porcine esterase, and juvenile hormone esterase in cabbage looper (Trichoplusia ni) hemolymph. The most potent inhibitor of rat liver carboxylesterase activity was 1,1,1-trifluoro-3-(decane-1-sulfonyl)-propan-2,2-diol, which inhibited 50% of the enzyme activity (IC(50)) at 6.3 +/- 1.3 nM and was 18-fold more potent than its thioether analogue. However, the sulfone derivatives were consistently poorer inhibitors of porcine carboxylesterase activity and juvenile hormone esterase activity, with IC(50) values ranging from low micromolar to millimolar. The compound 1,1,1-trifluoro-3-(octane-1-sulfonyl)-propan-2,2-diol was shown to have a 10-fold greater water solubility than its thioether analogue, 1,1,1-trifluoro-3-octylsulfanyl-propan-2-one (OTFP). These novel compounds provide further evidence of the differences between esterase orthologs, suggesting that additional development of esterase inhibitors may ultimately provide a battery of ortholog and/or isoform selective inhibitors analogous to those available for other complex enzyme families with overlapping substrate specificity.  相似文献   

2.
The capacity of human, minipig, and rat skin and liver subcellular fractions to hydrolyze the anesthetic ester procaine was compared with carboxylesterase substrates 4-methylumbelliferyl-acetate, phenylvalerate, and para-nitrophenylacetate and the arylesterase substrate phenylacetate. Rates of procaine hydrolysis by minipig and human skin microsomal and cytosolic fractions were similar, with rat displaying higher activity. Loperamide inhibited procaine hydrolysis by human skin, suggesting involvement of human carboxylesterase hCE2. The esterase activity and inhibition profiles in the skin were similar for minipig and human, whereas rat had a higher capacity to metabolize esters and a different inhibition profile. Minipig and human liver and skin esterase activity was inhibited principally by paraoxon and bis-nitrophenyl phosphate, classical carboxylesterase inhibitors. Rat skin and liver esterase activity was inhibited additionally by phenylmethylsulfonyl fluoride and the arylesterase inhibitor mercuric chloride, indicating a different esterase profile. These results have highlighted the potential of skin to hydrolyze procaine following topical application, which possibly limits its pharmacological effect. Skin from minipig used as an animal model for assessing transdermal drug preparations had similar capacity to hydrolyze esters to human skin.  相似文献   

3.
The carboxylesterase activity in both plasma and liver of guinea-pig were separated into three main peaks by chromatofocusing. Two of the three plasma enzymes were retained by affinity chromatography on Affi-Gel Blue (100-200 mesh). Isoelectric points determined by chromatofocusing or isoelectrofocusing were pI 6.1, pI 5.2 and pI 4.0 for the plasma enzymes, and pI 5.7, pI 5.2 and pI 4.5 for the liver enzymes. The effect of selective esterase inhibitors, soman, physostigmine (cholinesterase inhibitor) and bis-4-nitrophenyl phosphate (carboxylesterase inhibitor), suggested that the three enzymes in both tissues may be regarded as carboxylesterases. However, the pI 5.7 carboxylesterase was partially inhibited by physostigmine, and the pI 4.5 carboxylesterase was almost not affected by bis-4-nitrophenyl phosphate. The ratio between the activities towards 4-nitrophenyl butyrate and methyl butyrate differed among the carboxylesterases in both tissues. All three carboxylesterases in plasma were partially reactivated by diacetylmonoxime after soman inhibition in vitro, but to a different extent. The soman inhibited liver carboxylesterases were not reactivated by diacetylmonoxime.  相似文献   

4.
1.?Anordrin (2α, 17α-diethynyl-A-nor-5α-androstane-2β, 17β-diol diproprionate) is post-coital contraceptive drug that is on the market in China for more than 30 years. This study aims to elucidate enzymes involved in anordrin hydrolysis, and to evaluate the significant role of carboxylesterases in anordrin hydrolysis in humans.

2.?Human liver and intestinal microsomes, recombinant human carboxylesterase were selected as enzyme sources. In human liver microsomes, intrinsic clearance was 684?±?83?μL/min/mg protein, which was considerably higher than the value of intestine microsomes (94.6?±?13.3?μL/min/mg protein). Carboxylesterase (CES) 1 has more contribution than CES2 in human liver.

3.?Inhibition studies were performed using representative esterase inhibitors to confirm esterase isoforms involved in anordrin hydrolysis. Simvastatin strongly inhibited hydrolytic process of anordrin in liver and intestine microsomes, with IC50 values of 10.9?±?0.1 and 6.94?±?0.03?μM, respectively.

4.?The present study investigated for the first time hydrolytic enzyme phenotypes of anordrin. Anordrin is predominantly catalyzed by CES1 and CES2 to generate the main active metabolite, anordiol. Moreover, anordrin and its metabolite anordiol can be altered by esterase inhibitors, such as simvastatin, upon exposure in vivo.  相似文献   

5.
The present study has provided evidence for the existence of three distinct carboxylesterases involved in the hydrolysis of steroid esters, where two enzymes are possibly responsible for the metabolism of hydrocortisone hemisuccinate (HCHS) at pH 5.5 and 8.0, and a third enzyme for the metabolism of hydrocortisone acetate (HCAC) at pH 8.0, in isolated rat liver microsomes. The activity of all three enzymes in rat liver was induced significantly by the administration of phenobarbital while no such function in enzyme activity was observed in animals receiving 3-methylcholanthrene or benzo[a] pyrene under similar experimental conditions. The increase in the activity of HCHS esterase I (HCHS-E1) active at pH 5.5, HCHS esterase II (HCHS-E2) active at pH 8.0, and HCAC esterase (HCAC-E) was approximately 7 to 8, 3- and 3-fold respectively. On the other hand, the degree of induction of nonspecific microsomal carboxylesterase acting on p-nitrophenylacetate (PNPA) was significantly less. The Km values for the hydrolysis of HCHS at pH 5.5 and 8.0 and HCAC by rat liver microsomes obtained from control rats were 2.45, 2.02 and 1.6 mM, respectively, and these Km values were not changed significantly in preparations obtained from rats treated with phenobarbital. The distinct in vitro responses displayed by hepatic microsomal steroid esterases to various inhibitors were able to distinguish three different enzymes which also differed from nonspecific carboxylesterases. The activity of HCAC-E was inhibited by NaAsO2 and AgNO3 while that of HCHS-E1 and HCHS-E2 remained unaffected. Selective inhibition of HCHS-E1 by NaF, HgCl2 and p-chloromercuribenzoate and that of HCHS-E2 by NiSO4 indicated the possible existence of different enzymes or isozymes of a carboxylesterase catalyzing HCHS hydrolysis. The effects elicited by the inhibitors on the activity of PNPA esterase were different from those observed with steroid esterases. Furthermore, the present study has also indicated species variations in the distribution of steroid esterases in the livers of rat, mouse, dog and cat.  相似文献   

6.
A series of substituted trifluoroketones were tested as inhibitors of mammalian liver microsomal carboxylesterase(s) hydrolyzing a variety of substrates including malathion, diethylsuccinate (DES) and p-nitrophenyl acetate (p-NpAc). The trifluoroketones used were very potent "transition state" inhibitors of crude mouse and human liver microsomal carboxylesterases as well as commercial porcine liver carboxylesterase (Sigma EC 3.1.1.1 Type I). These enzymes were found to differ in their sensitivity to the inhibitors employed, and some compounds caused dramatic activation of the hydrolysis of DES. In some but not all cases, a thioether beta to the carbonyl increased the inhibitory potency of the compound. Structure-activity relationships also were evaluated among aliphatic versus substituted and unsubstituted aromatic trifluoroketones. Kinetic parameters [i.e. Km, Vmax and (T1/2)e] for the mouse liver microsomes and the porcine carboxylesterase hydrolyzing DES were determined. Apparent high- and low-affinity forms were observed with each preparation. 3-Nonylthio-1,1,1-trifluoropropan-2-one was synthesized by the reaction of the corresponding thiol with 3-bromo-1,1,1-trifluoroacetone, and apparent synergism was observed when it was coadministered i.p. with malathion to mice.  相似文献   

7.
Metabolism of T-2 toxin by rat liver carboxylesterase   总被引:2,自引:0,他引:2  
The trichothecene T-2 toxin was rapidly hydrolyzed by rat liver microsomal fraction into HT-2 toxin which was the main metabolite. The metabolism was completely blocked by paraoxon, a serine esterase inhibitor, but not affected by EDTA or 4-hydroxy mercury benzoate, inhibitors of arylesterase and esterases containing SH-group in active site, respectively. Among the serine esterases carboxylesterase (EC 3.1.1.1), but not cholinesterase (EC 3.1.1.8) hydrolysed T-2 toxin to HT-2 toxin. Carboxylesterase activity from liver microsomes was separated into at least five different isoenzymes by isoelectric focusing, and only the isoenzyme of pI 5.4 was able to hydrolyse T-2 toxin to HT-2 toxin. The toxicity of T-2 toxin in mice was enhanced by pre-treatment with tri-o-cresyl phosphate (TOCP), a specific carboxylesterase inhibitor. This confirms the importance of carboxylesterase in detoxification of trichothecenes.  相似文献   

8.
This study was designed to study the in vitro metabolism of indiplon, a novel hypnotic agent, and to assess its potential to cause drug interactions. In incubations with pooled human liver microsomes, indiplon was converted to two major, pharmacologically inactive metabolites, N-desmethyl-indiplon and N-desacetyl-indiplon. The N-deacetylation reaction did not require NADPH, and appeared to be catalyzed by organophosphate-sensitive microsomal carboxylesterases. The N-demethylation of indiplon was catalyzed by CYP3A4/5 based on the following observations: (1) the sample-to-sample variation in N-demethylation of indiplon ([S] = 100 microM) in a bank of human liver microsomes was strongly correlated with testosterone 6beta-hydroxylase (CYP3A4/5) activity (r(2) = 0.98), but not with any other CYP enzyme; (2) recombinant CYP1A1, CYP1A2, CYP3A4, CYP3A5 and CYP3A7 had the ability to catalyze this reaction; (3) the N-demethylation of indiplon was inhibited by CYP3A4/5 inhibitors (ketoconazole and troleandomycin), but not by a CYP1A2 inhibitor (furafylline). In pooled human liver microsomes, indiplon exhibited a weak capacity to inhibit CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2D6, CYP2E1, CYP3A4/5 and carboxylesterase (p-nitrophenylacetate hydrolysis) activities (IC50 >/= 20 microM). Clinical data available on indiplon support the conclusions of this paper that the in vitro metabolism of indiplon is catalyzed by multiple enzymes, and indiplon is a weak inhibitor of human CYP enzymes.  相似文献   

9.
Selective inhibition of human cytochrome P4502C8 by montelukast.   总被引:9,自引:0,他引:9  
The leukotriene receptor antagonist montelukast was examined for its inhibition of the human drug-metabolizing enzyme cytochrome P4502C8 (CYP2C8). Montelukast was demonstrated to be a potent inhibitor of CYP2C8-catalyzed amodiaquine N-deethylase, rosiglitazone N-demethylase, and paclitaxel 6alpha-hydroxylase in human liver microsomes. Inhibition was also observed when the reaction was catalyzed by recombinant heterologously expressed CYP2C8. The mechanism of inhibition was competitive, with K(i) values ranging from 0.0092 to 0.15 microM. Inhibition potency was highly dependent on the microsomal protein concentration. Increasing the microsomal protein concentration by 80-fold yielded a 100-fold decrease in inhibition potency. Preincubation of montelukast with human liver microsomes and NADPH did not alter the inhibition potency, suggesting that montelukast is not a mechanism-based inactivator. Montelukast was a selective inhibitor for human CYP2C8; inhibition of other human cytochrome P450 enzymes was substantially less. These in vitro data support the use of montelukast as a selective CYP2C8 inhibitor that could be used to determine the contribution of this enzyme to drug metabolism reactions. These data also raise the possibility that montelukast could have an effect on the metabolic clearance of drugs possessing CYP2C8-catalyzed metabolism as a major clearance pathway, thereby eliciting pharmacokinetic drug-drug interactions.  相似文献   

10.
Metabolism of nafamostat, a clinically used serine protease inhibitor, was investigated with human blood and liver enzyme sources. All the enzyme sources examined (whole blood, erythrocytes, plasma and liver microsomes) showed nafamostat hydrolytic activity. V(max) and K(m) values for the nafamostat hydrolysis in erythrocytes were 278 nmol/min/mL blood fraction and 628 microM; those in plasma were 160 nmol/min/mL blood fraction and 8890 microM, respectively. Human liver microsomes exhibited a V(max) value of 26.9 nmol/min/mg protein and a K(m) value of 1790 microM. Hydrolytic activity of the erythrocytes and plasma was inhibited by 5, 5'-dithiobis(2-nitrobenzoic acid), an arylesterase inhibitor, in a concentration-dependent manner. In contrast, little or no suppression of these activities was seen with phenylmethylsulfonyl fluoride (PMSF), diisopropyl fluorophosphate (DFP), bis(p-nitrophenyl)phosphate (BNPP), BW284C51 and ethopropazine. The liver microsomal activity was markedly inhibited by PMSF, DFP and BNPP, indicating that carboxylesterase was involved in the nafamostat hydrolysis. Human carboxylesterase 2 expressed in COS-1 cells was capable of hydrolyzing nafamostat at 10 and 100 microM, whereas recombinant carboxylesterase 1 showed significant activity only at a higher substrate concentration (100 microM). The nafamostat hydrolysis in 18 human liver microsomes correlated with aspirin hydrolytic activity specific for carboxylesterase 2 (r=0.815, p<0.01) but not with imidapril hydrolysis catalyzed by carboxylesterase 1 (r=0.156, p=0.54). These results suggest that human arylesterases and carboxylesterase 2 may be predominantly responsible for the metabolism of nafamostat in the blood and liver, respectively.  相似文献   

11.
The purpose of this paper was to characterize cytochrome P450 (CYP) enzymes involved in N-dealkylation of a new oral erectogenic, DA-8159 to DA-8164, a major circulating active metabolite, in human liver microsomes and to investigate the inhibitory potential of DA-8159 on CYP enzymes. CYP3A4 was identified as the major enzyme responsible for DA-8159 N-dealkylation to DA-8164 based on correlation analysis and specific CYP inhibitor and antibody-mediated inhibition study in human liver microsomes, and DA-8159 metabolism in cDNA expressed CYP enzymes. There is the possibility of drug-drug interactions when prescribing DA-8159 concomitantly with known inhibitors or inducers of CYP3A4. DA-8159 was found to be only a very weak inhibitor of eight major CYPs (1A2, 2A6, 2C8, 2C9, 2C19, 2D6, 2E1 and 3A4), the largest inhibition occurring against CYP2D6 (IC5o 67.7 microM) in human liver microsomes. Drug-drug interactions would not be predicted on the basis of DA-8159 inhibiting the metabolism of coadministered drugs.  相似文献   

12.
The aim of this study was to conclusively determine the enzyme responsible for the hydrolysis of oxybutynin in human liver. Hydrolysis in human liver microsomes (HLMs) and human liver cytosol (HLC) followed Michaelis-Menten kinetics with similar K(m) values. In recombinant human carboxylesterase (CES)-expressing microsomes, CES1 was much more efficient than CES2 and yielded a K(m) value more comparable with that found in HLMs or HLC than did CES2. A correlation analysis using a set of individual HLMs, in which both CESs acted independently showed that the hydrolysis rate of oxybutynin, correlated significantly with a CES1 marker reaction, clopidogrel hydrolysis, but not with a CES2 marker reaction, irinotecan (CPT-11) hydrolysis. Chemical inhibition studies using bis-(p-nitrophenyl) phosphate, clopidogrel, nordihydroguaiaretic acid, procainamide, physostigmine, and loperamide revealed that the effects of these compounds in HLMs, HLC, and recombinant CES1-expressing microsomes were similar, whereas those in CES2-expressing microsomes were clearly different. These results strongly suggest that CES1, rather than CES2, is the principal enzyme responsible for the hydrolysis of oxybutynin in human liver.  相似文献   

13.
Selective and nonselective cytochromes P450 (P450) chemical inhibitors and monoclonal antibodies (mAbs) are routinely used to determine the contribution of P450 enzymes involved in the biotransformation of a drug. A fluorometric assay has been established using fluorescein diacetate as a model substrate to determine the effect of some commonly used P450 inhibitors and mAbs on human liver microsomal esterase activity. Of those inhibitors studied, only alpha-naphthoflavone, clotrimazole, ketoconazole, miconazole, nicardipine, and verapamil significantly inhibited human liver microsomal esterase activity, with apparent IC50 values of 18.0, 20.5, 6.5, 15.0, 19.4, and 5.4 microM, respectively. All of these showed > or =20% inhibition of human liver microsomal esterase activity at concentrations typically used for P450 reaction phenotyping studies, with clotrimazole, miconazole, nicardipine, and verapamil showing >60% inhibition. Unlike the chemical inhibitors, no inhibition of human liver microsomal esterase activity was observed in the presence of mAb to CYP1A2, 2C8, 2C9, 2C19, 2D6, and 3A4. These results suggest that P450 chemical inhibitors are capable of inhibiting human liver microsomal esterase activity and should not be used to assess the role of P450 enzymes in the biotransformation of esters. The lack of inhibition of human liver microsomal esterase activity by P450-specific monoclonal antibodies suggests that they may be used to assess the role of P450 enzymes in the biotransformation of esters. Additional experiments to assess the contribution of oxidative enzymes in the metabolism of esters may include incubations in the presence and absence of beta-nicotinamide adenine dinucleotide 2'-phosphate reduced.  相似文献   

14.
The human clearance of proton pump inhibitors (PPIs) of the substituted benzimidazole class is conducted primarily by the hepatic cytochrome P450 (P450) system. To compare the potency and specificity of the currently used PPIs (i.e., omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole) as inhibitors of four cytochrome P450 enzymes (CYP2C9, 2C19, 2D6, and 3A4), we performed in vitro studies using human liver microsomal preparations and recombinant CYP2C19. Sample analysis was done using selected reaction monitoring liquid chromatography/tandem mass spectometry. With several systems for CYP2C19 activity (two marker reactions, S-mephenytoin 4'-hydroxylation and R-omeprazole 5-hydroxylation, tested in either human liver microsomes or recombinant CYP2C19), the five PPIs showed competitive inhibition of CYP2C19 activity with K(i) of 0.4 to 1.5 microM for lansoprazole, 2 to 6 microM for omeprazole, approximately 8 microM for esomeprazole, 14 to 69 microM for pantoprazole, and 17 to 21 microM for rabeprazole. Pantoprazole was a competitive inhibitor of both CYP2C9-catalyzed diclofenac 4'-hydroxylation and CYP3A4-catalyzed midazolam 1'-hydroxylation (K(i) of 6 and 22 microM, respectively), which were at least 2 times more potent than the other PPIs. All PPIs were poor inhibitors of CYP2D6-mediated bufuralol 1'-hydroxylation with IC(50) > 200 microM. The inhibitory potency of a nonenzymatically formed product of rabeprazole, rabeprazole thioether, was also investigated and showed potent, competitive inhibition with K(i) values of 6 microM for CYP2C9, 2 to 8 microM for CYP2C19, 12 microM for CYP2D6, and 15 microM for CYP3A4. The inhibitory potency of R-omeprazole on the four studied P450 enzymes was also studied and showed higher inhibitory potency than its S-isomer on CYP2C9 and 2C19 activities. Our data suggest that, although the inhibitory profiles of the five studied PPIs were similar, lansoprazole and pantoprazole are the most potent in vitro inhibitors of CYP2C19 and CYP2C9, respectively. Esomeprazole showed less inhibitory potency compared with omeprazole and its R-enantiomer. The inhibitory potency of rabeprazole was relatively lower than the other PPIs, but its thioether analog showed potent inhibition on the P450 enzymes investigated, which may be clinically significant.  相似文献   

15.
Fluticasone propionate (FTP) is a synthetic trifluorinated glucocorticoid with potent anti-inflammatory action that is commonly used in patients with asthma. After oral or intranasal administration, FTP undergoes rapid hepatic biotransformation; the principal metabolite formed is a 17beta-carboxylic acid derivative (M1). M1 formation has been attributed largely to cytochrome P450 3A4 (CYP3A4); however, there are no published data that confirm this assertion. Hence, in vitro studies were conducted to determine the role that human P450s play in the metabolism of FTP. Consistent with in vivo data, human liver microsomes catalyzed the formation of a single metabolite (M1) at substrate concentrations 0.95) with CYP3A4/5 activities in a panel of human liver microsomes (n = 14) and was markedly impaired by the CYP3A inhibitor ketoconazole (>94%) but not by inhibitors of other P450 enzymes (相似文献   

16.
This study was designed to study the in vitro metabolism of indiplon, a novel hypnotic agent, and to assess its potential to cause drug interactions. In incubations with pooled human liver microsomes, indiplon was converted to two major, pharmacologically inactive metabolites, N-desmethyl-indiplon and N-desacetyl-indiplon. The N-deacetylation reaction did not require NADPH, and appeared to be catalyzed by organophosphate-sensitive microsomal carboxylesterases. The N-demethylation of indiplon was catalyzed by CYP3A4/5 based on the following observations: (1) the sample-to-sample variation in N-demethylation of indiplon ([S]?=?100?µM) in a bank of human liver microsomes was strongly correlated with testosterone 6β-hydroxylase (CYP3A4/5) activity (r2?=?0.98), but not with any other CYP enzyme; (2) recombinant CYP1A1, CYP1A2, CYP3A4, CYP3A5 and CYP3A7 had the ability to catalyze this reaction; (3) the N-demethylation of indiplon was inhibited by CYP3A4/5 inhibitors (ketoconazole and troleandomycin), but not by a CYP1A2 inhibitor (furafylline). In pooled human liver microsomes, indiplon exhibited a weak capacity to inhibit CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2D6, CYP2E1, CYP3A4/5 and carboxylesterase (p-nitrophenylacetate hydrolysis) activities (IC50?≥?20?µM). Clinical data available on indiplon support the conclusions of this paper that the in vitro metabolism of indiplon is catalyzed by multiple enzymes, and indiplon is a weak inhibitor of human CYP enzymes.  相似文献   

17.
The in vitro deacylation of N-arylformamides and N-arylacetamides to arylamines was examined in rat liver preparations. When 2-acetylaminofluorene or 2-formylaminofluorene was incubated with rat liver microsomes or cytosol, the deacylated metabolite, 2-aminofluorene, was formed. The deacylating activity of liver microsomes was inhibited by bis(4-nitrophenyl)phosphate and phenylmethanesulfonyl fluoride, inhibitors of carboxylesterase. In contrast, the activity of liver cytosol was inhibited by diisopropyl fluorophosphate, an inhibitor of formamidase. Deacylation of these compounds appear to be mainly catalyzed by carboxylesterase in liver microsomes and formamidase in liver cytosol. 2-Formylaminofluorene, 2-acetylaminofluorene, 1-formylaminopyrene, 4-formylaminobiphenyl, 2-formylaminonaphthalene, 1-formylaminonaphthalene, and 2-acetylaminofluorene were deacylated by formamidase purified from rat liver cytosol. Formamidase catalyzed both N-formylation of arylamines, and deacylation of N-arylformamides and N-arylacetamides.  相似文献   

18.
Brivanib alaninate, the L-alanine ester prodrug of brivanib, is currently being developed as an anticancer agent. In humans, brivanib alaninate is rapidly hydrolyzed to brivanib. Prominent biotransformation pathways of brivanib included oxidation and direct sulfate conjugation. A series of in vitro studies were conducted to identify the human esterases involved in the prodrug hydrolysis and to identify the primary human cytochrome P450 and sulfotransferase (SULT) enzymes involved in the metabolism of brivanib. Brivanib alaninate was efficiently converted to brivanib in the presence of either human carboxylesterase 1 or carboxylesterase 2. Because esterases are ubiquitous, it is likely that multiple esterases are involved in the hydrolysis. Oxidation of brivanib in human liver microsomes (HLM) primarily formed a hydroxylated metabolite (M7). Incubation of brivanib with human cDNA-expressed P450 enzymes and with HLM in the presence of selective chemical inhibitors and monoclonal P450 antibodies demonstrated that CYP1A2 and CYP3A4 were the major contributors for the formation of M7. Direct sulfation of brivanib was catalyzed by multiple SULT enzymes, including SULT1A1, SULT1B1, SULT2A1, SULT1A3, and SULT1E1. Because the primary in vitro oxidative metabolite (M7) was not detected in humans after oral doses of brivanib alaninate, further metabolism studies of M7 in HLM and human liver cytosol were performed. The data demonstrated that M7 was metabolized to the prominent metabolites observed in humans. Overall, multiple enzymes are involved in the metabolism of brivanib, suggesting a low potential for drug-drug interactions either through polymorphism or through inhibition of a particular drug-metabolizing enzyme.  相似文献   

19.
AIMS: To identify the human cytochrome P450 enzyme(s) involved in the in vitro metabolism of rosiglitazone, a potential oral antidiabetic agent for the treatment of type 2 diabetes-mellitus. Method The specific P450 enzymes involved in the metabolism of rosiglitazone were determined by a combination of three approaches; multiple regression analysis of the rates of metabolism of rosiglitazone in human liver microsomes against selective P450 substrates, the effect of selective chemical inhibitors on rosiglitazone metabolism and the capability of expressed P450 enzymes to mediate the major metabolic routes of rosiglitazone metabolism. Result The major products of metabolism following incubation of rosiglitazone with human liver microsomes were para-hydroxy and N-desmethyl rosiglitazone. The rate of formation varied over 38-fold in the 47 human livers investigated and correlated with paclitaxel 6alpha-hydroxylation (P<0.001). Formation of these metabolites was inhibited significantly (>50%) by 13-cis retinoic acid, a CYP2C8 inhibitor, but not by furafylline, quinidine or ketoconazole. In addition, both metabolites were produced by microsomes derived from a cell line transfected with human CYP2C8 cDNA. There was some evidence for CYP2C9 playing a minor role in the metabolism of rosiglitazone. Sulphaphenazole caused limited inhibition (<30%) of both pathways in human liver microsomes and microsomes from cells transfected with CYP2C9 cDNA were able to mediate the metabolism of rosiglitazone, in particular the N-demethylation pathway, albeit at a much slower rate than CYP2C8. Rosiglitazone caused moderate inhibition of paclitaxel 6alpha-hydroxylase activity (CYP2C8; IC50=18 microm ), weak inhibition of tolbutamide hydroxylase activity (CYP2C9; IC50=50 microm ), but caused no marked inhibition of the other cytochrome P450 activities investigated (CYP1A2, 2A6, 2C9, 2C19, 2D6, 2E1, 3A and 4A). Conclusion CYP2C8 is primarily responsible for the hydroxylation and N-demethylation of rosiglitazone in human liver; with minor contributions from CYP2C9.  相似文献   

20.
1. In vitro studies have been carried out to investigate the metabolic pathways and identify the hepatic cytochrome P450 (CYP) enzymes involved in etoperidone (Et) metabolism. 2. Ten in vitro metabolites were profiled, quantified and tentatively identified after incubation with human hepatic S9 fractions. Et was metabolized via three metabolic pathways: (A) alkyl hydroxylation to form OH-ethyl-Et (M1); (B) phenyl hydroxylation to form OH-phenyl-Et (M2); and (C) N-dealkylation to form 1-m-chlorophenylpiperazine (mCPP, M8) and triazole propyl aldehyde (M6). Six additional metabolites were formed by further metabolism of M1, M2, M6 and M8. 3. Kinetic studies revealed that all metabolic pathways were monophasic, and the pathway leading to the formation of OH-ethyl-Et was the most efficient at eliminating the drug. On incubation with microsomes expressing individual recombinant CYPs, formation rates of M1-3 and M8 were 10-100-fold greater for CYP3A4 than that for other CYP forms. The formation of these metabolites was markedly inhibited by the CYP3A4-specific inhibitor ketoconazole, whereas other CYP-specific inhibitors did not show significant effects. In addition, the production of M1-3 and M8 was strongly correlated with CYP3A4-mediated testosterone 6beta-hydroxylase activities in 13 different human liver microsome samples. 4. Dealkylation of the major metabolite M1 to form mCPP (M8) was also investigated using microsomes containing recombinant CYP enzymes. The rate of conversion of M1 to mCPP by CYP3A4 was 503.0 +/- 3.1 pmole nmole(-1) min(-1). Metabolism of M1 to M8 by other CYP enzymes was insignificant. In addition, this metabolism in human liver microsomes was extensively inhibited by the CYP3A4 inhibitor ketoconazole, but not by other CYP-specific inhibitors. In addition, conversion of M1 to M8 was highly correlated with CYP3A4-mediated testosterone 6beta-hydroxylase activity. 5. The results strongly suggest that CYP3A4 is the predominant enzyme-metabolizing Et in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号