首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Cholesterol is a major component of plasma membranes, forming membrane microdomains ("rafts" or "caveolae") via hydrophobic interactions with sphingolipids. We have recently demonstrated that tubule cholesterol levels rise by 18 hours following diverse forms of injury, and this change helps to protect kidneys from further damage (so-called acquired cytoresistance). The present study was undertaken to better define the effects of membrane cholesterol/microdomains on tubule homeostasis and cell susceptibility to superimposed attack. METHODS: Plasma membrane cholesterol was perturbed in normal mouse proximal tubular segments with either cholesterol esterase (CE) or cholesterol oxidase (CO). Alternatively, cholesterol-sphingomyelin complexes were altered by sphingomyelinase (SMase) treatment. Changes in cell energetics (ATP/ADP ratios + ouabain), viability [lactate dehydrogenase (LDH) release], phospholipid profiles, and susceptibility to injury (Fe-induced oxidant stress, PLA2, Ca2+ ionophore) were determined. The impacts of selected cytoprotectants were also assessed. RESULTS: Within 15 minutes, CE and CO each induced approximately 90% ATP/ADP ratio suppressions. These were seen prior to lethal cell injury (LDH release), and it was ouabain resistant (suggesting decreased ATP production, not increased consumption). SMase also depressed ATP without inducing cell death. After 45 minutes, CE and CO each caused marked cytotoxicity (up to 70% LDH release). However, different injury mechanisms were operative since (1) CE, but not CO, toxicity significantly altered cell phospholipid profiles, and (2) 2 mmol/L glycine completely blocked CE- but not CO-mediated cell death. Antioxidants also failed to attenuate CO cytotoxicity. Disturbing cholesterol/microdomains with a sublytic CE dose dramatically increased tubule susceptibility to Fe-mediated oxidative stress and Ca2+ overload, but not PLA2-mediated damage. CONCLUSION: Intact plasma membrane cholesterol/microdomains are critical for maintaining cell viability both under basal conditions and during superimposed attack. When perturbed, complex injury pathways can be impacted, with potential implications for both the induction of acute tubular damage and the emergence of the postinjury cytoresistance state.  相似文献   

2.
BACKGROUND: Acute renal failure (ARF) leads to secondary adaptive changes that serve to protect proximal tubules from subsequent ischemic or toxic damage [so-called "acquired cytoresistance" (CR)]. A characteristic of CR is increased plasma membrane resistance to attack. Therefore, this study sought to identify potential changes in plasma membrane lipid composition in CR tubules/renal cortex and, if present, to test whether they might mechanistically contribute to the CR state. METHODS: Renal cortices/isolated tubules were obtained from CR mouse kidneys (18-hr postinduction of ischemia reperfusion, myoglobinuria, or ureteral obstruction). Their plasma membrane phospholipid/cholesterol profiles were compared with those observed in either control tissues or tissues obtained one to two hours post-renal damage (that is, prior to emergence of CR). RESULTS: Either no changes or inconsistent changes in phospholipid profiles were observed in CR tissues. Conversely, CR (vs. control) tissues demonstrated a consistent 25 to 50% increase in membrane cholesterol content. To ascertain whether cholesterol impacts tubule susceptibility to injury, its levels were reduced in proximal tubule (HK-2) cells with either (a) mevastatin, (b) a cholesterol "stripping" agent, (c) cholesterol oxidase, or (d) cholesterol esterase. Then cell susceptibility to injury [adenosine 5'-triphosphate (ATP) depletion; Fe-mediated oxidant stress] was assessed. In each instance, cholesterol reductions dramatically sensitized to superimposed injury (for example, a 2 to 3 times increase in the % of lactate dehydrogenase release). When cholesterol levels were restored to normal in CR tubules (with a "stripping" agent), an increased tubule susceptibility to injury resulted. Because cholesterol decreases membrane fluidity, the impact of a membrane-fluidizing agent (A2C) on cell injury was assessed. A2C dramatically sensitized HK-2 cells to superimposed attack. CONCLUSIONS: ARF leads to an up-regulation of proximal tubule cholesterol content. The latter may then contribute to acquired CR, possibly by stabilizing the plasma membrane via its antifluidizing effect.  相似文献   

3.
BACKGROUND: MDR P glycoproteins may help transport plasma membrane free cholesterol (FC) to the endoplasmic reticulum (ER), where it undergoes acylation, forming cholesterol esters (CE). This study assessed whether P glycoprotein inhibitors alter renal tubular FC/CE expression, thereby altering cell integrity. METHODS: Mouse proximal tubule segments (PTS) were exposed to chemically dissimilar P glycoprotein inhibitors [progesterone (prog), trifluoperazine (TFP), or cyclosporine A (CsA)]. Their effects on FC/CE and adenosine 5'-triphosphate (ATP) levels, phospholipid expression, lipid peroxidation, and cell viability (lactate dehydrogenase release; LDH) were assessed. P glycoprotein inhibitor effects on cultured proximal tubular (HK-2) cell viability and susceptibility to Fe-induced oxidant stress were also addressed. RESULTS: When applied to PTS, prog, TFP, and, to lesser extent, CsA induced dose-dependent ATP reductions (< or =90%), CE decrements (approximately 40%), and LDH release (< or =60%). No concomitant changes in lipid peroxidation or phospholipid profiles were observed. Ouabain did not preserve tubular ATP, suggesting that decreased ATP production, rather than increased consumption, was operative. Mechanisms leading to cell lysis were not identical, as glycine and arachidonic acid blocked prog- but not TFP-mediated cell death. When prog-driven CE reductions were attenuated in PTS with a procycling agent (cholesterol oxidase), decreased cell death resulted. P glycoprotein inhibitors also caused dose-dependent HK-2 cell death. Blocking Fe-mediated CE formation ( approximately x10) with sublethal CsA doses led to a marked increase in Fe-mediated cell death. CONCLUSIONS: P glycoproteins may be critical to tubule cholesterol transport. If blocked with pharmacologic agents, decreased ATP production, overt cell lysis, and/or a marked propensity to superimposed tubular cell injury can result.  相似文献   

4.
Sphingomyelin (SM) and cholesterol are major lipid species of apical membranes in renal proximal tubular cells and confer to these membranes a low fluidity. Changes in membrane fluidity and/or lipidic composition were shown to affect the activity of cotransport systems of renal apical membranes. We evaluated the effect of decreasing membrane SM content on lipidic composition, membrane fluidity and sodium (Na)coupled uptakes in rabbit proximal tubular cells in primary culture. Sphingomyelinase (SMase) (30 to 250 mU/ml) decreased [3H]choline-labeled SM content, decreased cholesterol content, and increased cholesterol esterification. SMase did not modify membrane fluidity on isolated brush border membranes. SMase decreased Vmax of Na-dependent uptake of phosphate and alpha-methyl-D-glucoside, but not of alanine. SMase did not influence protein kinase C-induced inhibition of phosphate and glucose uptake. Increasing membrane cholesterol content with cholesterol-enriched liposomes subsequently to SMase action restored in part glucose uptake, but not phosphate uptake. In conclusion, SM degradation affected Na-phosphate and Na-glucose cotransports through changes in both SM and cholesterol contents of apical proximal membranes; these changes seemed to occur independently from changes in bulk membrane fluidity. These results suggest that SM and cholesterol have distinct and intricated roles in accessibility and/or activity of apical cotransport systems.  相似文献   

5.
BACKGROUND: Cholesterol accumulates in renal cortical proximal tubules in response to diverse forms of injury or physiologic stress. However, the fate of triglycerides after acute renal insults is poorly defined. This study sought new insights into this issue. METHODS: CD-1 mice were subjected to three diverse models of renal stress: (1) endotoxemia [Escherichia coli lipopolysaccharide (LPS), injection]; (2) ischemia/reperfusion (I/R); or (3) glycerol-induced rhabdomyolysis. Renal cortical, or isolated proximal tubule, triglyceride levels were measured approximately 18 hours later. To gain mechanistic insights, triglyceride levels were determined in (1) proximal tubules following exogenous phospholipase A(2) (PLA(2)) treatment; (2) cultured HK-2 cells after mitochondrial blockade (antimycin A) +/- serum; or (3) HK-2 cells following "septic" (post-LPS) serum, or exogenous fatty acid (oleate) addition. RESULTS: Each form of in vivo injury evoked three-to fourfold triglyceride increases in renal cortex and/or proximal tubules. PLA(2) treatment of proximal tubules evoked acute, dose-dependent, triglyceride formation. HK-2 cell triglyceride levels rose with antimycin A. With serum present, antimycin A induced an exaggerated triglyceride loading state (vs. serum alone or antimycin A alone). "Septic" serum stimulated HK-2 triglyceride formation (compared to control serum). Oleate addition caused striking HK-2 cell triglyceride accumulation. Following oleate washout, HK-2 cells were sensitized to adenosine triphosphate (ATP) depletion or oxidant attack. CONCLUSION: Diverse forms of renal injury induce dramatic triglyceride loading in proximal tubules/renal cortex, suggesting that this is a component of a cell stress response. PLA(2) activity, increased triglyceride/triglyceride substrate (e.g., fatty acid) uptake, and possible systemic cytokine (e.g., from LPS) stimulation, may each contribute to this result. Finally, in addition to being a marker of prior cell injury, accumulation of triglyceride (or of its constituent fatty acids) may predispose tubules to superimposed ATP depletion or oxidant attack.  相似文献   

6.
7.
BACKGROUND: Experimental and clinical investigations suggest that oxidant stress is a critical determinant of radiocontrast nephropathy (RCN), and that N acetyl cysteine (NAC) can prevent this damage. This study addresses these issues directly at the tubular cell level. Potential alternative mechanisms for RCN have also been sought. METHODS: Isolated mouse proximal tubule segments (PTS), or cultured proximal tubule (HK-2) cells, were subjected to radiocontrast media (RCM) (Ioversol, Optiray 320) exposure, followed by assessments of cellular viability [% lactate dehydrogenase (LDH) release, tetrazolium dye (MTT), uptake] and lipid peroxidation. These experiments were conducted in the absence or presence of a variety of antioxidants [NAC, glutathione (GSH), superoxide dismutase, catalase] or pro-oxidant (GSH depletion, heme oxygenase inhibition) strategies. RCM effects on mitochondrial and plasma membrane integrity were also assessed. RESULTS: RCM exposure did not induce PTS lipid peroxidation. Neither antioxidant nor pro-oxidant interventions mitigated or exacerbated RCM-induced tubular cell injury, respectively. RCM impaired mitochondrial integrity, as assessed by ouabain-resistant ATP reductions, and by cytochrome c release (before cell death). RCM also induced plasma membrane damage, as indicated by loss of key resident proteins (NaK-ATPase, caveolin) and by increased susceptibility to phospholipase A2 (PLA2) attack (increase of >/=2 times in free fatty acid and NaK-ATPase release). Hyperosmolality could not account for RCM's toxic effects. CONCLUSION: RCM toxicity can be dissociated from tubular cell oxidant stress. Alternative mechanisms may include mitochondrial injury/cytochrome c release and plasma membrane damage. The latter results in critical protein loss, as well as a marked increase in plasma membrane susceptibility to exogenous/endogenous PLA2 attack.  相似文献   

8.
Renal ischemic reperfusion injury results in unacceptably high mortality and morbidity during the perioperative period. It has been recently demonstrated that ischemic preconditioning or adenosine receptor modulations attenuate renal ischemic reperfusion injury in vivo. An in vitro model of ischemic renal injury was used in cultured human proximal tubule (HK-2) cells to further elucidate the protective signaling cascades against renal ischemic reperfusion injury. ATP depletion preconditioning (1 h of antimycin A and 2-deoxyglucose treatment followed by 1 h of recovery), adenosine, an A(1) adenosine receptor selective agonist, or an A(2a) adenosine receptor selective agonist significantly attenuated subsequent severe ATP depletion injury of HK-2 cells. In contrast, an adenosine receptor antagonist failed to prevent protection induced by ATP depletion preconditioning. Cytoprotection by ATP depletion preconditioning or A(1) adenosine receptor activation was prevented by inhibitors of extracellular signal-regulated mitogen-activated kinases, protein kinase C, and tyrosine kinases. The A(1) and A(2a) adenosine receptor-mediated cytoprotection were also dependent on G(i/o) proteins and PKA activation, respectively. It is concluded that ATP depletion preconditioning and A(1) and A(2a) adenosine receptor activation protect HK-2 cells against severe ATP depletion injury via distinct signaling pathways.  相似文献   

9.
Parathyroid hormone (PTH)-related protein (PTHrP) is widely expressed in normal fetal and adult tissues and regulates growth and differentiation in a number of organ systems. Although various renal cell types produce PTHrP, and PTHrP expression in rat proximal renal tubules is upregulated in response to ischemic injury in vivo, the role of PTHrP in the kidney is unknown. To study the effects of injury on PTHrP expression and its consequences in more detail, the immortalized human proximal tubule cell line HK-2 was used in an in vitro model of ATP depletion to mimic in vivo renal ischemic injury. These cells secrete PTHrP into conditioned medium and express the type I PTH/PTHrP receptor. Treatment of confluent HK-2 cells for 2 h with substrate-free, glucose-free medium containing the mitochondrial inhibitor antimycin A (1 microM) resulted in 75% depletion of cellular ATP. After an additional 2 h in glucose-containing medium, cellular ATP levels recovered to approximately 75% of baseline levels. PTHrP mRNA levels, as measured in RNase protection assays, peaked at 2 h into the recovery period (at four times baseline expression). The increase in PTHrP mRNA expression was correlated with an increase in PTHrP protein content in HK-2 cells at 2 to 6 h into the recovery period. Heat shock protein-70 mRNA expression was not detectable under baseline conditions but likewise peaked at 2 h into the recovery period. Treatment of HK-2 cells during the recovery period after injury with an anti-PTHrP(1-36) antibody (at a dilution of 1:250) resulted in significant reductions in cell number and uptake of [3H]thymidine, compared with nonimmune serum at the same titer. Similar results were observed in uninjured HK-2 cells. It is concluded that this in vitro model of ATP depletion in a human proximal tubule cell line reproduces the pattern of gene expression previously observed in vivo in rat kidney after ischemic injury and that PTHrP plays a mitogenic role in the proliferative response after energy depletion.  相似文献   

10.
目的 研究线粒体蛋白Smac/Diablo和细胞X-连锁凋亡抑制蛋白(XIAP)在ATP耗竭及再恢复导致肾小管上皮细胞凋亡中的作用和机制 方法 应用代谢抑制剂暂时性阻断人肾小管上皮细胞(HK-2细胞)内ATP的生成,再换用含糖的培养液使细胞内ATP再恢复,诱导肾小管上皮细胞凋亡应用Hoechst33342检测肾小管上皮细胞凋亡的发生用间接免疫荧光检测Smac/Diablo在细胞内的分布分别提取胞质蛋白和细胞总蛋白,以Western印迹检测胞质中Smac/DiabloXIAP和活化半胱氨酸天冬氨酸蛋白酶3前体(pro-caspase-3)的蛋白水平 结果 肾小管上皮细胞内ATP耗竭及再恢复时,Hoechst33342染色可见HK-2细胞核固缩和凋亡小体的形成;间接免疫荧光可见Smac/Diablo由线粒体释放至胞质;Western印迹可见胞质内Smac/Diablo的含量增多( P < 0.01);XIAP和pro-caspase 3的蛋白水平降低(P < 0.05)。 结论 肾小管上皮细胞内ATP耗竭及再恢复时,Smac/Diablo释放至胞质,XIAP蛋白水平降低,进而激活caspase 3,介导肾小管上皮细胞凋亡  相似文献   

11.
Administration of mannitol with high dose could induce extensive isometric renal proximal tubular vacuolization and acute renal failure in clinic. We previously demonstrated that mannitol-induced human kidney tubular epithelial cell (HK-2) injury. The objective of our present work was to further study the cytotoxicity of mannitol in HK-2 cells and its potential mechanism. Cell viability was assessed by an MTT method. Cell morphological changes were observed. Furthermore, levels of malondialdehyde (MDA) and glutathione (GSH) were measured. Flow cytometry was performed to determine cell apoptosis by using Annexin V-FITC and PI. In addition, the F-actin of cells was labeled by FITC-Phalloidin for observation of cytoskeleton. The MTT assay displayed that the cell viability decreased significantly in a dose- and time-dependent manner. The morphological changes were observed, including cell membrane rapture and cell detachment. The GSH concentration in HK-2 cells decreased dramatically in mannitol treatment group, while MDA content increased significantly. The results of flow cytometry indicated that apoptotic percentages of HK-2 cells increased in 250?mmol/L mannitol treatment group. After treatment with 250?mmol/L mannitol for 48?h, HK-2 cells showed disorganization of cytoskeleton and even exhibited a totally destroyed cytoskeleton. Therefore, high dose of mannitol has a toxic effect on renal tubular epithelial cells, which might be attributed to oxidative stress, destroyed cellular cytoskeleton and subsequent cell apoptosis.  相似文献   

12.
目的 分析并鉴定草酸和一水草酸钙(COM)结晶损伤人肾小管上皮细胞(HK-2)后细胞蛋白质谱的表达变化,探讨肾小管上皮细胞受损在肾结石形成中的可能作用.方法 体外培养正常HK-2细胞至90%融合后,换无血清培养基,随机分为2组.实验组培养基内加入2 mmol/L草酸+200 mg/L COM结晶,37 ℃孵育.分别抽提2组细胞的总蛋白,双向凝胶电泳结合液相色谱-电喷雾离子阱质谱(LC-ESI-MS/MS)技术对2组中差异表达的蛋白质进行分离和鉴定.蛋白印迹法对鉴定出的蛋白进行验证.结果 成功建立细胞总蛋白的双向凝胶电泳图谱,经软件分析和质谱鉴定出差异蛋白质12个:FK506结合蛋白4、α-烯醇酶、M2型丙酮酸激酶、ATP合成酶α亚单位、3′,5′-二磷酸核苷酸酶1、核磷蛋白2、L-乳酸脱氢酶B、芽胞发芽蛋白3、Cofilin-1、Fascin、40S核糖体蛋白S17和胞液氨基肽酶1.差异蛋白涉及细胞能量代谢、细胞增殖、凋亡、钙离子通道活性调控、细胞运动及信号转导等多种生理活动.蛋白印迹法检测示HK-2细胞损伤后ENO1蛋白表达上调,而Cofilin-1表达下调,证实双向凝胶电泳和质谱分析可靠.结论 高浓度草酸和COM结晶可使正常人HK-2细胞蛋白表达发生改变,这些差异表达蛋白既可起到细胞的自我保护作用,又可能通过相应途径在肾结石的形成中起重要作用.
Abstract:
Objective To analyze and identify the differentially expressed proteins in human renal tubular epithelial cells (HK-2) after injury caused by oxalic acid and calcium oxalate monohydrate (COM) crystal, and to explore the potential role of renal tubular cell injury in kidney stone formation.Methods Normal HK-2 cells were cultured in vitro and the culture medium was changed with serum-free medium after cell growth to confluence. Oxalic acid and COM crystals (final concentration at 2 mmol/L and 200 mg/L, respectively) were added in the experimental group. Cells in both groups were then incubated at 37 ℃ for 12 h. The extracted proteins from both groups were separated by two dimensional electrophoresis followed by analysis, and the differentially expressed proteins were identified by liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Two identified proteins were then verified by western blot. Results Reproducible two dimensional gel images of the proteins from both groups were successfully obtained. By using LC-ESI-MS/MS, 12 proteins: FK506-binding protein 4, isoform alpha-enolase of alpha-enolase, isoform M1 of pyruvate kinase isozymes M1/M2, ATP synthase subunit alpha, isoform 1 of 3′(2′), 5′-bisphosphate nucleotidase 1, isoform 2 of nucleophosmin, L-lactate dehydrogenase B chain, Budding uninhibited by benzimidazoles 3, Cofilin-1, Fascin, pyIsoform 1 of cytosol aminopeptidase, were identified. The deferentially expressed proteins were related to cellular processes including energy metabolism, cell multiplication, apoptosis, Ca2+ channel activity regulation, cell movement and signal transduction. Western blot verified that higher ENO1 but lower Cofilin-1 expressed in HK-2 cells after the injury. Conclusions High level oxalic acid and COM crystals can cause protein expression profile changes in normal human HK-2 cells. The changes of protein expression may not only protect HK-2 cells from being injured, but also be related to kidney stone formation.  相似文献   

13.
Renal tubular epithelial cell apoptosis is the main mechanism of cisplatin-induced acute kidney injury. The role of microRNAs (miRNAs) in the apoptosis of renal tubular epithelial cells has been suggested, but the underlying mechanism has not been fully elucidated. We used microarray analysis to identify miR-142-5p involved in cisplatin-induced acute kidney injury. miR-142-5p was down-regulated in human renal tubular epithelial (HK-2) cells with cisplatin treatment. Notably, the overexpression of miR-142-5p attenuated the cisplatin-induced HK-2 cell apoptosis and inhibition of miR-142-5p aggravated cisplatin-induced HK-2 cell apoptosis. During cisplatin treatment, p53 was activated. The inhibition of p53 by pifithrin-α attenuated the cisplatin-induced kidney injury and up-regulated miR-142-5p expression. We also identified the Sirtuin7 (SIRT7) as a target of miR-142-5p. Furthermore, we demonstrated that the inhibition of SIRT7 prevented cisplatin-induced HK-2 cell apoptosis and decreased the expression of nuclear factor kappa B (NF-κB). Our data revealed that p53 inhibition could attenuate cisplatin-induced acute kidney injury by up-regulating miR-142-5p to repress SIRT7/NF-κB. These findings may provide a novel therapeutic target of cisplatin-induced acute kidney injury.  相似文献   

14.
《Renal failure》2013,35(3-4):331-337
P-glycoprotein (PGP) is an efflux pump physiologically expressed in the apical membrane of the proximal tubular cells. PGP may play a role in the elimination of exogenous substances such as chemotherapeutic drugs, calcium channel blockers and immunosuppressors. The involvement of renal PGP in the transport of endogenous substrates is under investigation. HK-2 is an immortalized proximal tubule cell line from normal adult human kidney, reported to retain a phenotype indicative of a well-differentiated state. No data regarding expression and/or activity of PGP in this cell line are available. The aim of this study was to ascertain the usefulness of HK-2 cell line to investigate the properties and roles of PGP in proximal tubular cells. PGP expression in HK-2 cells was determined by immunoblotting analysis using the monoclonal antibody C219. The activity of PGP was assessed by measuring the transport of the fluorescent probe Rhodamine 123 (R-123) in intact cell monostrates. The interactions of putative PGP modulators, including verapamil and cyclosporin A were also evaluated. Western blot revealed a C219 immunoreactive band of about 150kDa consistent with the presence of PGP. HK-2 cells preloaded with R-123 rapidly effluxed the dye, the efflux being inhibited by verapamil. Verapamil and, to a major extent cyclosporin A, significantly increased R-123 intracellular accumulation. PGP immunoblottable amount was increased when cells were cultured in the presence of either cyclosporin A or dexamethasone. The results suggest that the HK-2 cells, among the various differentiation features of proximal tubules, retain also the expression of a functional PGP in their membranes and that both PGP activity and expression may be modulated by drugs. Therefore, HK-2 line appears a suitable and promising tool for the study in vitro of renal transport processes dependent on PGP.  相似文献   

15.
P-glycoprotein (PGP) is an efflux pump physiologically expressed in the apical membrane of the proximal tubular cells. PGP may play a role in the elimination of exogenous substances such as chemotherapeutic drugs, calcium channel blockers and immunosuppressors. The involvement of renal PGP in the transport of endogenous substrates is under investigation. HK-2 is an immortalized proximal tubule cell line from normal adult human kidney, reported to retain a phenotype indicative of a well-differentiated state. No data regarding expression and/or activity of PGP in this cell line are available. The aim of this study was to ascertain the usefulness of HK-2 cell line to investigate the properties and roles of PGP in proximal tubular cells. PGP expression in HK-2 cells was determined by immunoblotting analysis using the monoclonal antibody C219. The activity of PGP was assessed by measuring the transport of the fluorescent probe Rhodamine 123 (R-123) in intact cell monostrates. The interactions of putative PGP modulators, including verapamil and cyclosporin A were also evaluated. Western blot revealed a C219 immunoreactive band of about 150 kDa consistent with the presence of PGP. HK-2 cells preloaded with R-123 rapidly effluxed the dye, the efflux being inhibited by verapamil. Verapamil and, to a major extent cyclosporin A, significantly increased R-123 intracellular accumulation. PGP immunoblottable amount was increased when cells were cultured in the presence of either cyclosporin A or dexamethasone. The results suggest that the HK-2 cells, among the various differentiation features of proximal tubules, retain also the expression of a functional PGP in their membranes and that both PGP activity and expression may be modulated by drugs. Therefore, HK-2 line appears a suitable and promising tool for the study in vitro of renal transport processes dependent on PGP.  相似文献   

16.
Objective To investigate the expression vibration of microRNA-503(miR-503) and its effect on target gene Bcl-2, caspase enzyme activity and apoptosis of human renal tubular epithelial cells (HK-2) induced by high glucose, and to clarify the pathogenesis of renal tubular injury induced by high glucose. Methods HK-2 cells were cultured in normal glucose group (NG), mannitol hypertonic control group (MA), and high glucose group (HG). The morphology of apoptotic cells was observed using inverted microscope. The expression of miR-503 was determined using real-time quantitative PCR. The apoptosis rate of HK-2 cells was detected by Annexin Ⅴ-FITC double dye using flow cytometry instrument. The expression of Bcl-2 and cleaved caspase-9 were detected by Western blotting. Results In the high glucose and mannitol groups HK-2 cell, an obviously increased apoptotic rate was observed under inverted microscope compared with normal glucose group (P<0.05). MA and HG up-regulated miR-503 expression (P<0.01), down-regulated anti-apoptotic protein Bcl-2 expression (P<0.05) and up-regulated cleaved caspase-9 (P<0.05). Conclusions The expression of miR-503 increases in HK-2 cells cultured by high glucose and mannitol. MiR-503 promotes apoptosis of HK-2 cells via activating mitochondrial apoptotic pathways and enhancing cleaved caspase-9 for Bcl-2 insufficiency. The tubular toxicity of high glucose is partly due to osmotic pressure. The miR-503 may be involved in diabetic tubular injury and may be a new therapeutic target of DN.  相似文献   

17.
Objective To investigate the effect of cyclosporine A (CsA) on autophagy-lysosomal pathway in tubular epithelial cells. Methods Human renal tubular epithelial cell line (HK-2 cell) was treated with different concentrations (3, 5 and 10 μmol/L) of CsA for 24 h. Then the viability and apoptosis of cells were measured by MTT assay or AnnexinV-PI staining followed by flow cytometry analysis, respectively. Autophagy-related protein LC3-Ⅱ and p62 were detected by immunofluorescence assay. Autophagic flux was analyzed in HK-2 cells transfected with a tandem mRFP-GFP fluorescent-tagged LC3 (tfLC3) plasmid by laser confocal microscope. The lysosomal degradation was evaluated by DQ-ovalbumin staining followed by flow cytometry analysis. Results The viability of HK-2 cells was significantly decreased with CsA stimulation when compared with control group (P<0.01), but the number of apoptotic cells was markedly increased by CsA treatment (P<0.05). Compared with the control group, different doses of CsA dramatically increased the expressions of LC3-Ⅱ(P<0.01) and p62 (P<0.05) in HK-2 cells. Moreover, HK-2 cells treated with CsA displayed a significant increase in autophagosomes but a marked decrease in autolysosomes. In HK-2 cells, exposured to CsA caused a decrease in lysosomal degradation by DQ-ovalbumin staining when compared with control group (P<0.01). Conclusion Blockade of autophagy via disrupting lysosome degradation may represent a novel mechanism of CsA-induced tubular epithelial cells injury.  相似文献   

18.
BACKGROUND: Cholesterol is a major constituent of plasma membranes, and recent evidence indicates that it is up-regulated during the maintenance phase of acute renal failure (ARF). However, cholesterol's fate and that of the cholesterol ester (CE) cycle [shuttling between free cholesterol (FC) and CEs] during the induction phase of ARF have not been well defined. The present studies sought to provide initial insights into these issues. METHODS: FC and CE were measured in mouse renal cortex after in vivo ischemia (15 and 45 minutes)/reperfusion (0 to 120 minutes) and glycerol-induced myoglobinuria (1 to 2 hours). FC/CE were also measured in (1) cultured human proximal tubule (HK-2) cells three hours after ATP depletion and in (2) isolated mouse proximal tubule segments (PTSs) subjected to plasma membrane damage (with cholesterol oxidase, sphingomyelinase, phospholipase A2, or cytoskeletal disruption with cytochalasin B). The impact of cholesterol synthesis inhibition (with mevastatin) and FC traffic blockade (with progesterone) on injury-evoked FC/CE changes was also assessed. RESULTS: In vivo ischemia caused approximately threefold to fourfold CE elevations, but not FC elevations, that persisted for at least two hours of reperfusion. Conversely, myoglobinuria had no effect. Isolated CE increments were observed in ATP-depleted HK-2 cells. Neither mevastatin nor progesterone blocked this CE accumulation. Plasma membrane injury induced with sphingomyelinase or cholesterol oxidase, but not with phospholipase A(2) or cytochalasin B, increased tubule CE content. High CE levels, induced with cholesterol oxidase, partially blocked hypoxic PTS attack. CONCLUSIONS: In vivo ischemia/reperfusion acutely increases renal cortical CE, but not FC, content, indicating perturbed CE/FC cycling. The available data suggest that this could stem from specific types of plasma membrane damage, which then increase FC flux via aberrant pathways to the endoplasmic reticulum, where CE formation occurs. That CE levels are known to inversely correlate with both renal and nonrenal cell injury suggests the potential relevance of these observations to the induction phase of ischemic ARF.  相似文献   

19.
The term 'endotoxin tolerance' defines a state in which prior endotoxin (lipopolysaccharide (LPS)) exposure induces resistance to subsequent LPS attack. However, its characteristics within kidney have not been well defined. Hence, this study tested the impact of LPS 'preconditioning' (LPS-PC; 18 or 72 h earlier) on: (i) selected renal inflammatory mediators (tumor necrosis factor (TNF)-alpha, interleukin-10 (IL-10), monocyte chemotactic protein-1 (MCP-1), inducible nitric oxide synthase (iNOS), Toll-like receptor 4 (TLR4); protein or mRNA); (ii) cholesterol homeostasis (a stress reactant); and (iii) isolated proximal tubule (PT) vulnerability to hypoxia or membrane cholesterol (cholesterol oxidase/esterase) attack. Two hours post LPS injection, LPS-PC mice manifested reduced plasma TNF-alpha levels, consistent with systemic LPS tolerance. However, in kidney, paradoxical TNF-alpha hyper-reactivity (protein/mRNA) to LPS existed, despite normal TLR4 protein levels. PT TNF-alpha levels paralleled renal cortical results, implying that PTs were involved. LPS-PC also induced: (i) renal cortical iNOS, IL-10 (but not MCP-1) mRNA hyper-reactivity; (ii), PT cholesterol loading, and (iii) cytoresistance to hypoxia and plasma membrane cholesterol attack. A link between cholesterol homeostasis and cell LPS responsiveness was suggested by observations that cholesterol reductions in HK-2 cells (methylcyclodextrin), or reductions in HK-2 membrane fluidity (A2C), blunted LPS-mediated TNF-alpha/MCP-1 mRNA increases. In sum: (i) systemic LPS tolerance can be associated with renal hyper-responsiveness of selected components within the LPS signaling cascade (e.g., TNF-alpha, iNOS, IL-10); (ii) PT cytoresistance against hypoxic/membrane injury coexists; and (iii) LPS-induced renal/PT cholesterol accumulation may mechanistically contribute to each of these results.  相似文献   

20.
Long non-coding RNAs (LncRNAs) participate in the regulation of chronic kidney disease (CKD), and acute kidney injury (AKI) is identified as an important risk factor for CKD. This study investigated the involvement of a novel LncRNA MALAT1 in regulating lipopolysaccharide (LPS)-induced cell pyroptosis and inflammation in the human renal tubular epithelial HK-2 cells. Here, the HK-2 cells were subjected to LPS (2 μg/mL) treatment to establish cellular AKI models in vitro, and we validated that LPS triggered NLRP3-mediated pyroptotic cell death, promoted cell apoptosis and inflammation-associated cytokines secretion to induce HK-2 cell injury. Then, a novel LncRNA MALAT1/miRNA (miRNA)-135b-5p axis was verified to rescue cell viability in LPS treated HK-2 cells by targeting NLRP3. Mechanistically, miRNA-135b-5p bound to LncRNA MALAT1, and LncRNA MALAT1 positively regulated NLRP3 through acting as RNA sponger for miRNA-135b-5p. Further gain- and loss-of-function experiments evidenced that both LncRNA MALAT1 ablation and miRNA-135b-5p overexpression reversed LPS-induced cell pyroptosis, apoptosis, and inflammation in the HK-2 cells, and the protective effects of LncRNA MALAT1 knock-down on LPS-treated HK-2 cells were abrogated by silencing miRNA-135b-5p. In general, our study firstly investigated the role of the LncRNA MALAT1/ miRNA-135b-5p/NLRP3 signaling cascade in regulating LPS-induced inflammatory death in HK-2 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号