首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low serum vitamin D has been associated with an increased risk of neuropsychiatry disorders. This study aimed to examine the association between vitamin D deficiency and depression in adults aged 65 years and older. This cross-sectional study was conducted in seven primary healthcare centers across Kuwait (November 2020 to June 2021). The participants (n = 237) had their serum vitamin D 25-(OH)-D concentrations (analyzed by LC-MS) classified as sufficient, ≥75 nmol/L (30 ng/mL); insufficient, 50–75 nmol/L (20–30 ng/mL); or deficient, <50 nmol/L (20 ng/mL). Depressive symptoms were evaluated using the 15-Item Geriatric Depression Scale (15-item GDS). The mean serum 25-OH-D levels (nmol/L) in volunteers with normal, mild, moderate, and severe depression were 100.0 ± 31.7, 71.2 ± 38.6, 58.6 ± 30.1 and 49.0 ± 6.93, respectively (p < 0.001). The participants in the vitamin D sufficiency group were significantly less likely to exhibit depressive symptoms (88.2%) than patients with mild (36%) and moderate (21%) depression (p < 0.001). Ordinal logistic regression showed that vitamin D deficiency (OR = 19.7, 95% CI 5.60, 74.86, p < 0.001) and insufficiency (OR = 6.40, 95% CI 2.20, 19.91, p < 0.001) were associated with higher odds of having depressive symptoms. A low serum vitamin D level is a significant predictor of symptoms of depression among older individuals.  相似文献   

2.
3.
(1) Background: Vitamin D status has never been investigated in children in Northern Ireland (UK). (2) Methods: Children (4–11 years) (n = 47) were recruited from November 2019 to March 2020 onto the cross-sectional study. Anthropometry was assessed. Plasma 25-hydroxyvitamin D (25(OH)D) was analysed. Vitamin D intake, parental knowledge and perceptions, participant habits, physical activity and sedentary behaviour were established via questionnaire. Muscle strength was assessed via isometric grip strength dynamometry and balance via dominant single-leg and tandem stance. Parathyroid hormone, bone turnover markers (OC, CTX and P1NP), glycated haemoglobin and inflammatory markers (CRP, IFN-γ, IL-10, IL-12p70, IL-13, IL-1β, IL-2, IL-4, IL-6, IL-8 and TNF-α) were analysed. (3) Results: Mean (SD) 25(OH)D was 49.17 (17.04) nmol/L (n = 47); 44.7% of the children were vitamin D sufficient (25(OH)D >50 nmol/L), 48.9% were insufficient (25–50 nmol/L) and 6.4% were deficient (<25 nmol/L). 25(OH)D was positively correlated with vitamin D intake (µg/day) (p = 0.012, r = 0.374), spring/summer outdoor hours (p = 0.006, r = 0.402) and dominant grip strength (kg) (p = 0.044, r = 0.317). Vitamin D sufficient participants had higher dietary vitamin D intake (µg/day) (p = 0.021), supplement intake (µg/day) (p = 0.028) and spring/summer outdoor hours (p = 0.015). (4) Conclusion: Over half of the children were vitamin D deficient or insufficient. Wintertime supplementation, the consumption of vitamin D rich foods and spring/summer outdoor activities should be encouraged to minimise the risk of vitamin D inadequacy.  相似文献   

4.
Previous studies have demonstrated that reduced heart rate variability (HRV) and hypovitaminosis D are associated with cardiovascular disease (CVD). However, few reports have investigated the effects of vitamin D on HRV. This cross-sectional study analyzed serum 25-hydroxyvitamin D (25(OH)D) and HRV indices using 5-min R-R interval recordings with an automatic three-channel electrocardiography in healthy subjects (103 males and 73 females). Standard deviation of N-N interval (SDNN), square root of mean squared differences of successive N-N intervals (RMSSD), total power (TP), very low frequency (VLF), low frequency (LF), and high frequency (HF) were reported. The mean age of subjects was 55.3 ± 11.3 years and the mean 25(OH)D level was 21.2 ± 9.9 ng/mL. In a multiple linear regression model, 25(OH)D was positively correlated with SDNN (β = 0.240, p < 0.002), and LF (β = 0.144, p = 0.044). Vitamin D deficiency (25(OH)D < 15 ng/mL) was associated with decreased SDNN (<30 m/s) (OR, 3.07; 95% confidence interval (CI), 1.32–7.14; p = 0.014) after adjusting for covariates. We found that lower 25(OH)D levels were associated with lower HRV, suggesting a possible explanation for the higher risk of CVD in populations with hypovitaminosis D.  相似文献   

5.
The aim of this study was to evaluate the association between handgrip strength, nutritional status and vitamin D deficiency in Mexican community-dwelling older women. A cross sectional study in women ≥ 60 years-old was performed. Plasma 25-hydroxyvitamin D (25(OH)D) concentrations were measured by a quantitative immunoassay technique. Handgrip strength was assessed using a dynamometer, while nutritional status was assessed through the Full Mini Nutritional Assessment (Full-MNA). A total of 116 women participated in the study, their mean age was 70.3 ± 5.8 years; 49.1% of the study group had plasma 25(OH)D levels lower than 40 nmol/L [16 ng/mL]. Meanwhile, 28.45% of participants had low handgrip strength (<16 kg), and 23.1% were identified at risk of malnutrition/malnourished according with Full-MNA score. Women with 25(OH)D deficiency (<40 nmol/L [16 ng/mL]) were more likely to have low handgrip strength (OR = 2.64, p = 0.025) compared with those with higher 25(OH)D values. Additionally, being malnourished or at risk of malnutrition (OR = 2.53, p = 0.045) or having type 2 diabetes mellitus (T2DM) (OR = 2.92, p = 0.044) was also associated with low 25(OH)D. The prevalence of low plasma 25(OH)D concentrations was high among Mexican active older women. Low handgrip strength, being at risk of malnutrition/malnourished, or diagnosed with T2DM was also associated with Vitamin D deficiency.  相似文献   

6.
Vitamin D might play a role in counteracting COVID-19, albeit strong evidence is still lacking in the literature. The present multicenter real-practice study aimed to evaluate the differences of 25(OH)D3 serum levels in adults tested for SARS-CoV-2 (acute COVID-19 patients, subjects healed from COVID-19, and non-infected ones) recruited over a 6-month period (March–September 2021). In a sample of 117 subjects, a statistically significant difference was found, with acute COVID-19 patients demonstrating the lowest levels of serum 25(OH)D3 (9.63 ± 8.70 ng/mL), significantly lower than values reported by no-COVID-19 patients (15.96 ± 5.99 ng/mL, p = 0.0091) and healed COVID-19 patients (11.52 ± 4.90 ng/mL, p > 0.05). Male gender across the three groups displayed unfluctuating 25(OH)D3 levels, hinting at an inability to ensure adequate levels of the active vitamin D3 form (1α,25(OH)2D3). As a secondary endpoint, we assessed the correlation between serum 25(OH)D3 levels and pro-inflammatory cytokine interleukin-6 (IL-6) in patients with extremely low serum 25(OH)D3 levels (<1 ng/mL) and in a subset supplemented with 1α,25(OH)2D3. Although patients with severe hypovitaminosis-D showed no significant increase in IL-6 levels, acute COVID-19 patients manifested high circulating IL-6 at admission (females = 127.64 ± 22.24 pg/mL, males = 139.28 ± 48.95 ng/mL) which dropped drastically after the administration of 1α,25(OH)2D3 (1.84 ± 0.77 pg/mL and 2.65 ± 0.92 ng/mL, respectively). Taken together, these findings suggest that an administration of 1α,25(OH)2D3 might be helpful for treating male patients with an acute COVID-19 infection. Further studies on rapid correction of vitamin D deficiency with fast acting metabolites are warranted in COVID-19 patients.  相似文献   

7.
Circulating vitamin D has previously been found to be lower in patients with Parkinson’s disease (PD), while the effects of sunlight exposure have not yet been fully investigated. Therefore, we evaluated the associations between serum vitamin D, vitamin D intake, sunlight exposure, and newly-diagnosed PD patients in a Chinese population. This case-control study measured serum 25-hydroxyvitamin D (25(OH)D) levels and sunlight exposure in 201 patients with newly-diagnosed PD and 199 controls without neurodegenerative diseases. Data on vitamin D intake and sunlight exposure were obtained using a self-report questionnaire. Multivariable logistic regressions were employed to evaluate the associations between serum 25(OH)D levels, sunlight exposure, and PD. Adjustments were made for sex, age, smoking, alcohol use, education, BMI, and vitamin D intake. There were significantly lower levels of serum 25(OH)D (20.6 ± 6.5 ng/mL), daily vitamin D intake (8.3 ± 3.7 g/day), and sunlight exposure (9.7 ± 4.1 h/week) in patients with PD compared to healthy controls (p < 0.05). Crude odds ratios (ORs) for PD in the quartiles of serum 25(OH)D were 1 (reference), 0.710 (0.401, 1.257), 0.631 (0.348, 1.209), and 0.483 (0.267, 0.874), respectively. Crude ORs for PD in quartiles of sunlight exposure were 1 (reference), 0.809 (0.454, 1.443), 0.623 (0.345, 1.124) and 0.533 (0.294, 0.966), respectively. A significant positive correlation between serum 25(OH)D and sunlight exposure was found, but serum 25(OH)D was not correlated with daily vitamin D intake. This study indicates that lower levels of serum 25(OH)D and sunlight exposure are significantly associated with an increased risk for PD.  相似文献   

8.
Vitamin D modulates bisphosphonate (BP) efficacy, but its contribution to bone mineral density (BMD) after BP discontinuation is not known. To address this topic, we performed a retrospective analysis of postmenopausal women exposed to alendronate (ALN) to treat osteoporosis who regularly continued the supplementation of cholecalciferol or calcifediol at recommended doses. In the ninety-six recruited women (age 61.1 ± 6.9 years), ALN was administered for 31.2 ± 20.6 months and then discontinued for 33.3 ± 18.9 months. The modification of 25(OH)D serum levels over time was associated with a change of alkaline phosphatase (r = −0.22, p = 0.018) and C-terminal collagen type 1 telopeptide (r = −0.3, p = 0.06). Women in the tertile of the highest increase in 25(OH)D level showed a 5.7% BMD gain at lumbar spine, that was twice as great in comparison with participants with a lower 25(OH)D variation. At a multiple regression analysis, BMD change was associated with time since menopause (ß = 2.28, SE 0.44, p < 0.0001), FRAX score for major fracture (ß = −0.65, SE 0.29, p = 0.03), drug holiday duration (ß = −2.17, SE 0.27, p < 0.0001) and change of 25(OH)D levels (ß = 0.15, SE 0.03, p = 0.0007). After ALN discontinuation, improving the vitamin D status boosts the ALN tail effect on BMD.  相似文献   

9.
Previous research has reported reduced serum 25-hydroxyvitamin D (25(OH)D) levels is associated with acute infectious illness. The relationship between vitamin D status, measured prior to acute infectious illness, with risk of community-acquired pneumonia (CAP) and sepsis has not been examined. Community-living individuals hospitalized with CAP or sepsis were age-, sex-, race-, and season-matched with controls. ICD-9 codes identified CAP and sepsis; chest radiograph confirmed CAP. Serum 25(OH)D levels were measured up to 15 months prior to hospitalization. Regression models adjusted for diabetes, renal disease, and peripheral vascular disease evaluated the association of 25(OH)D levels with CAP or sepsis risk. A total of 132 CAP patients and controls were 60 ± 17 years, 71% female, and 86% Caucasian. The 25(OH)D levels <37 nmol/L (adjusted odds ratio (OR) 2.57, 95% CI 1.08–6.08) were strongly associated with increased odds of CAP hospitalization. A total of 422 sepsis patients and controls were 65 ± 14 years, 59% female, and 91% Caucasian. The 25(OH)D levels <37 nmol/L (adjusted OR 1.75, 95% CI 1.11–2.77) were associated with increased odds of sepsis hospitalization. Vitamin D status was inversely associated with risk of CAP and sepsis hospitalization in a community-living adult population. Further clinical trials are needed to evaluate whether vitamin D supplementation can reduce risk of infections, including CAP and sepsis.  相似文献   

10.
Considering the role of bone metabolism in understanding the pathogenesis of osteoporosis, the aim of the present study was to examine the effects of vitamin D-enriched cheese on the serum concentrations of the parathyroid hormone (PTH) and certain bone remodeling biomarkers in postmenopausal women in Greece. In a randomised, controlled dietary intervention, 79 postmenopausal women (55–75 years old) were randomly allocated either to a control (CG: n = 39) or an intervention group (IG: n = 40), consuming 60 g of either non-enriched or vitamin D3-enriched Gouda-type cheese (5.7 μg of vitamin D3), respectively, daily and for eight weeks during the winter. The serum concentrations of 25-hydroxy vitamin D (25(OH)D), PTH, bone formation (i.e., osteocalcin, P1NP) and bone resorption (i.e., TRAP-5b) biomarkers were measured. Consumption of the vitamin D-enriched cheese led to higher serum 25(OH)D concentrations of 23.4 ± 6.39 (p = 0.022) and 13.4 ± 1.35 (p < 0.001) nmol/L in vitamin D-insufficient women being at menopause for less and more than 5 years, respectively. In vitamin D-insufficient women that were less than 5 years at menopause, consumption of vitamin D-enriched cheese was also associated with lower serum PTH (Beta −0.63 ± 1.11; p < 0.001) and TRAP-5b (Beta −0.65 ± 0.23; p = 0.004) levels at follow-up, compared with the CG. The present study showed that daily intake of 5.7 μg of vitamin D through enriched cheese increased serum 25(OH)D concentrations, prevented PTH increase and reduced bone resorption in vitamin D-insufficient early postmenopausal women, thus reflecting a potential food-based solution for reducing the risk of bone loss occurring after menopause.  相似文献   

11.
Vitamin D deficiency is considered a major public health problem worldwide and has been reported as having an association with depression. However, studies on the association between vitamin D deficiency and depressive symptoms in secondary amenorrhea (SA) patients are still scarce. This study examined the relationship between serum 25-hydroxyvitamin D (25(OH)D) levels and depressive symptoms among Korean women with SA. In this cross-sectional observational study, 78 patients with SA were initially recruited. Clinical and biochemical parameters, including serum 25(OH)D level, were measured. Data from 63 SA patients who met the study inclusion criteria and completed psychiatric assessments were finally analyzed. We analyzed their association with depression using a hierarchical regression model. The average serum 25(OH)D level was 34.40 ± 24.02 ng/mL, and 41.3% of the women with SA were vitamin D-deficient (<20 ng/mL). The total score of the Korean version of the Hamilton Depression Rating Scale (K-HDRS) was negatively related to serum 25(OH)D levels, free testosterone, and serum anti-Müllerian hormone (AMH) after adjusting for age and BMI (r = −0.450, p < 0.001; r = −0.258, p = 0.045; and r = −0.339, p = 0.006, respectively). Serum 25(OH)D levels and AMH levels were the most powerful predictors of depressive severity when using the K-HDRS in SA patients (β = −0.39, p < 0.005; β = −0.42, p < 0.005, respectively). This study showed that low serum 25(OH)D levels were associated with the severity of depressive symptoms in SA patients. This observation suggests that the evaluation of vitamin D deficiency for the risk of depression may be necessary in patients with SA.  相似文献   

12.
Recent studies showed that a low 25-hydroxyvitamin D (25(OH)D) level was associated with a higher risk of morbidity and severe course of COVID-19. Our study aimed to evaluate the effects of cholecalciferol supplementation on the clinical features and inflammatory markers in patients with COVID-19. A serum 25(OH)D level was determined in 311 COVID-19 patients. Among them, 129 patients were then randomized into two groups with similar concomitant medication. Group I (n = 56) received a bolus of cholecalciferol at a dose of 50,000 IU on the first and the eighth days of hospitalization. Patients from Group II (n = 54) did not receive the supplementation. We found significant differences between groups with the preferential increase in serum 25(OH)D level and Δ 25(OH)D in Group I on the ninth day of hospitalization (p < 0.001). The serum 25(OH)D level on the ninth day was negatively associated with the number of bed days (r = −0.23, p = 0.006); we did not observe other clinical benefits in patients receiving an oral bolus of cholecalciferol. Moreover, in Group I, neutrophil and lymphocyte counts were significantly higher (p = 0.04; p = 0.02), while the C-reactive protein level was significantly lower on the ninth day of hospitalization (p = 0.02). Patients with supplementation of 100,000 IU of cholecalciferol, compared to those without supplementation, showed a decrease in the frequencies of CD38++CD27 transitional and CD27−CD38+ mature naive B cells (p = 0.006 and p = 0.02) and an increase in the level of CD27−CD38− DN B cells (p = 0.02). Thus, the rise in serum 25(OH)D level caused by vitamin D supplementation in vitamin D insufficient and deficient patients may positively affect immune status and hence the course of COVID-19.  相似文献   

13.
Metabolic diseases have been shown to be associated with low vitamin D status; however, the findings have been inconsistent. Hence, the objective of our study was to investigate the relationship between vitamin D status and metabolic disease-related traits in healthy Southeast Asian women and examine whether this relationship was modified by dietary factors using a nutrigenetic study. The study included 110 Minangkabau women (age: 25–60 years) from Padang, Indonesia. Genetic risk scores (GRS) were constructed based on five vitamin D-related single nucleotide polymorphisms (SNPs) (vitamin D-GRS) and ten metabolic disease-associated SNPs (metabolic-GRS). The metabolic-GRS was significantly associated with lower 25-hydroxyvitamin D (25(OH)D) concentrations (p = 0.009) and higher body mass index (BMI) (p = 0.016). Even though the vitamin D-GRS had no effect on metabolic traits (p > 0.12), an interaction was observed between the vitamin D-GRS and carbohydrate intake (g) on body fat percentage (BFP) (pinteraction = 0.049), where those individuals who consumed a high carbohydrate diet (mean ± SD: 319 g/d ± 46) and carried >2 vitamin D-lowering risk alleles had significantly higher BFP (p = 0.016). In summary, we have replicated the association of metabolic-GRS with higher BMI and lower 25(OH)D concentrations and identified a novel interaction between vitamin D-GRS and carbohydrate intake on body fat composition.  相似文献   

14.
It is unclear how ongoing inflammation in Coronavirus Disease 2019 (COVID-19) affects 25-hydroxyvitamin D (25[OH]D) concentration. The objective of our study was to examine serum 25(OH)D levels during COVID-19 pneumonia. Patients were admitted between 1 November and 31 December 2021. Blood samples were taken on admission (day 0) and every 24 h for the subsequent four days (day 1–4). On admission, 59% of patients were 25(OH)D sufficient (>30 ng/mL), and 41% had 25(OH)D inadequacy (<30 ng/mL). A significant fall in mean 25(OH)D concentration from admission to day 2 (first 48 h) was observed (30.7 ng/mL vs. 26.4 ng/mL; p < 0.0001). No subsequent significant change in 25(OH)D concentration was observed between day 2 and 3 (26.4 ng/mL vs. 25.9 ng/mL; p = 0.230) and day 3 and day 4 (25.8 ng/mL vs. 25.9 ng/mL; p = 0.703). The absolute 25(OH)D change between hospital admission and day 4 was 16% (4.8 ng/mL; p < 0.0001). On day 4, the number of patients with 25(OH)D inadequacy increased by 18% (p = 0.018). Therefore, serum 25(OH)D concentration after hospital admission in acutely ill COVID-19 patients should be interpreted with caution. Whether low 25(OH)D in COVID-19 reflects tissue level vitamin D deficiency or represents only a laboratory phenomenon remains to be elucidated in further prospective trials of vitamin D supplementation.  相似文献   

15.
Previous studies have pointed out a link between vitamin D status and metabolic traits, however, consistent evidence has not been provided yet. This cross-sectional study has used a nutrigenetic approach to investigate the interaction between metabolic-genetic risk score (GRS) and dietary intake on serum 25-hydroxyvitamin D [25(OH)D] concentrations in 396 unrelated Turkish adults, aged 24–50 years. Serum 25(OH)D concentration was significantly lower in those with a metabolic-GRS ≥ 1 risk allele than those with a metabolic-GRS < 1 risk allele (p = 0.020). A significant interaction between metabolic-GRS and dietary fat intake (energy%) on serum 25(OH)D levels was identified (Pinteraction = 0.040). Participants carrying a metabolic-GRS ≥ 1 risk allele and consuming a high fat diet (≥38% of energy = 122.3 ± 52.51 g/day) had significantly lower serum 25(OH)D concentration (p = 0.006) in comparison to those consuming a low-fat diet (<38% of energy = 82.5 ± 37.36 g/d). In conclusion, our study suggests a novel interaction between metabolic-GRS and dietary fat intake on serum 25(OH)D level, which emphasises that following the current dietary fat intake recommendation (<35% total fat) could be important in reducing the prevalence of vitamin D deficiency in this Turkish population. Nevertheless, further larger studies are needed to verify this interaction, before implementing personalized dietary recommendations for the maintenance of optimal vitamin D status.  相似文献   

16.
Background and objectivesLow levels of vitamin D among dark-skinned migrants to northern latitudes and increased risks for associated pathologies illustrate an evolutionary mismatch between an environment of high ultraviolet (UV) radiation to which such migrants are adapted and the low UV environment to which they migrate. Recently, low levels of vitamin D have also been associated with higher risks for contracting COVID-19. South Asians in the UK have higher risk for low vitamin D levels. In this study, we assessed vitamin D status of British-Bangladeshi migrants compared with white British residents and Bangladeshis still living in Bangladesh (‘sedentees’).MethodologyThe cross-sectional study compared serum vitamin D levels among 149 women aged 35–59, comprising British-Bangladeshi migrants (n = 50), white British neighbors (n = 54) and Bangladeshi sedentees (n = 45). Analyses comprised multivariate models to assess serum levels of 25-hydroxyvitamin D (25(OH)D), and associations with anthropometric, lifestyle, health and migration factors.ResultsVitamin D levels in Bangladeshi migrants were very low: mean 25(OH)D = 32.2 nmol/L ± 13.0, with 29% of migrants classified as deficient (<25 nmol/L) and 94% deficient or insufficient (≤50 nmol/L). Mean levels of vitamin D were significantly lower among British-Bangladeshis compared with Bangladeshi sedentees (50.9 nmol/L ± 13.3, P < 0.001) and were also lower than in white British women (55.3 nmol/L ± 20.9). Lower levels of vitamin D were associated with increased body mass index and low iron status.Conclusions and implicationsWe conclude that lower exposure to sunlight in the UK reduces vitamin D levels in Bangladeshi migrants. Recommending supplements could prevent potentially adverse health outcomes associated with vitamin D deficiency.Lay SummaryVitamin D deficiency is one example of mismatch between an evolved trait and novel environments. Here we compare vitamin D status of dark-skinned British-Bangladeshi migrants in the UK to Bangladeshis in Bangladesh and white British individuals. Migrants had lower levels of vitamin D and are at risk for associated pathologies.  相似文献   

17.
Free zinc is considered to be the exchangeable and biological active form of zinc in serum, and is discussed to be a suitable biomarker for alterations in body zinc homeostasis and related diseases. Given that coronavirus disease 2019 (COVID-19) is characterized by a marked decrease in total serum zinc, and clinical data indicate that zinc status impacts the susceptibility and severity of the infection, we hypothesized that free zinc in serum might be altered in response to SARS-CoV-2 infection and may reflect disease severity. To test this hypothesis, free zinc concentrations in serum samples of survivors and nonsurvivors of COVID-19 were analyzed by fluorometric microassay. Similar to the reported total serum zinc deficit measured by total reflection X-ray fluorescence, free serum zinc in COVID-19 patients was considerably lower than that in control subjects, and surviving patients displayed significantly higher levels of free zinc than those of nonsurvivors (mean ± SD; 0.4 ± 0.2 nM vs. 0.2 ± 0.1 nM; p = 0.0004). In contrast to recovering total zinc concentrations (r = 0.706, p < 0.001) or the declining copper–zinc ratio (r = −0.646; p < 0.001), free zinc concentrations remained unaltered with time in COVID-19 nonsurvivors. Free serum zinc concentrations were particularly low in male as compared to female patients (mean ± SD; 0.4 ± 0.2 nM vs. 0.2 ± 0.1 nM; p = 0.0003). This is of particular interest, as the male sex is described as a risk factor for severe COVID-19. Overall, results indicate that depressed free serum zinc levels are associated with increased risk of death in COVID-19, suggesting that free zinc may serve as a novel prognostic marker for the severity and course of COVID-19.  相似文献   

18.
The relationship between depression and vitamin D deficiency is complex, with evidence mostly from studies affected by confounding and reverse causality. We examined the causality and direction of the relationship between 25-hydroxyvitamin D (25(OH)D) and depression in bi-directional Mendelian randomization (MR) analyses using information from up to 307,618 white British participants from the UK Biobank and summary results from the SUNLIGHT (n = 79,366) and Psychiatric Genomics consortia (PGC 113,154 cases and 218,523 controls). In observational analysis, the odds of depression decreased with higher 25(OH)D concentrations (adjusted odds ratio (OR) per 50% increase 0.95, 95%CI 0.94–0.96). In MR inverse variance weighted (IVW) using the UK Biobank, there was no association between genetically determined serum 25(OH)D and depression (OR per 50% higher 0.97, 95%CI 0.90–1.05) with consistent null association across all MR approaches and in data from PGC consortium. In contrast, genetic liability to depression was associated with lower 25(OH)D concentrations (MR IVW −3.26%, −4.94%–−1.55%), with the estimates remaining generally consistent after meta-analysing with the consortia. In conclusion, we found genetic evidence for a causal effect of depression on lower 25(OH)D concentrations, however we could not confirm a beneficial effect of nutritional vitamin D status on depression risk.  相似文献   

19.
Zinc homeostasis is achieved after intake variation by changes in the expression levels of zinc transporters. The aim of this study was to evaluate dietary intake (by 24-h recall), absorption, plasma zinc (by absorption spectrophotometry) and the expression levels (by quantitative PCR), of the transporters ZIP1 (zinc importer) and ZnT1 (zinc exporter) in peripheral white blood cells from 24 adolescent girls before and after drinking zinc-fortified milk for 27 day. Zinc intake increased (p < 0.001) from 10.5 ± 3.9 mg/day to 17.6 ± 4.4 mg/day, and its estimated absorption from 3.1 ± 1.2 to 5.3 ± 1.3 mg/day. Mean plasma zinc concentration remained unchanged (p > 0.05) near 150 µg/dL, but increased by 31 µg/dL (p < 0.05) for 6/24 adolescents (group A) and decreased by 25 µg/dL (p < 0.05) for other 6/24 adolescents (group B). Expression of ZIP1 in blood leukocytes was reduced 1.4-fold (p < 0.006) in group A, while for the expression of ZnT1 there was no difference after intervention (p = 0.39). An increase of dietary zinc after 27-days consumption of fortified-milk did not increase (p > 0.05) the plasma level of adolescent girls but for 6/24 participants from group A in spite of the formerly appropriation, which cellular zinc uptake decreased as assessed by reduction of the expression of ZIP1.  相似文献   

20.
The primary objective of this study was to determine the effects of vitamin D levels on peripheral pulse wave velocity (pPWV) following acute maximal exercise in healthy young adults. Fifty male healthy adults from National Chung Cheng University participated in the study. Participants were divided into the 25-hydroxyvitamin D (25(OH)D) sufficiency group (n = 28, 25(OH)D ≥ 50 nmol/L) and deficiency group (n = 22, 25(OH)D < 50 nmol/L). The acute maximal exercise was performed using an incremental cycling test to exhaustion. Additionally, the pPWV and blood pressure were obtained at rest and 0, 15, 30, 45, 60 min after acute maximal exercise. The results show that 25(OH)D deficiency group had higher pPWV at post-exercise (5.34 ± 0.71 vs. 4.79 ± 0.81 m/s, p < 0.05), post-exercise 15 min (5.13 ± 0.53 vs. 4.48 ± 0.66 m/s, p < 0.05) and post-exercise 30 min (5.26 ± 0.84 vs. 4.78 ± 0.50 m/s, p < 0.05) than the sufficiency group. Furthermore, there was a significant inverse correlation between 25(OH)D levels and pPWV following acute maximal exercise. Our study demonstrated that low vitamin D status relates to the poor response of pPWV following maximal exercise in healthy young men. Vitamin D deficiency may increase the risk of incident cardiovascular events after acute exhaustive exercise, even in healthy and active adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号