首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of present study was to examine the effect of repeated co-treatment with imipramine and metyrapone on the development of adaptive changes in the function of central serotonin 5-HT1A and 5-HT2A, dopamine D2/3 and alpha 1-adrenergic receptors in rats. The obtained results showed that repeated co-treatment with imipramine (5 or 10 mg/kg) and metyrapone (50 mg/kg) (twice daily for 14 days) either induced more potent inhibition of the behavioral syndrome evoked by 5-HT1A and 5-HT2A receptor agonists (8-OH-DPAT and (+/-)DOI, respectively), or did no change the action of amphetamine and wuinpirole (a dopamine D2/3 agonist) or phenylephrine (an alpha 1-adrenergic agonist) compared to treatment with either drug alone. The results described in the present paper support the hypothesis that repeated co-treatment with imipramine and metyrapone may possess more effective antidepressant activity than the treatment with imipramine alone, and that, among other mechanisms, 5-HT1A- and 5-HT2A (but not dopamine D2/3- or alpha 1-adrenergic) receptors may also play some role in this effect.  相似文献   

2.
The aim of this study was to evaluate the effect of acute, subchronic (14 days) and chronic (28 days) intraperitoneal (i.p.) administration of clozapine (10 or 25 mg/kg) on neuropeptide Y (NPY) system activity in the nucleus accumbens of the rat. NPY-like immunoreactivity (NPY-LI) decreased 24 h after subchronic clozapine while NPY mRNA after both acute and subchronic clozapine treatment. NPY-LI levels were also reduced 8 days after cessation of chronic lower-dose treatment. Subchronic (14 days) administration of the 5-HT2A antagonist ketanserin (1 mg/kg i.p.) or the dopamine D2/D3 antagonist (+/-) sulpiride (100 mg/kg i.p.) reduced NPY-LI levels, whereas the dopamine D1-like antagonist SCH 23390 (0.5 mg/kg i.p.), dopamine D4 antagonist L-745,870 (1 mg/kg per os), and alpha1-adrenergic antagonist prazosin (0.2 mg/kg i.p.) had no effect. There were no significant differences between the ketanserin-induced decrease in NPY-LI levels and the effects of the following two-drug combinations: ketanserin and SCH 23390, ketanserin and L-745,870, and ketanserin and prazosin. The study has shown that clozapine reduces NPY system activity in the rat nucleus accumbens. It seems that the action of clozapine is partly mediated by blockade of 5-HT2A and D2/D3 dopaminergic receptors.  相似文献   

3.
The effect of 8-OH-DPAT, a 5-HT1A receptor agonist, on the locomotor activity was analyzed in Albino Swiss mice. The studied drug (0.5-5 mg/kg) inhibited the spontaneous locomotor activity in mice. The hypoactivity induced by 8-OH-DPAT (1.5 mg/kg) was abolished by the dopamine (D1 and D2) receptor antagonist-haloperidol (0.00125 and 0.0025 mg/kg, but not in higher doses) and by the D2 antagonist with affinity for 5-HT1A and 5-HT2 receptors-spiperone (0.0025 and 0.005 mg/kg, but not in higher doses). The effect of 8-OH-DPAT was slightly reduced by the alpha 2-adrenoceptor antagonists: idazoxan (4 mg/kg), yohimbine (2 and 4 mg/kg) and rauwolscine (4 mg/kg). On the other hand, the non-selective 5-HT antagonist metergoline (0.5-4 mg/kg), the 5-HT1A antagonist NAN-190 (0.5-2 mg/kg), the beta-adrenoceptor blockers with high affinity for 5-HT1A and 5-HT1B receptors: pindolol and SDZ 21009 (2-8 mg/kg) and the agonist/antagonist of 5-HT1A receptors ipsapirone (2.5 and 5 mg/kg) did not affect the 8-OH-DPAT-induced hypoactivity. The obtained results suggest that the reduction of the spontaneous locomotor activity induced by 8-OH-DPAT results from a stimulation of dopamine autoreceptors, but not 5-HT receptors. Involvement of an alpha 2-adrenergic mechanism cannot be excluded.  相似文献   

4.
The effects of acute, subchronic ( 14 days) or chronic (28 days) intraperitoneal (i.p.) administration of chlorpromazine (2 or 10 mg/kg), haloperidol (0.5 or 2 mg/kg) or sulpiride (50 or 100 mg/kg) on the neuropeptide Y (NPY) system in the rat nucleus accumbens were studied. NPY-like immunoreactivity (NPY-LI) decreased in a dose- and time-dependent manner, and was the lowest after haloperidol. NPY-LI levels increased 8 days after withdrawal of chronic drugs treatment. Acute administration of haloperidol reduced NPY mRNA, while Subchronic treatment did not change it. Subchronic i.p. administration of the dopamine D1-like antagonist SCH 23390 (1 mg/kg) reduced NPY-LI levels but the alpha1-adrenergic antagonist prazosin (0.2 mg/kg) had no effect. The effect of sulpiride coadministered with SCH 23390 was greater than that of SCH 23390 alone, while prazosin coadministered with sulpiride insignificantly reduced the effect of sulpiride. The dopamine D2/D3 agonist quinpirole given as a single injection (3 mg/kg) did not alter NPY-LI content by itself but antagonized the chlorpromazine-induced decrease and attenuated the haloperidol-induced decrease. Our findings indicate that the accumbens NPY system is markedly affected by the antipsychotics studied, and suggest that their effects may be in part mediated by blockade of D2-like (D2, D3) and D1 dopaminergic receptors.  相似文献   

5.
The administration of dizocilpine, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist acting at the associated ion channel, increased the grooming time induced in rats by the D1 dopamine receptor agonist SKF 38393 and the stereotyped behaviour elicited by the D1/D2 dopamine receptor agonist apomorphine, and reduced the locomotor response to the D2 dopamine receptor agonist quinpirole. This supports the view that glutamate deficiency plays an important role in the pathogenesis of schizophrenia by altering the balance between glutamatergic and dopaminergic systems. Blockade of serotonin receptors counteracted the effect of dizocilpine on dopaminergic responses. Both the non-selective 5HT1/5HT2 antagonist methysergide, and ketanserin, which more specifically blocks 5HT2 receptors, given at doses inhibiting serotonin-mediated behaviours but which did not affect spontaneous motility and dopaminergic behaviours, hampered the dizocilpine-induced potentiation of responses elicited by the stimulation of D1 or D1/D2 dopamine receptors and counteracted the dizocilpine-induced reduction of hyperactivity observed following quinpirole administration. The results suggest that the functional integrity of the serotonergic system is fundamental for the occurrence of dopaminergic changes resulting from non-competitive NMDA blockade.  相似文献   

6.
The selective dopamine D-1 receptor antagonist SCH 23390 has been tested in vitro in the rat fundus model and in vivo in the electrically stimulated flexor reflex model. In the fundus model, SCH 23390 showed a potent agonistic activity compared to that of different 5-HT receptor agonists. Pindolol, 1-propranolol and pirenperone showed no or only weak inhibition of the SCH 23390-induced contractions in the fundus strip whereas methysergide was a potent inhibitor. The 5-HT3 receptor antagonist ICS 205-930 did not induce an inhibitory effect. In the electrically stimulated flexor reflex model in pithed rats, SCH 23390 induced a marked increase of the reflex. This increase was slightly inhibited by a mixed dopamine (DA) D-1/D-2 antagonist cis(Z)-flupentixol and by a specific DA D-2 antagonist YM 09151-2. Different reference antagonists: bicuculline (GABAergic), propranolol (beta-adrenergic), scopolamine (muscarinic), yohimbine (alpha 2-adrenergic), prazosin (alpha 1-adrenergic) were all without an antagonist effect on the SCH 23390-induced increase of the flexor reflex. Ketanserin, a selective 5-HT2 receptor antagonist, showed a weak and short-lasting inhibition of the SCH 23390 effect in high doses, whereas ritanserin showed only 35% inhibition of the SCH 23390-induced flexor reflex at a dose of 1.3 mumol/kg i.v. The mixed 5-HT1/5-HT2 antagonists methiothepin and metergoline showed a marked inhibitory effect at 2.6 mumol/kg i.v. and 3.1 mumol/kg i.v., respectively (1.3 mg/kg i.v.). These findings suggest that SCH 23390 might possess 5-HT1 receptor agonist activity.  相似文献   

7.
Several studies have demonstrated that systemically administered N-methyl-d-aspartate (NMDA) receptor antagonists increase serotonin (5-HT) and glutamate release in the medial prefrontal cortex (mPFC). Previously we showed that the perfusion of clozapine in the mPFC prevented the MK-801-induced increase in extracellular glutamate and 5-HT whereas haloperidol blocked only the effect of MK-801 on glutamate. To study the contribution of different monoaminergic receptors (for which clozapine and haloperidol exhibit distinct affinities) to these effects, here we used in-vivo microdialysis to examine the role of local blockade of dopamine D2, 5-HT2A and alpha1-adrenergic receptors as well as agonism at dopamine D1 and 5-HT1A receptors in the mPFC on the increased efflux of glutamate and 5-HT elicited by MK-801. The results show that M100907 (5-HT2A antagonist), BAY x 3702 (5-HT1A agonist) and prazosin (alpha1-adrenergic antagonist) blocked the MK-801-induced increase of 5-HT and glutamate in the mPFC. However, raclopride, eticlopride (dopamine D2 antagonists) and SKF-38393 (dopamine D1 agonist) were able to prevent the increased efflux of glutamate (but not that of 5-HT) elicited by MK-801. We propose that D2 receptor antagonists and D1 agonists would act predominantly on a subpopulation of GABAergic interneurons of the mPFC, thus leading to an enhanced cortical inhibition that would prevent an excessive glutamatergic transmission. On the other hand, atypical antipsychotic drugs might further act upon 5-HT2A, 5-HT1A and alpha1-adrenoceptors present in pyramidal cells (including those projecting to the dorsal raphe nucleus), which would directly inhibit an excessive excitability of these cells.  相似文献   

8.
Tonic immobility (TI) is considered to be an innate fear response characterized by a temporary state of profound and reversible motor inhibition. TI occurs in a wide range of species in a predator-prey confrontation and is hypothesized to be a terminal defence response occurring when there is physical contact between prey and predator. The objective of the present study was to investigate the validity of the TI model in guinea pigs for detection of anxiolytic and/or antidepressant drug activity. Compounds that reduced TI include the serotonin (5-HT) releaser fenfluramine, the 5-HT(1A) receptor agonists 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and buspirone, the 5-HT(2C/2B) receptor antagonist SB206553, the 5-HT(2A) receptor antagonist MDL 100.151 -- but only at doses thought also to inhibit 5-HT(2C) receptors--the noradrenaline (NA) reuptake inhibitor desipramine, the benzodiazepine inverse agonist FG-7142, the alpha(2)-adrenergic receptor antagonist yohimbine, the neurokinin (NK)(1) receptor antagonist L-733.060, and the NK(2) receptor antagonist SR-48968. Compounds that increased TI include the benzodiazepine agonists diazepam and alprazolam, and the alpha(2)-adrenergic receptor agonist clonidine. The selective 5-HT reuptake inhibitors citalopram, paroxetine and fluoxetine, the 5-HT(1A) receptor antagonist WAY100.635, the 5-HT(2C) receptor agonist MK-212, the 5-HT/NA reuptake inhibitor imipramine, the NA reuptake inhibitor talopram, the benzodiazepine antagonist flumazenil, the alpha(2)-adrenergic receptor antagonist idazoxan and the psychostimulant amphetamine did not have any effect. These findings indicate that the serotonergic, noradrenergic and neurokinin systems are involved in mediating or modulating TI behaviour in guinea pigs. The potential of TI as a behaviour for detecting anxiolytic-like effect may be questioned due to the contradictory effect of the benzodiazepine ligands, which may be attributed to the sedative and/or ataxic effects of the compounds. Nevertheless, there is preclinical evidence suggesting that 5-HT(1A) receptor agonists, 5-HT(2C) receptor antagonists and NK(1) and NK(2) receptor antagonists possess anxiolytic potential. Only when results of clinical investigations of the anxiolytic potential of non-benzodiazepine ligands (for example the NK receptor antagonists) are available, will it be possible to determine fully the predictive validity of the TI model.  相似文献   

9.
Intravenous injection of the dopamine (DA) D1 receptor agonist SK&F 38393 (4.3 mumol/kg = 1.25 mg/kg), or the DA D2 receptor agonist pergolide (3.2 mumol/kg = 1.25 mg/kg) increased the electrically-stimulated spinal reflex in pithed rats by more than 600 per cent. The specific DA D1 receptor antagonist SCH 23390 potently inhibited the SK&F 38393-induced spinal reflex but not the pergolide-induced reflex. The DA D2 receptor antagonists clebopride and YM 09151-2 inhibited the pergolide-induced reflex only. Two mixed DA D1/D2 antagonists (cis(Z)-flupentixol and zuclopenthixol) inhibited the effects of both SK&F 38393 and pergolide on the spinal reflex, while the neuroleptically inactive isomer of clopenthixol (trans(E)-clopenthixol) was also inactive in this context. Various antagonists (prazosin (alpha 1), idazoxan (alpha 2), 1- propranolol (beta), bicuculline (GABA] were inactive in the test model. The 5-HT2 receptor antagonists altanserin and ketanserin also showed antagonistic effect. It is concluded that the electrically-stimulated spinal reflex in pithed rats can be used as a test model to estimate the blockade of central DA D1 and DA D2 receptors without influence from alpha 1-adrenergic, alpha 2-adrenergic, beta-adrenergic and GABA-ergic receptors. However, a serotonergic receptor antagonism does influence the specificity of the test model.  相似文献   

10.
Our previous studies demonstrated that joint administration of a tricyclic antidepressant drug, imipramine (IMI) with the uncompetitive antagonist of NMDA receptor, amantadine (AMA), produced stronger "antidepressant" effect in the forced swimming test (Porsolt's test) than the treatment with either of drugs given alone. Since it has been suggested that, in addition to their other functions, dopamine and alpha(1)-adrenergic receptors may play a role in behavioral response in the forced swimming test, in the present study we examined the effect of sulpiride (dopamine D(2/3) receptor antagonist) and prazosin (alpha(1)-adrenergic receptor antagonist) on the effect of AMA given alone or in combination with IMI in the forced swimming test in rats. We also measured the level of IMI and its metabolite, desipramine, in the rat plasma and brain, 1 h after the forced swimming test. Joint treatment with IMI (5 or 10 mg/kg) and AMA (20 mg/kg) produced stronger antidepressant-like effect than either of agents given alone. Sulpiride (10 mg/kg) or prazosin (1 mg/kg) (ineffective in the forced swimming test) inhibited an antidepressant-like effect induced by co-administration of IMI and AMA. The active behaviors in that test did not reflect an increase in general activity, since combined administration of IMI and AMA failed to enhance the locomotor activity of rats, measured in the open field test. Also sulpiride and prazosin did not decrease the exploratory activity induced by co-administration of IMI and AMA. The above result suggests that the dopamine D(2/3) and alpha(1)-adrenergic receptors may contribute to the mechanism of synergistic action of IMI and AMA in the forced swimming test in rats. The pharmacokinetic interaction can be excluded, since AMA did not change significantly the antidepressant level in the rat plasma and brain, measured 1 h after exposure to the forced swimming test.  相似文献   

11.
The dopamine D(1) receptor agonist, R(+)-6-chloro-7, 8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (SKF 81297), the dopamine D(2)/D(3) receptor agonist, trans-(-)-4aR-4,4a,5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo[3, 4-g]quinoline hydrochloride (quinpirole), and the dopamine D(3) receptor agonist, (+/-)-7-hydroxy-dipropylaminotetralin hydrobromide (7-OH-DPAT) all reduced the frequency of isolation-induced infant rat ultrasonic vocalizations and lowered body temperature when compared to saline-injected controls. Ultrasonic vocalization rate was not affected by either the dopamine D(1) receptor antagonist, R(+)-2,3,4, 5-tetrahydro-8-iodo-3-methyl-5-phenyl-1H-3-benzazepin-7-ol hydrochloride (SCH 23390) or the dopamine D(2)/D(3) receptor antagonist, S(-)-raclopride-L-tartrate (raclopride) when given alone, nor did these antagonists block the ultrasonic vocalization reductions caused by the dopamine D(1) receptor agonist or the dopamine D(2)/D(3) receptor agonist. The dopamine D(2)/D(3) receptor antagonist but not the dopamine D(1) receptor antagonist blocked the dopamine D(3) receptor agonist's ultrasonic vocalization reduction. SKF 81297 reduced general activity while quinpirole and 7-OH-DPAT increased activity. Raclopride reversed quinpirole's reduction in body temperature, as well as 7-OH-DPAT's effects on body temperature, ultrasonic vocalizations, and activity. These results indicate that dopamine D(1), D(2)/D(3), and D(3) receptor agonists all reduce ultrasonic vocalizations by as yet undetermined mechanisms.  相似文献   

12.
Bucindolol is a nonselective beta-adrenergic receptor antagonist that has additional vasodilating properties. Because some beta-adrenergic receptor antagonists such as cyanopindolol are used as 5-HT1A/5-HT1B receptor antagonists, we tested the hypothesis that bucindolol can interact with 5-HT receptors. Both in vitro and in vivo methods were used to examine the interaction of bucindolol with 5-HT receptors relevant to the cardiovascular system-the 5-HT1A, 5-HT1D, 5-HT2A, and 5-HT2B receptors-and with alpha1-adrenergic receptors. In binding studies, bucindolol displayed high affinity for the 5-HT1A receptor (Ki, 11 nM), modest affinity for the 5-HT2A receptor (Ki, 382 nM), and no measurable affinity for the 5-HT1D receptor; binding affinity for the 5-HT2B receptor was not studied. Bucindolol also displayed significant binding affinity (Ki, 69 nM) for the alpha1-adrenergic receptors. Alpha1-Adrenergic receptor antagonist activity was confirmed by the ability of bucindolol (1 mg/kg) to act as a competitive antagonist against 0.01-30 microg/kg phenylephrine-induced pressor responses in conscious rats. In conscious permanently instrumented rats, bucindolol (0.1-3.0 mg/kg, i.v.) did not cause bradycardia similar to that elicited by the 5-HT1A-receptor agonist 8-OH-DPAT (3-300 microg/kg, i.v.), nor did bucindolol (1 mg/kg) block the 8-OH-DPAT-induced bradycardia. Bucindolol (10(-9)-10(-5) M) did not cause relaxation in the PGF2alpha-contracted, endothelium-intact porcine coronary artery, nor did bucindolol (10(-5) M) block 5-HT-induced coronary artery relaxation, indicating that bucindolol does not have significant interactions at the 5-HT1D receptor. Bucindolol also displayed no agonist activity at the 5-HT2A and 5-HT2B receptor (endothelium-denuded rat thoracic aorta and rat stomach fundus, respectively), but did act as a weak 5-HT2A-receptor antagonist (-log K(B) [M] = 5.4+/-0.1) and 5-HT2B-receptor antagonist (-log K(B) [M] = 7.8+/-0.1). Thus, these data suggest that bucindolol lacks the ability to activate the 5-HT1A, 5-HT1D, 5-HT2A, and 5-HT2B receptor, but can block alpha1-adrenergic receptors and act as a weak 5-HT2A- and 5-HT2B-receptor antagonist. The relevance of these serotoninergic effects as it pertains to the mechanism of bucindolol-induced vasodilation is unknown.  相似文献   

13.
Environmental cues associated with the previously abused drug elicit craving and relapse to drug use in humans. Several reinstatement paradigms are used in animals to examine the relapse-preventing efficacy of possible medical treatments. The purpose of the present study was to investigate the effect of D3 dopamine receptor ligands in a relapse model where animals with stable cocaine self-administration behavior were exposed to all the environmental and reinforcement-contingent discrete cues associated for the previous cocaine-intake in a single extinction session after 3-week long abstinence period. The following compounds were studied: SB-277011-A as a selective D3 antagonist, BP-897 as a D3 partial agonist/D2 antagonist and haloperidol as a preferential D2 receptor antagonist. In addition, in the same paradigm we investigated the effect of the above ligands on relapse to natural reward-seeking behavior using sucrose as natural reward. SB-277011-A (5 and 20 mg/kg), BP-897 (1 mg/kg) and haloperidol (0.2 mg/kg) significantly inhibited the secondary cues-induced cocaine-seeking behavior. None of the above drugs significantly influenced the cue-controlled sucrose-seeking behavior. These results confirm the importance of the D3 as well as the D2 dopamine receptor in modulating the cue-induced cocaine relapse and the possible usefulness of the D3 dopamine receptor ligands as potential medication in cocaine addicts.  相似文献   

14.
The pathophysiology of Parkinson's disease and l-3,4-dihydroxyphenylalanine (l-DOPA)-induced dyskinesia are characterised by an imbalance between activity of the direct and indirect pathways regulated by dopamine D1 and D2 receptors, respectively. In this study, we investigated the effects of treatments combining adenosine A(1) and metabotropic glutamate 5 (mGlu5) receptors modulators on locomotion induced by dopamine D1 receptor activation in the reserpine-treated rats. Administration of the adenosine A(1) receptor agonist and mGlu5 receptor antagonist resulted in the significant reduction of dopamine D1 receptor agonist-induced locomotion. The combination of adenosine A(1) receptor agonist with mGlu5 receptor antagonist had no greater effect than these compounds alone. However, the adenosine A(1) receptor antagonist attenuated the inhibitory effect of mGlu5 receptor antagonist. The data suggest that the effect of mGlu5 receptor blockade on locomotion elicited by dopamine D1 receptor stimulation involves activation of adenosine A(1) receptors. This interaction can improve our understanding of pathophysiology of L-DOPA-induced dyskinesia.  相似文献   

15.
Sensory nerves regulate central and local reflexes such as airway plasma leakage, and cough and their function may be enhanced during inflammation. Evidence suggests that dopamine receptor agonists may inhibit sensory nerve-mediated responses. In this study dopamine inhibited vagal sensory nerve induced microvascular leakage in the rat. In order to characterize the receptor involved rat vagus preparations were utilized. Quinagolide (D(2/3) agonist), ropinirole (D(2/3/4) agonist), SKF 38393 (D(1/5) agonist), AR-C68397AA (Viozan) (dual D(2)/B(2) agonist) and dopamine inhibited hypertonic saline induced depolarization by approximately 50%. Data suggests that AR-C68397AA and quinagolide also inhibited depolarization of the human vagus. The quinagolide response was blocked by sulpiride (D(2/3) antagonist) but not SCH 23390 (D(1/5) antagonist); ropinirole was partially blocked by sulpiride, totally blocked by spiperone (at a concentration that blocks all dopamine receptors) but not by SCH 23390. The response to SKF 38393 was not blocked by sulpiride but was by SCH 23390. The inhibition evoked by AR-C68397AA was only partially blocked by SCH 23390 but not by sulpiride or spiperone whereas dopamine was blocked by spiperone. The effect of dopamine was not stimulus-specific as it inhibited capsaicin-induced depolarization of the rat vagus in a spiperone sensitive manner. In conclusion, dopamine receptor ligands inhibit depolarization of the rat and human vagus. These data suggest that dopamine receptor agonists may be of therapeutic benefit in the treatment of symptoms such as cough and mucus secretion which are evident in respiratory diseases such as asthma and chronic obstructive pulmonary disease.  相似文献   

16.
The atypical antipsychotic bifeprunox is a partial dopamine D(2) and 5-HT(1A) receptor agonist. Using in-vivo electrophysiological and behavioural paradigms in the rat, the effects of bifeprunox and aripiprazole were assessed on ventral tegmental area (VTA) dopamine and dorsal raphe serotonin (5-HT) cell activity and on foot shock-induced ultrasonic vocalisation (USV). In VTA, bifeprunox and aripiprazole decreased (by 20-50%) firing of dopamine neurons. Interestingly, bursting activity was markedly reduced (by 70-100%), bursting being associated with a larger synaptic dopamine release than single spike firing. Both ligands reduced inhibition of firing rate induced by the full dopamine receptor agonist apomorphine, whereas the D(2) receptor antagonist haloperidol prevented these inhibitory effects, confirming partial D(2)-like agonistic properties. On 5-HT neurons, bifeprunox was more potent than aripiprazole to suppress firing activity. The 5-HT(1A) receptor antagonist WAY-100,635 prevented their effects. In the USV test of anxiolytic-like activity, bifeprunox had higher potency than aripiprazole to reduce vocalisations. Both WAY-100,635 and haloperidol reversed the effects of both agonists. The present in-vivo study shows that bifeprunox is a potent partial D(2)-like and 5-HT(1A) receptor agonist reducing preferentially the phasic activity of dopamine neurons. Thus, bifeprunox would be expected to be an effective compound against positive and negative symptoms of schizophrenia.  相似文献   

17.
The mechanism of the antidepressant-like activity of the selective 5-hydroxytryptamine(1B) (5-HT(1B)) receptor agonist 5-propoxy-3-(1,2,3,6-tetrahydro-4-pyridinyl)-1H-pyrrolo[3,2-b]pyridine (CP 94253) was studied in the forced swimming test in mice. CP 94253 administered intraperitoneally at a single dose of 5 mg/kg potently shortened the immobility time of mice. The anti-immobility effect of CP 94253 was wholly blocked by the selective 5-HT(1B) receptor antagonist N-[3-(2-dimethylamino)ethoxy-4-methoxyphenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)-(1,1'-biphenyl)-4-carboxamide (SB 216641, 5 mg/kg), the dopamine D2-like receptor antagonist sulpiride (50 mg/kg) and the alpha(2)-adrenoceptor antagonist idazoxan (2 mg/kg), but was not modified in animals with a lesion of the 5-HT system produced by p-chlorophenylalanine (p-CPA, 3 x 300 mg/kg). The obtained results suggest that the anti-immobility effect of CP 94253 is mediated by activation of 5-HT(1B) receptors-most probably located postsynaptically and/or as heteroreceptors, and that the dopamine and the noradrenaline systems are involved in this action.  相似文献   

18.
Drugs of abuse, such as amphetamine (AMPH), share the ability to activate the mesolimbic dopamine (DA) system. The behavioral effects of AMPH are largely mediated by increased DA neurotransmission in the nucleus accumbens. However, there is evidence that serotonin (5-hydroxytryptamine - 5-HT) systems may regulate forebrain DA function. We examined the role of 5-HT1B receptors on the discriminative stimulus properties of AMPH using conditioned taste aversion (CTA) as the drug discrimination procedure. Male Wistar rats were deprived of water and trained in the CTA procedure. They received the administration of AMPH (1.0 mg/kg) before a 10 min period of access to saccharin solution and followed by an injection of LiCl; on alternate days, rats received saline before and after the access to saccharin solution. In generalization and combination tests, the training dose of AMPH was substituted by 5-HT1B receptor ligands RU24969 (5-HT1B agonist: 0.1, 0.3 and 1.0 mg/kg), CP94253 (5-HT1B agonist: 1.0, 3.0 and 5.6 mg/kg) and GR127935 (5-HT1B antagonist: 0.3, 1.0 and 3.0 mg/kg) or a combination of RU24969 (0.1, 0.3 and 1.0 mg/kg), CP94253 (1.0, 3.0 and 5.6 mg/kg) or GR127935 (0.3, 1.0 and 3.0 mg/kg) with AMPH (0.3 mg/kg) or GR127935 (0.3, 1.0 and 3.0 mg/kg) and CP94253 (5.6 mg/kg) with AMPH (0.3 mg/kg). The results showed that 5-HT1B agonists RU24969 and CP94253 produced partial generalization of 48% and 60%, respectively, and the 5-HT1B antagonist GR127935 neither substituted for AMPH nor affected the discriminative cue of AMPH; however, when RU24969 or CP94253 were administrated in combination with AMPH, they increased the discriminative cue of AMPH. This effect was reversed by the administration of 5-HT1B antagonist GR127935. These data suggest that 5-HT1B receptors play a modulatory role in the discriminative cue of AMPH.  相似文献   

19.
Aripiprazole has made a significant contribution to the treatment of schizophrenia and related disorders. It has improved its safety and tolerability profiles, and these effects have been attributed to its pharmacological profile at the serotonin 5-HT and dopamine D(2) receptors. To discover compounds that have a similar pharmacological profile, we introduced a generic single-cell-based calcium imaging assay that standardizes the readouts from various assays used in previous studies on aripiprazole. In the present assay, the efficacy and potency of known ligands of serotonin 5-HT(1A), 5-HT(2A), 5-HT(2C), 5-HT(7) and dopamine D(2L) receptors were comparable to those found in previous studies using a variety of readouts. The developed assay was also able to reproduce the partial agonist activity, the low intrinsic activity and the selective activation of aripiprazole at the dopamine D(2L) receptors. Under identical experimental conditions, geissoschizine methyl ether (GM), a plant indole alkaloid, behaved as a partial agonist at the serotonin 5-HT(1A) receptor, a partial agonist/antagonist at the dopamine D(2L) receptor and an antagonist at the serotonin 5-HT(2A), 5-HT(2C) and 5-HT(7) receptors. Interestingly, GM showed a relatively low intrinsic activity and evoked a partial activation response in a subset of cells expressing the dopamine D(2L) receptor; both of these effects were similarly observed for aripiprazole. Although GM is far less potent at the dopamine receptor than aripiprazole at dopamine D(2L) receptors (EC(50)=4.4 μM for GM vs. EC(50)=56 nM for aripiprazole), GM and GM derivatives may comprise a new set of candidates for atypical antipsychotics.  相似文献   

20.
Rationale: Neurosteroid 3α, 5α THP, a positive allosteric modulator of the GABAA receptor Cl ionophore complex, induces catalepsy-like dopamine antagonists, adenosine agonists or GABA agonists. Adenosine and dopamine receptors are co-localized on GABAergic neurons in the striatum and regulate GABA-mediated neurotransmission. Moreover, the antagonistic interactions between specific subtypes of adenosine and dopamine receptors are involved in motor depressant or motor stimulant effects of adenosine receptor agonists or antagonists, respectively. Such interaction may modulate neurosteroid-induced catalepsy. Objective: This study examined the modulation of 3α, 5α THP-induced catalepsy by adenosinergic agents. Methods: Catalepsy induced by 3α, 5α THP (2–8 μg, ICV) was assessed by bar test periodically up to 3 h in mice. Adenosine A1, A2A or A3 receptor agonists or antagonists were given IP or ICV prior to 3α, 5α THP. Some animals received IP dopamine D2 receptor agonist or antagonist 30 min prior to above combination treatment. Results: Adenosine A1, A2A, and A3 receptor agonists potentiated, whereas adenosine A2A receptor antagonists, but not A1 antagonists, reversed 3α, 5α THP-induced catalepsy. These effects of adenosine agonists and antagonists were abolished by prior administration of bromocriptine, the dopamine D2 receptor agonist and spiperone, the dopamine D2 receptor antagonist, respectively. Conclusions: These findings suggest specific adenosine-dopamine receptor interaction in the striatum to modulate 3α, 5α THP-induced catalepsy. Received: 1 November 1998 / Final version: 5 January 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号