首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Francisella tularensis, an intracellular Gram-negative bacterium, is the causative agent of tularemia and a potential bioweapon. Currently, there is no licensed vaccine against this organism. We have characterized the efficacy of a defined F. tularensis subsp. novicida mutant (ΔiglB) as a live attenuated vaccine against pneumonic tularemia. Replication of the iglB mutant (KKF235) in murine macrophages was significantly lower than the wild type novicida strain U112, and exhibited an LD50 greater than 106-fold (>107 CFU vs <10 CFU) in an intranasal challenge model. Mice immunized with KKF235 intranasally or orally induced robust antigen-specific splenic IFN-γ recall responses, as well as the production of systemic and mucosal antibodies. Intranasal vaccination with KKF235 protected mice from subsequent homotypic challenge with U112 as well as heterotypic challenge with F. tularensis subsp. holarctica (LVS). Moreover, protected animals also exhibited minimal pathological changes compared with mock-vaccinated and challenged animals. The protection conferred by KKF235 vaccination was shown to be highly dependent on endogenous IFN-γ production. Most significantly, oral immunization with KKF235 protected mice from a highly lethal subsp. tularensis (SCHU S4) pulmonary challenge. Collectively, these results further suggest the feasibility of using defined pathogenicity island mutants as live vaccine candidates against pneumonic tularemia.  相似文献   

2.
The currently licensed anthrax vaccine has several limitations and its efficacy has been proven only in adults. Effective immunization of newborns and infants requires adequate stimulation of their immune system, which is competent but not fully activated. We explored the use of the licensed live attenuated S. Typhi vaccine strain Ty21a expressing Bacillus anthracis protective antigen [Ty21a(PA)] followed PA-alum as a strategy for immunizing the pediatric population. Newborn mice primed with a single dose of Ty21a(PA) exhibited high frequencies of mucosal IgA-secreting B cells and IFN-γ-secreting T cells during the neonatal period, none of which was detected in newborns immunized with a single dose of PA-alum. Priming with Ty21a(PA) followed by PA-boost resulted in high levels of PA-specific IgG, toxin neutralizing and opsonophagocytic antibodies and increased frequency of bone marrow IgG plasma cells and memory B cells compared with repeated immunization with PA-alum alone. Robust B and T cell responses developed even in the presence of maternal antibodies. The prime-boost protected against systemic and respiratory infection. Mucosal priming with a safe and effective S. Typhi-based anthrax vaccine followed by PA-boost could serve as a practical and effective prophylactic approach to prevent anthrax early in life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号