首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND & AIMS: Heme oxygenase-1 (HO-1) is an antioxidant defense and key cytoprotective enzyme, which is repressed by Bach1. Micro-RNA-122 (miR-122) is specifically expressed and highly abundant in human liver and required for replication of hepatitis C virus (HCV) RNA. This study was to assess whether a specific miR-122 antagomir down-regulates HCV protein replication and up-regulates HO-1. METHODS: We transfected antagomir of miR-122, 2'-O-methyl-mimic miR-122, or nonspecific control antagomir, into wild-type (WT) Huh-7 cells or Huh-7 stably replicating HCV subgenomic protein core through nonstructural protein 3 of HCV (NS3) (CNS3 replicon cells) or NS3-5B (9-13 replicon cells). RESULTS: Antagomir of miR-122 reduced the abundance of HCV RNA by 64% in CNS3 and by 84% in 9-13 cells. Transfection with 2'-O-methlyl-mimic miR-122 increased HCV levels up to 2.5-fold. Antagomir of miR-122 also decreased Bach1 and increased HO-1 mRNA levels in CNS3, 9-13, and WT Huh-7 cells. Increasing HO-1 by silencing Bach1 with 50 nmol/L Bach1-short interfering RNA or by treatment with 5 mumol/L cobalt protoporphyrin or heme (known inducers of HO-1) decreased HCV RNA and protein by 50% in HCV replicon cells. CONCLUSIONS: Down-regulation of HCV replication using an antagomir targeted to miR-122 is effective, specific, and selective. Increasing HO-1, by silencing the Bach1 gene or by treatment with cobalt protoporphyrin or heme, decreases HCV replication. Thus, miR-122 plays an important role in the regulation of HCV replication and HO-1/Bach1 expression in hepatocytes. Down-regulation of miR-122 and up-regulation of HO-1 may be new strategies for anti-HCV intervention and cytoprotection.  相似文献   

2.
3.
4.
RNA interference is a cellular process of gene silencing in which small duplexes of RNA specifically target a homologous sequence for cleavage by cellular ribonucleases. The introduction of approximately 22-nt small interfering RNAs (siRNAs) into mammalian cells can specifically silence cellular mRNAs without induction of the nonspecific IFN responses that are activated by longer RNA duplexes. We investigate in this article whether siRNAs can also silence the expression of the cytoplasmically replicating hepatitis C virus (HCV) RNAs by using a replicon system that supports robust HCV replication, but not the production of infectious virions. We report the efficient silencing of both cellular lamin AC and HCV RNAs in Huh-7 hepatoma cell lines supporting HCV replication. Silencing of HCV RNAs was dose dependent and specific, inasmuch as two HCV variants that differ by 3 nt within the target sequence were only silenced by the exact homologous sequence for each. siRNAs designed to target HCV RNA triggered an exponential decrease in HCV RNA, resulting in an 80-fold decrease in HCV RNA after 4 days. The introduction of siRNAs into cells with established HCV replication cured >98% of these cells of detectable HCV antigen and replication-competent HCV RNAs. These data support the principle of siRNA-based HCV antiviral therapy.  相似文献   

5.
Hepatitis C virus (HCV) infection is a major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Our laboratory has previously demonstrated that high-level HCV replication during acute infection of chimpanzees is associated with the modulation of multiple genes involved in lipid metabolism, and that drugs that regulate cholesterol and fatty acid biosynthesis regulate the replication of the subgenomic HCV replicon in Huh-7 cells. In this article, we demonstrate that Huh-7 cells harboring replicating, full-length HCV RNAs express elevated levels of ATP citrate lyase and acetyl-CoA synthetase genes, both of which are involved in cholesterol and fatty acid biosynthesis. Further, we confirm that the cholesterol-biosynthetic pathway controls HCV RNA replication by regulating the cellular levels of geranylgeranyl pyrophosphate, we demonstrate that the impact of geranylgeranylation depends on the fatty acid content of the cell, and we show that fatty acids can either stimulate or inhibit HCV replication, depending on their degree of saturation. These results illustrate a complex cellular-regulatory network that controls HCV RNA replication, presumably by modulating the trafficking and association of cellular and/or viral proteins with cellular membranes, suggesting that pharmacologic manipulation of these pathways may have a therapeutic effect in chronic HCV infection.  相似文献   

6.
7.
BACKGROUND/AIMS: Small interfering RNAs (siRNAs) are an efficient tool to specifically inhibit gene expression by RNA interference. Since hepatitis C virus (HCV) replicates in the cytoplasm of liver cells without integration into the host genome, RNA-directed antiviral strategies are likely to successfully block the HCV replication cycle. Additional benefit might arise from inhibition of cellular cofactors of HCV replication, such as proteasome alpha-subunit 7 (PSMA7) or Hu antigen R (HuR). METHODS: In this study, we investigated direct and cofactor-mediated inhibition of HCV by a panel of DNA-based retroviral vectors expressing siRNAs against highly conserved HCV sequences or the putative HCV cofactors PSMA7 and HuR. Effects were determined in HCV IRES-mediated translation assays and subgenomic HCV replicon cells. RESULTS: PSMA7- and HuR-directed siRNAs successfully inhibited expression of the endogenous genes, and PSMA7 and HuR silencing significantly diminished HCV replicon RNA and NS5B protein levels. HCV-directed siRNAs substantially inhibited HCV IRES-mediated translation and subgenomic HCV replication. Combinations of PSMA7- and HuR-directed siRNAs with HCV-directed siRNAs revealed additive HCV RNA inhibitory effects in monocistronic replicon cells. CONCLUSIONS: A dual approach of direct- and cofactor-mediated inhibition of HCV replication might avoid selection of mutants and thereby become a powerful strategy against HCV.  相似文献   

8.
Treatment of hepatitis C virus (HCV) infection with interferon (IFN)- alpha and ribavirin combination therapy results in superior clinical antiviral responses than does monotherapy with IFN. To explore the virological basis of the effects of combination therapy, we analyzed the effects of IFN- alpha and ribavirin, singly and in combination, on intracellular HCV replication by use of an HCV replicon system. A new replicon that expressed a selectable chimeric reporter protein comprising firefly luciferase and neomycin phosphotransferase was constructed. The replicon was highly sensitive to IFN-alpha (50% inhibitory concentration [IC(50)], 0.5 U/mL). Therapy with ribavirin showed weak suppression of HCV replication at a lower concentration (IC(50), 126 mu mol/L). The nucleotide sequence diversity of the replicon was increased significantly by therapy with ribavirin, suggesting that error-prone HCV replication was induced by the drug. Importantly, use of a clinically achievable concentration of ribavirin (approximately 10 mu mol/L) in combination with IFN showed strong synergistic inhibitory effects on HCV replication. Our results suggest that the direct effects of ribavirin on the genetic stability of the HCV subgenome and its synergistic action combined, with IFN-alpha, may explain the improved clinical responses to combination therapy.  相似文献   

9.
Cyclosporin A (CsA) inhibits the in vitro replication of HCV subgenomic replicons. We here report on the potent anti-HCV activity of the non-immunosuppressive cyclosporin DEBIO-025. The 50% effective concentration for inhibition of HCV subgenomic replicon replication in Huh 5-2 cells (luciferase assay) by DEBIO-025 was 0.27 +/- 0.03 microg/mL and for CsA 2.8 +/- 0.4 microg/mL. The concentration that reduced the growth of exponentially proliferating Huh 5-2 cells by 50% was greater than 27 microg/mL for DEBIO-025 and 12 +/- 6 microg/mL for CsA, resulting in a selectivity index of approximately 900 for DEBIO-025 and 40 for CsA. The superior activity of DEBIO-025, as compared with CsA, was corroborated by monitoring HCV RNA levels in Huh 5-2, two other HCV subgenomic replicon-containing cell lines, and by monitoring the luciferase signal and viral antigen production in hepatoma cells that had been infected with an infectious full-length chimeric HCV construct. The combination of interferon alpha 2a with either CsA or DEBIO-025 resulted in an additive to slightly synergistic antiviral activity. DEBIO-025, at concentrations of 0.5 and 1 microg/mL, was able to clear cells from their HCV replicon within three to four passages, whereas treatment with CsA at the same concentrations for seven consecutive passages did not result in clearance of the HCV replicon. In conclusion, DEBIO-025, a compound that is also endowed with potent anti-HIV activity and is well tolerated in animals and humans, may form an attractive new option for the therapy of HCV infections, particularly in HCV/HIV co-infected patients.  相似文献   

10.
目的构建含增强型绿色荧光蛋白(EGFP)报告基因的HCV复制子表达载体,并实现其在细胞中的复制表达。方法用分子生物学基因克隆技术对HCV 2a型复制子的基因进行改造,用EGFP基因替代HCV基因组中的包膜基因(E1和E2)体外构建重组单顺反子HCV亚基因组复制子真核表达质粒pcDNA-JFH1-EGFP,经限制性内切酶酶切分析和测序鉴定;脂质体介导转染人肝癌细胞系Huh-7细胞,用荧光显微镜观察EGFP表达,采用半定量RT-PCR方法检测重组复制子的HCV RNA负链,采用Western blot检测HCV NS3蛋白的复制表达,并观察IFN-α对重组质粒表达的HCV RNA复制的抑制作用。结果构建的4个重组质粒酶切分析与预期相符,HCV亚基因复制子表达载体中未发生EGFP和HCV编码区读码框架改变,转染重组载体Huh-7细胞检测到HCV负链及EGFP和HCV NS3蛋白表达。转染后48h,1 000IU/ml和2 000IU/ml IFN-α处理的细胞HCV RNA表达水平分别为未处理组的20.0%和7.6%。结论含EGFP报告基因的单顺反子HCV亚基因组复制子表达载体pcDNA-JFH1-EGFP构建成功,在Huh-7细胞中能有效复制表达,为进一步研究HCV提供了实验平台。  相似文献   

11.
The factors that regulate lymphocyte traffic in chronic hepatitis C (CHC) are not completely defined. Interferon (IFN)-inducible T cell alpha chemoattractant (I-TAC) is a relatively new member of the CXCR3 chemokine ligand family that selectively recruits activated T cells to sites of inflammation. To determine if I-TAC plays a role in CHC, we investigated I-TAC expression in hepatitis C virus (HCV)-infected liver biopsy material. I-TAC messenger RNA (mRNA) levels were significantly increased in HCV-infected liver compared with normal liver, which correlated with both portal and lobular inflammation. I-TAC expression was localized to hepatocytes throughout the liver lobule, with those in close proximity to active areas of inflammation expressing the highest concentration of I-TAC. In vitro, I-TAC mRNA and protein expression was inducible in Huh-7 cells following either IFN-alpha or -gamma stimulation and synergistically with tumor necrosis factor (TNF)-alpha. Furthermore, transfection of Huh-7 cells with either poly(I:C) or HCV RNA representing the HCV subgenomic replicon induced I-TAC mRNA expression. HCV replication was also found to modulate I-TAC expression, with stimulation of Huh-7 cells harboring either the HCV subgenomic or genomic replicon showing significantly increased synergistic effects compared with those previously seen in Huh-7 cells alone with IFN-gamma and TNF-alpha. In conclusion, these results suggest I-TAC, one of the most potent chemoattractants for activated T cells, is produced by hepatocytes in the HCV-infected liver and plays an important role in T cell recruitment and ultimately the pathogenesis of CHC.  相似文献   

12.

Background

Autophagy has been reported to play a pivotal role on the replication of various RNA viruses. In this study, we investigated the role of autophagy on hepatitis C virus (HCV) RNA replication and demonstrated anti-HCV effects of an autophagic proteolysis inhibitor, chloroquine.

Methods

Induction of autophagy was evaluated following the transfection of HCV replicon to Huh-7 cells. Next, we investigated the replication of HCV subgenomic replicon in response to treatment with lysosomal protease inhibitors or pharmacological autophagy inhibitor. The effect on HCV replication was analyzed after transfection with siRNA of ATG5, ATG7 and light-chain (LC)-3 to replicon cells. The antiviral effect of chloroquine and/or interferon-α (IFNα) was evaluated.

Results

The transfection of HCV replicon increased the number of autophagosomes to about twofold over untransfected cells. Pharmacological inhibition of autophagic proteolysis significantly suppressed expression level of HCV replicon. Silencing of autophagy-related genes by siRNA transfection significantly blunted the replication of HCV replicon. Treatment of replicon cells with chloroquine suppressed the replication of the HCV replicon in a dose-dependent manner. Furthermore, combination treatment of chloroquine to IFNα enhanced the antiviral effect of IFNα and prevented re-propagation of HCV replicon. Protein kinase R was activated in cells treated with IFNα but not with chloroquine. Incubation with chloroquine decreased degradation of long-lived protein leucine.

Conclusion

The results of this study suggest that the replication of HCV replicon utilizes machinery involving cellular autophagic proteolysis. The therapy targeted to autophagic proteolysis by using chloroquine may provide a new therapeutic option against chronic hepatitis C.  相似文献   

13.
BACKGROUND AND AIMS: Addition of ribavirin to interferon alfa treatment has substantially increased sustained virologic response rates in patients with chronic hepatitis C (CHC). Ribavirin acts as an RNA virus mutagen in vitro, thereby leading to error catastrophe. However, data in CHC are controversial. METHODS: The nonstructural (NS) 5B quasi-species heterogeneity was analyzed in Huh7 cells harboring a subgenomic hepatitis C virus (HCV) replicon system treated with ribavirin or levovirin. Accordingly, NS5B quasi-species were studied in 14 patients with CHC who received ribavirin alone or combined with pegylated interferon alfa both at baseline and during the first weeks of therapy. Analysis of NS3 quasi-species served as control. RESULTS: Cultivation of HCV replicon cells with ribavirin led to higher NS5B mutational frequencies compared with levovirin-treated or untreated cells (P < .05). Patients receiving ribavirin monotherapy showed higher overall mutational frequencies within NS3 and NS5B during therapy as compared with baseline (P < .01). Proportions of ribavirin-specific G-to-A and C-to-T transitions increased (P < .01). Paired analysis confirmed significant mean increases of mutational frequencies of approximately 5%. Ribavirin serum concentrations were positively correlated with mutational frequency changes (P < .05). In patients receiving combination therapy, a decrease of NS5B mutational frequencies ( approximately 10%) and lower proportions of G-to-A and T-to-C mutations (P < .01) were detectable. CONCLUSIONS: Ribavirin, but not its L-enantiomer levovirin, is a mutagen in HCV replicon cells. In patients with CHC, ribavirin monotherapy exhibits a moderate mutagenic effect early during therapy that is not detectable in combination with pegylated interferon alfa.  相似文献   

14.
Background and Aim:  We have reported previously that synthetic small interfering RNA (siRNA) and DNA-based siRNA expression vectors efficiently and specifically suppress hepatitis C virus (HCV) replication in vitro . In this study, we investigated the effects of the siRNA targeting HCV-RNA in vivo .
Methods:  We constructed recombinant retrovirus and adenovirus expressing short hairpin RNA (shRNA), and transfected into replicon-expressing cells in vitro and transgenic mice in vivo .
Results:  Retroviral transduction of Huh7 cells to express shRNA and subsequent transfection of an HCV replicon into the cells showed that the cells had acquired resistance to HCV replication. Infection of cells expressing the HCV replicon with an adenovirus expressing shRNA resulted in efficient vector delivery and expression of shRNA, leading to suppression of the replicon in the cells by ∼10−3. Intravenous delivery of the adenovirus expressing shRNA into transgenic mice that can be induced to express HCV structural proteins by the Cre/ lox P switching system resulted in specific suppression of virus protein synthesis in the liver.
Conclusion:  Taken together, our results support the feasibility of utilizing gene targeting therapy based on siRNA and/or shRNA expression to counteract HCV replication, which might prove valuable in the treatment of hepatitis C.  相似文献   

15.
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease, which can lead to the development of liver cirrhosis and hepatocellular carcinoma. Current therapy of patients with chronic HCV infection includes treatment with IFNalpha in combination with ribavirin. Because most treated patients do not resolve the infection, alternative treatment is essential. RNA interference (RNAi) is a recently discovered antiviral mechanism present in plants and animals that induces double-stranded RNA degradation. Using a selectable subgenomic HCV replicon cell culture system, we have shown that RNAi can specifically inhibit HCV RNA replication and protein expression in Huh-7 cells that stably replicate the HCV genome, and that this antiviral effect is independent of IFN. These results suggest that RNAi may represent a new approach for the treatment of persistent HCV infection.  相似文献   

16.
Aim: The hepatitis C virus (HCV) strain JFH‐1 was cloned from a patient with fulminant hepatitis. A JFH‐1 subgenomic replicon and full‐length JFH‐1 RNA efficiently replicate in cultured cells. In this study, an infectious, selectable HCV replicon containing full‐length JFH‐1 cDNA was constructed. Methods: The full‐genome replicon was constructed using the neomycin‐resistant gene, EMCV IRES and wild‐type JFH‐1 cDNA. Huh7 cells were transfected with RNA synthesized in vitro, and then cultured with G418. Independent colonies were cloned to establish cell lines that replicate the full‐length HCV replicon. Results: HCV RNA replication was detected in each isolated cell line. HCV proteins and HCV RNA were secreted into culture medium, and exhibited identical density profiles. Interestingly, culture supernatants of the replicon cells were infectious for naïve Huh7 cells. Long‐term culture did not affect replication of replicon RNA in the replicon cells, but it reduced core protein secretion and infectivity of culture supernatant. Culture supernatant obtained after serial passage of replicon virus was infectious for Huh7 cells. Conclusions: Selectable infection was established using HCV replicon containing full‐length genotype 2a JFH‐1 cDNA. This system might be useful for HCV research.  相似文献   

17.
Hepatitis C virus (HCV) subgenomic replicon has been reported to replicate efficiently and continuously in human hepatoma Huh-7 cells. To extend the previous results to other isolated HCV clones, we constructed another HCV replicon from HC-J4, one of chimpanzee-infectious HCV clones. An HCV replicon derived from HC-J4 (RpJ4) consists of HCV-5' untranslated region, neomycin phosphotransferase gene, the encephalomyocarditis virus internal ribosomal entry site, HCV nonstructural region, NS3 to NS5B, and HCV-3' untranslated region. The adaptive mutations known to be required for HCV-Con1 replicon were introduced in RpJ4 replicon, aa.(amino acids number according to HC-J4) 2197 serine to proline, deletion of serine at aa.2201, and aa.2204 serine to isoleucine (RpJ4-S2197P, RpJ4-S22001del, and RpJ4-S2204I). RpJ4/ISDR mutant and RpJ4-S2201del/ISDR mutant were also constructed by introducing six amino acid mutations into the interferon sensitivity determining region (ISDR). After transfection into Huh-7 cells and G418 selection, RpJ4 and RpJ4/ISDR mutants did not produce any colony. In contrast, G418-resistant cells were transduced efficiently by RpJ4-S2197P, RpJ4-S2204I, RpJ4-S2201del and RpJ4-S2201del/ISDR mutant, with the RpJ4-S2201del/ISDR mutant being most efficient. Hence the HCV replicon derived from HC-J4 can replicate efficiently following the introduction of adaptive mutations into the upstream region of ISDR. Moreover, additional introduction of mutations into ISDR further enhanced its replication. These findings demonstrate that the genetic structure of the NS5A domain is critical in HCV replications.  相似文献   

18.
19.
AIM: To examine the effect of hepatitis C virus (HCV) structural mimics of regulatory regions of the genome on HCV replication.METHODS: HCV RNA structural mimics were constructed and tested in a HCV genotype 1b aBB7 replicon,and a Japanese fulminant hepatitis-1 (JFH-1) HCV genotype 2a infection model.All sequences were computer-predicted to adopt stem-loop structures identical to the corresponding elements in full-length viral RNA.Huh7.5 cells bearing the BB7 replicon or infected with JFH-1 virus were trans...  相似文献   

20.
RNA interference represents an exciting new technology that could have therapeutic applications for the treatment of viral infections. Hepatitis C virus (HCV) is a major cause of chronic liver disease and affects >270 million individuals worldwide. The HCV genome is a single-stranded RNA that functions as both a messenger RNA and replication template, making it an attractive target for the study of RNA interference. Double-stranded small interfering RNA (siRNA) molecules designed to target the HCV genome were introduced through electroporation into a human hepatoma cell line (Huh-7) that contained an HCV subgenomic replicon. Two siRNAs dramatically reduced virus-specific protein expression and RNA synthesis to levels that were 90% less than those seen in cells treated with negative control siRNAs. These same siRNAs protected naive Huh-7 cells from challenge with HCV replicon RNA. Treatment of cells with synthetic siRNA was effective >72 h, but the duration of RNA interference could be extended beyond 3 weeks through stable expression of complementary strands of the interfering RNA by using a bicistronic expression vector. These results suggest that a gene-therapeutic approach with siRNA could ultimately be used to treat HCV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号