首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ubiquitous AE2/SLC4A2 anion exchanger is acutely and independently regulated by intracellular (pHi) and extracellular pH (pHo), whereas the closely related AE1/SLC4A1 of the red cell and renal intercalated cell is relatively pH-insensitive. We have investigated the contribution of nonconserved charged residues within the C-terminal transmembrane domain (TMD) of AE2 to regulation by pH through mutation to the corresponding AE1 residues. AE2-mediated Cl/Cl exchange was measured as 4,4′-di-isothiocyanatostilbene-2,2′-disulfonic acid-sensitive 36Cl efflux from Xenopus oocytes by varying pHi at constant pHo, and by varying pHo at near-constant pHi. All mutations of nonconserved charged residues of the AE2 TMD yielded functional protein, but mutations of some conserved charged residues (R789E, R1056A, R1134C) reduced or abolished function. Individual mutation of AE2 TMD residues R921, F922, P1077, and R1107 exhibited reduced pHi sensitivity compared to wt AE2, whereas TMD mutants K1153R, R1155K, R1202L displayed enhanced sensitivity to acidic pHi. In addition, pHo sensitivity was significantly acid- shifted when nonconserved AE2 TMD residues E981, K982, and D1075 were individually converted to the corresponding AE1 residues. These results demonstrate that multiple conserved charged residues are important for basal transport function of AE2 and that certain nonconserved charged residues of the AE2 TMD are essential for wild-type regulation of anion exchange by pHi and pHo. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. A. K. Stewart and C. E. Kurschat have contributed equally to this work.  相似文献   

2.
The effect of the total fraction of human defensins (HNP-1, HNP-2, and HNP-3) on the cytoplasmic Ca2+ content ([Ca2+]i) in the platelets of healthy donors was studied. At concentrations of 0.1–40 μg/ml and an incubation time of 10 min defensins have no effect on [Ca2+]i in platelets labeled with Fura-2AM. However, at higher concentrations (100 μg/ml) they increased platelet [Ca2+]i. In addition, defensins (40 μg/ml) inhibited the Ca2+ increase in platelets induced by thrombin, adenosine diphosphate, and the lipopolysaccharide ofS. typhimurium endotoxin. The most pronounced inhibitory effect was observed in a suspension of thrombin-stimulated platelets. It is shown that the effect of human defensins on the functional activity of platelets is due to the alterations in the intracellular Ca2+. Translated fromByulleten' Eksperimental'noi Biologii i Meditsiny, Vol. 118, N o 12, pp. 600–603, December, 1994  相似文献   

3.
The dynamics of the Ca-response of cardiomyocytes is studied and the efficiency of befol, verapamil, and amiodarone is compared using various experimental models of stimulation of [Ca2+]i. Befol (1–5 μM) is shown to inhibit the caffeine-and strophanthin G-induced rise of [Ca2+]i. Unlike verapamil and amiodarone, befol exhibits no Ca-blocking activity in modeled K-depolarization. It is concluded that the cardiotropic effect of befol is mediated through its primary action on Na+/Ca2+ exchange in cardiomyocytes, while the cardioplegic effect of verapamil and amiodarone is due to their ability to block the slow Ca2+ inward current. Translated fromByulleten' Eksperimental'noi Biologii i Meditsiny, Vol. 121, N o 3, pp. 288–291, March, 1996  相似文献   

4.
Intracellular pH (pHi) and buffering power of type 1 and type 2 fibres from the iliofibularis muscle of the clawed frog,Xenopus laevis, have been measured using pH-sensitive microelectrodes. In phosphate buffered Ringer's solution (extracellular pH 7.25, 20–22°C), mean pHi and its variance were similar in the two fibre types (6.86±SD 0.15±SEM 0.03,n=24, type 1, and 6.86±SD 0.12±SEM 0.03,n=15, type 2). On changing to Ringer's solution containing CO2 and HCO 3 (extracellular pH 7.25, 20–22°C), pHi became more acid in both fibre types. Although H+ ions were not at electrochemical equilibrium across the surface membrane, active transport did not return pHi to its original value during exposure to CO2. The buffering powers calculated from the changes in pHi were not significantly different, 41.6 mmol·l–1 per pH unit (±SEM 4.0,n=17) for type 1 and 49.3 mmol·l per pH unit (±SEM 7.2,n=11) for type 2 fibres. Thus differences in the mechanical properties of these fibre types are not due simply to a difference of the intracellular pH or buffering of resting fibres. Other possible explanations are discussed for the changes in some contractile properties that occur when pHi is acidified.  相似文献   

5.
It is shown that ganglioside GM1 in picomolar concentrations stimulates the phorbol-12-myristate-13-acetate (PMA)-induced generation of active forms of oxygen by neutrophils and peritoneal macrophages. GM1 (10−11 M) is found to enhance the luminol-dependent chemiluminescence induced by 10−8 M PMA in mouse macrophages in comparison with the effect of PMA alone. Translated fromByulleten' Eksperimental'noi Biologii i Meditsiny, Vol. 117, N o 1, pp. 44–46, January, 1994 Presented by A. N. Klimov, Member of the Russian Academy of Medical Sciences  相似文献   

6.
We have studied the regulation of intracellular pH (pHi), and HCO 3 -dependent membrane currents in cultured astrocytes from neonatal rat cerebellum, using the fluorescent pH-sensitive dye 2,7′-bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF) and the whole-cell patch-clamp technique. The steady-state pHi was 6.96 in both nominally CO2/HCO 3 -free, HEPES-buffered saline (6.96 ±0.14;n=48) and in a saline containing 5% CO2/24 mM HCO 3 (6.96±0.18;n=48) (at pH 7.4). Inhibition of the Na+/H+ exchange by amiloride (2 mM) caused a significant decrease of pHi in nominally CO2/HCO 3 -free saline. Addition of CO2/HCO 3 in the continuous presence of amiloride induced a large and fast intracellular alkalinization. Removal of external Na+ also caused a fall of pHi, and addition of CO2/HCO 3 in Na+-free saline evoked a further fall of pHi, while the outward current was reduced or even reversed. The stilbene 4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid (DIDS, 0.3 mM) reduced the pHi recovery from the CO2/HCO 3 -evoked acidification, and blocked the prominent intracellular acidification upon removal of CO2/HCO 3 . Removal of external Cl had little effect on these pHi changes. Lowering the external pH from 7.4 to 6.6 in CO2/HCO 3 -containing saline produced a large and rapid intracellular acidification and inward current, which were both greatly reduced by DIDS and in the absence of CO2/HCO 3 . The results suggest that the CO2/HCO 3 -dependent current is partly due to a reversible bidirectional, electrogenic Na+-HCO 3 cotransporter, which helps to regulate pHi in these cells. In addition, a prominent Na+/H+ exchanger contributes to extrude acid equivalents from these astrocytes to maintain the steadystate pHi.  相似文献   

7.
Intracellular pH (pHi) and viability of gastric surface cells of the rat stomach in response to luminal acidification, and the role of Na+/H+ exchange in maintaining pHi homeostasis were studied in vivo using a fluorescent microscopic technique. pHi was measured during superfusion with buffers of pH 1.2–7.4. When the pH of the superfusate was 7.4, baseline pHi was unchanged. Superfusion with pH 3 buffer rapidly decreased pHi to 6.7, with subsequent recovery to baseline pHi within 15 min despite continuing acid exposure. Superfusion with buffers of pH 1.7 and 1.2 decreased pHi continuously to below 6.2 with no recovery observed. Despite the relentless decline in pHi during superfusion with pH-1.2 and –1.7 solutions, over 75% of the surface cells were still viable, as measured by exclusion of the vital dye propidium iodide. We then examined the role of Na+/H+ exchange in the regulation of pHi. Superfusion with amiloride did not affect recovery of pHi from intracellular acidification induced by a NH4Cl prepulse. Exposure to the potent, lipophilic Na+/H+ exchange inhibitor 5-(N,N-hexaniethylene)-amiloride (HMA), either in the superfusate or by close arterial perfusion, decreased baseline pHi from 7.1 to 6.8. Close arterial perfusion of HMA additionally attenuated the recovery of pHi to baseline during superfusion with pH 3 buffer. We conclude that luminal protons permeate into the cytoplasm of gastric surface cells, where they are eliminated by an Na+/H+ exchanger, most probably localized to the basolateral membrane.  相似文献   

8.
The presence of an H+/K+-ATPase and its contribution to the regulation of intracellular pH (pHi) was investigated in Caco-2 cells. The H+/K+-ATPase was detected immunologically using the monoclonal antibody 5-B6, which was raised against hog gastric H+/K+-ATPase. Cell pH was determined using the pH-sensitive dye 2,7-bis(carboxyethyl)-carboxyfruorescein. Control pHi, measured in HCO 3 -free medium, was 7.62±0.03 (n=27) when cells were cultured for 14 days and decreased to 7.40±0.03 (n=18) after 35 days in culture. Recovery of pHi following a NH 4 + /NH3 pulse could be reduced by either 100 M SCH 28080 or 1 mM amiloride, or by removing extracellular Na+. The inhibitory effects of SCH 28080 and amiloride were additive, demonstrating the involvement of a gastric-like H+/K+-ATPase and a Na+/H+ exchanger in regulating pHi. Recovery rates at pHi 6.8 were not significantly different in cells cultured for up to 21 days, but were significantly lower in cells cultured for 28 and 35 days. This decrease in recovery rate was due to a decrease in the SCH-28080-insensitive recovery, indicating a reduction of the relative importance of Na+/H+ exchange to the recovery. Recovery of pHi was also inhibited by 1 mM N-ethylmaleimide. However, it is unlikely that N-ethylmaleimide inhibited a vacuolar type of H+-ATPase, since bafilomycin A1 had no effect on pHi recovery. In conclusion, Caco-2 cells contain a SCH-28080-sensitive mechanism for regulating pHi, which is most conveniently studied after 28 days in culture, when the relative contribution of a Na+/H+ exchanger to pHi regulation is decreased.  相似文献   

9.
Following the technical approach described in the preceding publication we have investigated if, and how, stimulation of gastric HCl secretion affects the basolateral ion transport properties of oxyntopeptic cells of Rana catesbeiana stomach. To this end microdissected gastric glands were punctured with conventional or H+-sensitive glass microelectrodes and the effects of changing bath ion concentrations on the cell membrane potential (V b) and cell pH (pHi) were determined. Except for a transient alkalinization, histamine (0.5 mmol/l) did not significantly affect V b or pHi. The latter averaged 7.18±0.03 (mean±SEM, n=5) under resting conditions (0.1 mmol/l cimetidine) and 7.21±0.07 (n=5) in the presence of histamine. In addition, neither the initial velocity nor the final steady-state value of the cell alkalinization following a 101 reduction of bath Cl concentration changed in the presence of histamine, and the same holds true for the cell acidification following a 101 reduction of bath HCO3 concentration. These observations indicate that the basolateral Cl/HCO3 exchanger was not stimulated by histamine, and that no other base transporters were activated. By contrast, the V b response to elevation of bath K + concentration decreased, and so did the initial depolarizing V b response to bath Cl substitution, while the secondary hyperpolarizing response increased. The latter observations are compatible with the notion that stimulation by histamine reduced a pH-insensitive part of the basolateral K+ conductance and reduced also the basolateral Cl conductance.  相似文献   

10.
It is demonstrated that pertussis toxin and hydrocortisone potentiate the adenosine-induced rise of the cAMP concentration in lymphocytes. Hydrocortisone elicits an immediate (for the simultaneous addition of adenosine and cortisol) and reversible effect. The effect of pertussis toxin has a latency and is irreversible. Added together, these agents exert no cumulative effect. It is assumed that hydrocortisone and pertussis toxin have the same target — The inhibiting regulatory protein Gi. Translated fromByulleten' Eksperimental'noi Biologii i Meditsiny, Vol. 119, N o 2, pp. 171–173, February, 1995 Presented by P. V. Sergeev, Member of the Russian Academy of Medical Sciences  相似文献   

11.
The xenobiotics methylcholanthrene and sovol (the latter being a mixture of polychlorinated biphenyls), which are monooxygenase system inducers, were tested for their effect on the respiratory burst in rat blood neutrophilsin vivo. The chemiluminescence accompanying this burst was more intensive in the neutrophils of rats treated with methylcholanthrene or sovol than in untreated rats. Observed changes in the 2Amax parameter of the electron paramagnetic resonance spectrum recorded for the spin probe 5-doxyl stearate in the presence of neutrophils indicated that methylcholanthrene and sovol can exert a direct effect on the viscous properties of neutrophil plasma membranesin vivo. These changes were similar in direction to those in the intensity of chemiluminescence during the respiratory burst in neutrophils. Translated fromByulleten' Eksperimental'noi Biologii i Meditsiny, Vol. 120, N o 11, pp. 485–488, November, 1995 Presented by I. P. Ashmarin, Member of the Russian Academy of Medical Sciences  相似文献   

12.
It has been documented that angiotensin II (ANG II) (10−9 M) stimulates proton extrusion via H+-adenosine triphosphatase (ATPase) in proximal tubule cells. In the present study, we investigated the signaling pathways involved in the effects of ANG II on H+-ATPase activity and on the cytosolic free calcium concentration in immortalized rat proximal tubule cells, a permanent cell line derived from rat proximal tubules. The effects of ANG on pHi and [Ca+2]i were assessed by the fluorescent probes, 2′,7-bis (2-carboxyethyl)-5(6)-carboxyfluorescein-acetoxy-methyl ester and fluo-4-acetoxy-methyl ester, in the absence of Na+ to block the Na+/H+ exchanger. In the control situation, the pH recovery rate following intracellular acidification with NH4Cl was 0.073±0.011 pH units/min (n=12). This recovery was significantly increased with ANG II (10−9 M), to 0.12±0.015 pH units/min, n=10. This last effect was also followed by a significant increase of Ca+2 i, from 99.72±1.704 nM (n=21) to 401.23±33.91 nM (n=39). The stimulatory effect of ANG II was blocked in the presence of losartan, an angiotensin II subtype 1 (AT1) receptor antagonist. H89 [protein kinase A (PKA) inhibitor] plus ANG II had no effect on the pH recovery. Staurosporine [protein kinase C (PKC) inhibitor] impaired the effect of ANG II. Phorbol myristate acetate (PKC activator) mimicked in part the stimulatory effect of ANG II, but reduced Ca+2 i. 1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (intracellular calcium chelator) alone reduced the pHi recovery rate below control levels and impaired the effect of ANG II, in a way similar to that of trimethoxy benzoate (a blocker of Ca+2 i mobilization). We conclude that ANG II regulates rat proximal tubule vacuolar H+-ATPase by a PKA-independent mechanism and that PKC and intracellular calcium play a critical role in this regulation.  相似文献   

13.
The dependence of intracellular free calcium ([Ca2+]i) and tension on membrane potential and intracellular pH (pHi) was studied in single isolated fibres of the crayfish claw-opener muscle using ion-selective microelectrodes. Tension (T) was quantified as a percentage of the maximum force, or as force per cross-sectional area (N/cm2). In resting fibres, pHi had a mean value of 7.06. Contractions evoked by an increase extracellular potassium ([K+]0) produced a fall in pHi of 0.01–0.05 units. The lowest measured levels of resting [Ca2+]i corresponded to a pCai (= –log [Ca2+]i) of 6.8. Intracellular Ca2+ transients recorded during K+-induced contractions did not reveal any distinct threshold for force development. Both the resting [Ca2+]i and resting tension were decreased by an intracellular alkalosis and increased by an acidosis. The sensitivity of resting tension to a change in pHi (quantified as –dT/ dpHi) showed a progressive increase during a fall in pHi within the range examined (pHi 6.2–7.5). The pHi/[Ca2+]i and pHi/tension relationships were monotonic throughout the multiphasic pHi change caused by NH4Cl. A fall of 0.5–0.6 units in pHi did not produce a detectable shift in the pCai/tension relationship at low levels of force development. The results indicate that resting [Ca2+]i is slightly higher than the level required for contractile activation. They also show that the dependence of tension on pHi in crayfish muscle fibres is attributable to a direct H+ and Ca2+ interaction at the level of Ca2+ sequestration and/or transport. Finally, the results suggest that in situ, the effect of pH on the Ca2+ sensitivity of the myofibrillar system is not as large as could be expected on the basis of previous work on skinned crustacean muscle fibres.  相似文献   

14.
Peripheral blood mononuclears and neutrophils in recipients of an allogeneic kidney are better stimulated with zymosan and phorbol ester during the first days after transplantation and during allograft rejection. Antithymocytic globulin depresses chemiluminescence of both neutrophils and mononuclears. Antisera to human immunoglobulin suppress chemiluminescence of mononuclears but not of neutrophils. Translated fromByulleten' Eksperimental'noi Biologii i Meditsiny, Vol. 119, N o 5, pp. 523–525, May 1995  相似文献   

15.
It is shown that plasmin in doses of 0.1, 1, or 10 μg/ml did not influence significantly phytohemagglutinin-induced proliferation of mononuclear lymphocytes in a 3-day culture with these cells. Their proliferative response to pokeweed mitogen was stimulated by plasmin in the dose of 10 μg/ml only. Biogenic complexes of plasmin with α2-macroglobulin or α2-antiplasmin induced a moderate reduction of spontaneous proliferation after 3 days of culture, and so did plasmin after 5 days; α2-macroglobulin induced a dose-dependent comitogenic effect with phytohemagglutinin and pokeweed mitogen, while α2-antiplasmin induced a dose-independent comitogenic effect with pokeweed mitogen. Translated fromByulleten' Eksperimental'noi Biologii i Meditsiny, Vol. 118, N o 9, pp. 304–305, September, 1994 Presented by V. A. Trufakin, Member of the Russian Academy of Medical Sciences  相似文献   

16.
To examine the mechanisms of H+ transport in the mid-inner medullary collecting duct of hamsters, we measured the intracellular pH (pHi) in the in vitro perfused tubules by microscopic fluorometry using 2,7-bis(carboxyethyl)-carboxyfluorescein (BCECF) as a fluorescent probe. In the basal condition, pHi was 6.74±0.04 (n=45) in HCO 3 -free modified Ringer solution. Either elimination of Na+ from the bath or addition of amiloride (1 mM) to the bath produced a reversible fall in pHi After acid loading with 25 mM NH4Cl, pHi spontaneously recovered with an initial recovery rate of 0.096±0.012 (n=23) pH unit/min. In the absence of ambient Na+, after removal of NH 4 + , the pHi remained low (5.95±0.10, n=8) and showed no signs of recovery. Subsequent restoration of Na+ only in the lumen had no effect on pHi. However, when Na+ in the bath was returned to the control level, pHi recovered completely. Amiloride (1 mM) in the bath completely inhibited the Na+-dependent pHi recovery. Furthermore, elimination of Na+ from the bath, but not from the lumen, decreased pHi from 6.97±0.07 to 6.44±0.05 (n=12) in the HCO 3 /Ringer solution or 6.70±0.03 to 6.02±0.05 (n=8) in the HCO 3 free solution. pHi spontaneously returned to 6.76±0.08 with a recovery rate of 0.017±0.5 pH unit/min in the presence of CO2/HCO 3 , whereas it did not recover in the absence of CO2/HCO 3 . Although elimination of ambient Na+ depolarized the basolateral membrane voltage (V B) from –78±1.2 to –72 ±0.6 mV (n=5, P<0.01), the level of V B was not sufficient to explain the pHi recovery solely by HCO 3 entry driven by the voltage. These results indicate that (a) pHi of the inner medullary collecting duct is regulated mainly by a Na+/H+ exchanger in the basolateral membranes, (b) no apparent Na+-dependent H+ transport system exists in the luminal membranes and (c) Na+-independent H+ transport may also operate in the presence of CO2/HCO 3 Preliminary data were reported at the Conference on Bicarbonate, Chloride, and Proton Transport Systems, New York, USA, in January 1989  相似文献   

17.
The purpose of this study was to investigate intracytoplasmic pH (pHi) regulation in primary cultures of proximal (PCT) and distal bright (DCTb) convoluted tubules. PCT and DCTb segments were microdissected from rabbit kidney cortex and cultured in a hormonally defined medium. The cultured epithelia were grown on semi-transparent permeable supports. The pHi was determined by video microscopy and digital image processing using 2,7-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF) and measuring the ratio of BCECF fluorescence excited by two successive wavelengths (490 nm and 450 nm). Resting pHi values, determined in bicarbonatefree medium (extracellular pH: 7.40), were 7.25±0.02 (n=23) and 7.17±0.04 (n=30) for cultured PCT and DCTb respecitively. After the acid-loading procedure, cultured proximal cells recovered their pHi by means of the classic Na+/H+ antiporter, sensitive to amiloride and located in the apical membrane only. In cultured DCTb part of the pHi recovery was mediated by a Na+/H+ exchange present in the basolateral side. Moreover, at physiological initial pHi values, chloride removal from the apical solution caused the pHi to increase in the presence of bicarbonate. In acidified cultured DCTb cells, a partial pHi recovery was induced in sodium-free media by 15 mM HCO 3 in the presence of an outward chloride gradient. This pHi change was completely abolished by 4,4-diisothiocyanostilbene 2,2-disulfonic acid (1 mM). These data suggest that DCTb cells possess in apical anion/base exchanger that resembles the Na+-independent Cl/HCO 3 exchanger.  相似文献   

18.
The interaction of angiotensin II (ANG II) and atrial natriuretic peptide (ANP) on intracellular pH (pHi) and calcium ([Ca2+]i) was investigated in T84 cells (a permanent cell line derived from human colon epithelium) using the fluorescent stains BCECF/AM and Fluo 4/AM, respectively. pHi recovery rate mediated by the Na+/H+ exchanger (NHE) was examined following an NH4Cl pulse. Under control conditions pHi recovered at 0.114±0.005 pH units/min (n=35). ANG II (10–12 or 10–9 M) increased this value, whilst ANG II (10–7 M) decreased it. These effects of ANG II were impaired by simultaneous addition of 1 M or 25 M HOE-694, indicating that the stimulatory and inhibitory effects of ANG II on pHi recovery are mediated in part via the NHE1 and NHE2 isoforms. ANG II increased [Ca2+]i concentration-dependently. ANP (10–6 M) or dimethyl-BAPTA/AM (50 M) blocked the effects of ANG II on [Ca2+]i and on the rate of pHi recovery. Thapsigargin (10–5 M) enhanced the effect of ANG II on [Ca2+]i and reversed its stimulatory effect on the rate of pHi recovery to an inhibitory one. External Ca2+-free solution did not affect the effects of ANG II on these parameters. These data suggest that the [Ca2+]i increase induced by ANG II is dependent on intracellular calcium stores. They are compatible with the demonstration of two sites on the C-terminal of the Na+/H+ exchanger, one stimulating Na+/H+ activity by increases of [Ca2+]i in the lower range (at 10–12 or 10–9 M ANG II) and the other inhibiting this activity at high [Ca2+]i levels (at 10–7 M ANG II). ANP or dimethyl-BAPTA/AM, by impairing the pathway mediating the increase in [Ca2+]i, block both the stimulatory and inhibitory effects of ANG II.  相似文献   

19.
Kinetic properties of the Na+-H+ antiport in the acinar cells of the isolated, superfused mouse lacrimal gland were studied by measuring intracellular pH (pHi) and Na+ activity (aNai) with the aid of double-barreled H+- and Na+-selective microelectrodes, respectively. Bicarbonate-free solutions were used throughout. Under untreated control conditions, pHi was 7.12±0.01 and aNai was 6.7±0.6 mmol/l. The cells were acid-loaded by exposure to an NH 4 + solution followed by an Na+-free N-methyl-d-glucamine (NMDG+) solution. Intracellular Na+ and H+ concentrations were manipulated by changing the duration of exposure to the above solutions. Subsequent addition of the standard Na+ solution rapidly increased pHi. This Na+-induced increase in pHi was almost completely inhibited by 0.5 mmol/l amiloride and was associated with a rapid, amiloride-sensitive increase in aNai. The rate of pHi recovery induced by the standard Na+ solution increased in a saturable manner as pHi decreased, and was negligible at pHi 7.2–7.3, indicating an inactivation of the Na+-H+ antiport. The apparent K m for intracellular H+ concentration was 105 nmol/l (pH 6.98). The rate of acid extrusion from the acid-loaded cells increased proportionally to the increase in extracellular pH. Depletion of aNai to less than 1 mmol/l by prolonged exposure to NMDG+ solution significantly increased the rate of Na+-dependent acid extrusion. The rate of acid extrusion increased as the extracellular Na+ concentration increased following Michaelis-Menten kinetics (V max was 0.55 pH/min and the apparent K m was 75 mmol/l at pHi 6.88). The results clearly showed that the Na+-H+ antiport activity is dependent on the chemical potential gradient of both Na+ and H+ ions across the basolateral membrane, and that the antiporter is asymmetric with respect to the substrate affinity of the transport site. The data agree with the current model of activation and inactivation of the antiporter by an intracellular site through changes in the intracellular Na+ and H+ concentrations.  相似文献   

20.
To study the stimulating effect of adrenaline (ADR) on active Na+/K+ transport we used double-barrelled ion-sensitive micro-electrodes to measure the activities of extracellular K+ (aKe) and intracellular Na+ (aNai) in isolated preparations of rat soleus muscle, normal human intercostal muscle and one case of hyperkalemic periodic paralysis (h.p.p.). In these preparations bath-application of ADR (10−6 M) resulted in a membrane hyperpolarization and transient decreasesaKe andaNai which could be blocked by ouabain (3×10−4 M). In the h.p.p. muslce a continuous rise ofaNai induced by elevation ofaKe to 5.2 mM could be stopped by ADR. In addition, the intracellular K+ activity (aKi), the free intracellular Ca2+ concentration (pCai) and intracellular pH (pHi) were monitored in rat soleus muscle. During ADRaKi increased, pHi remained constant and intracellular Ca2+ apparently decreased. In conclusion, our data show that ADR primarily stimulates the Na+/K+ pump in mammalian skeletal muscle. This stimulating action is not impaired in the h.p.p. muscle. Parts of the results have been presented to the German Physiological Society (Ballanyi and Grafe 1987)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号