首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
冠状动脉平滑肌细胞膜上存在许多大电导钙离子激活钾(BKCa)通道,在维持细胞正常生理活动中起重要作用。研究发现当细胞膜去极化或/(和)细胞内钙离子增加时,BKCa通道激活,开放增加,钾离子外流,细胞膜超极化,血管舒张。而在高血压、糖尿病、缺氧、心力衰竭和老化等许多病理情况下,BKCa通道功能发生改变,从而影响对血管功能的调节。本文主要综述近年来BK通道在心血管疾病中的研究进展。  相似文献   

2.
钙离子(Ca^2+)激活钾通道根据电导大小和药理特性的差异可分为3类:即大电导ca^2+激活钾通道(BK)、中电导Ca^2+激活钾通道(IK)和小电导Ca^2+激活钾通道(SK),其中BK通道因其对血管调节作用较大且分布广泛而备受关注^[1].BK通道广泛存在于兴奋和非兴奋细胞,在血管平滑肌细胞(VSMCs)膜上表达尤为丰富,不仅参与细胞膜电位的。  相似文献   

3.
大动脉血管平滑肌细胞膜上存在许多大电导钙激活钾(BK_(Ca))通道,其在维持细胞正常生理活动及血管舒缩功能中起重要作用。研究发现,当细胞膜去极化和(或)细胞内钙离子浓度增加时可激活BK_(Ca)通道,使其开放,细胞内钾离子外流增加,导致细胞膜超极化,阻断电压依赖性钙通道,钙离子内流减少,引起血管平滑肌舒张。在高血压、糖尿病、尿毒症、缺氧、心力衰竭和老化等许多生理、病理情况下,BK_(Ca)通道结构、功能及门控特性发生改变,从而影响其正常生理功能以及对血管舒缩功能的调节。本文主要综述近年来BK_(Ca)通道在大动脉血管平滑肌细胞舒缩调节机制中的研究进展。  相似文献   

4.
高血压是危害人类健康的一大杀手,其发病机制一直是医学界关注和讨论的热点。近年来随着“膜学说”的发展,钾通道受到越来越多的关注和研究。在平滑肌细胞膜上的5种钾通道中,以大电导钙激活钾通道(BKCa)对血管张力和神经元的兴奋性影响最明显。BKCa的增龄变化在高血压形成中的作用已被诸多实验证实,且两者之间可能存在相互促进的关系。本文着重就BKCa的增龄变化对高血压形成和发展的影响作一简要阐述。  相似文献   

5.
L-型钙离子通道、电压门控型钾离子通道和大电导钙激活钾离子通道是冠状动脉平滑肌细胞上的主要离子通道,其中L-型钙离子通道和电压门控型钾离子通道主要调节血管收缩,而大电导钙激活钾离子通道主要调节血管舒张。近年来,细胞电生理研究表明高血压时上述三种离子通道的结构和功能发生异常,表现为高血压时L-型钙离子通道表达上调、电压门控型钾离子通道及电导钙激活钾离子通道表达下降。  相似文献   

6.
一氧化氮(NO)是一种重要的细胞信号分子,参与多种病理生理过程。既往动物实验发现硝普钠(SNP)能通过开放钾通道松弛大鼠气道平滑肌,并且在单细胞水平上SNP(NO的供体)能使支气管哮喘(简称哮喘)大鼠模型的气道平滑肌细胞的大电导依赖性钾通道(BKCa)和电压依赖性钾通道(Kv)开放,但一氧化氮对哮喘患者的气道平滑肌细胞(HASMC)钾通道作用尚不十分清楚。我们采用全细胞膜片钳技术,通过哮喘患者血清致敏培养的人气道平滑肌细胞,观察SNP对BKCa和Kv电流及细胞兴奋性的影响。  相似文献   

7.
在人体血管生理性生长的各个阶段,均存在血管平滑肌正常增殖,而在高血压、动脉粥样硬化等病理过程中,则表现出血管平滑肌的异常增生。在这些病理变化中,血管平滑肌细胞的增生受许多因素的调节,其中钙激活钾通道(KCa)的活性改变是最重要的影响因素之一,KCa已被证实在细胞增殖中扮演重要角色。研究发现,中电导KCa(IKCa)在增生型血管平滑肌中的表达显著增加,一些研究还发现大电导KCa(BKCa)活性改变在血管平滑肌增殖的早期起作用,现对KCa在血管平滑肌增殖中的研究进展做一综述。  相似文献   

8.
内皮依赖性超极化因子是由内皮细胞释放并作用于平滑肌细胞的非一氧化氮、非前列环素途径的血管舒张因子,其作用机制复杂,可通过钙激活钾通道开放、缝隙连接传递电化学信号以及内皮释放等方式作用于平滑肌细胞,最终导致血管舒张。高血压、糖尿病等血管性疾病的发生发展可能与内皮依赖性超极化因子相关,其有望成为心血管疾病治疗的新靶点。  相似文献   

9.
目的研究急性缺氧对大鼠肺动脉平滑肌细胞钾通道活性的影响,以探讨钾通道活性改变在急性低氧性肺血管收缩(HPV)反应中所起的作用。方法应用膜片钳单通道技术,在对称性高钾溶液中,于急性酶分离的大鼠单个肺动脉平滑肌细胞的内面向外式膜片(insideoutpatch)上,记录外向性钾通道电流,并用常氧和低氧的细胞浴液持续灌流肺动脉平滑肌细胞,以观察其对外向性钾通道电流的影响。结果在记录的外向性钾电流中,证实了一种电流为钙、ATP激活性钾通道(K+CaATP);用低氧的细胞浴液灌流肺动脉平滑肌细胞可明显抑制这种钙、ATP激活性钾通道的活性(P<0.01)。而钾通道开放剂卡吗克啉(cromakalim)对低氧所抑制的肺动脉平滑肌细胞钙、ATP激活性钾通道具有明显的激活作用(P<0.01)。结论急性低氧可通过对钙、ATP激活性钾通道的抑制作用,使肺动脉平滑肌细胞膜发生去极化,肺动脉收缩而导致急性肺血管阻力增加,进而产生肺动脉高压。肺动脉平滑肌细胞钙、ATP激活性钾通道活性的降低,可能在低氧性肺血管收缩反应中起着重要的作用。Cromakalim可作为拮抗低氧性肺血管收缩的有效药物之一。  相似文献   

10.
目的探讨大电导钙激活钾通道(BKCa,MaxiK)随大鼠增龄的变化及其与血压水平、肾血管重构及肾小球滤过率(GFR)的关系。方法选取雄性15、21、27周龄自发性高血压大鼠(SHR)及正常大鼠(对照组),每组各6只,测定各组大鼠腹主动脉血压,24h尿肌酐、血肌酐,计算内生肌酐清除率(Ccr)代表GFR。利用膜片钳全细胞模式记录肾动脉血管平滑肌细胞(VSMCs)钾电流、膜电容(Cm),计算BKCa电流值和电流密度。对肾动脉作常规病理切片和HE染色,进行形态学观察及血管内径(LD)、血管中膜厚度(MT)、中膜与内径比(MT/LD)的测量与计算。结果不同周龄SHR腹主动脉平均动脉压(MABP)均明显高于正常大鼠(P〈0.05)。SHR肾动脉VSMCsCm随周龄增加而增大,电流密度则逐渐降低,正常大鼠无此变化。SHR肾动脉LD减小及MT、MT/LD增大各周龄间有统计学意义(P均〈0.05),正常大鼠则无明显变化。SHRGFR随增龄减小显著(P〈0.05),正常大鼠无明显变化。SHR肾动脉VSMCsBKCa电流密度与Cm,腹主动脉MABP,肾动脉血管LD、MT、MT/LD,GFR均高度相关(r分别为-0.7962、-0.7361、0.8275、-0.7923、-0.6492、0.7612)。而正常大鼠肾动脉VSMCs BKCa电流密度与腹主动脉MABP相关(r=-0.4761)。结论BKCa电流和电流密度随周龄增加而衰减,血压水平是衰减程度的重要反应。BKCa电流密度随增龄衰减与高血压肾血管重构及GFR高度相关。  相似文献   

11.
Long-lasting Ca2+ (Ca(L)) channels of the Ca(v)1.2 gene family contribute to the pathogenesis of abnormal arterial tone in hypertension. The physiological stimulus that enhances Ca(L) channel current in the vascular smooth muscle cells (VSMCs) remains unknown. The present study investigated if high blood pressure triggers an upregulation of vascular Ca(L) channel protein. Rat aortae were banded between the origins of the left renal (LR) and right renal (RR) arteries to selectively elevate blood pressure in the proximal RR arteries. After 2 days, the immunoreactivity on Western blots corresponding to the pore-forming alpha1C subunit of the Ca(L) channel was increased 3.25-fold in RR compared with LR arteries. This finding persisted at 28 days and was associated with abnormal Ca2+-dependent tone and higher Ca(L) currents in the VSMCs exposed to high pressure. Based on microelectrode studies indicating that RR arteries were depolarized compared with LR arteries, further studies examined if membrane depolarization, an inherent response of VSMCs to high blood pressure, increased alpha1C expression. Isolated rat renal arteries were cultured for 2 days in low K+ (4 mmol/L) or depolarizing high K+ (30 mmol/L) media. Arteries preconditioned in high K+ showed a 5.47-fold increase in alpha1C expression, enhanced Ca(L) channel current, and elevated Ca2+-dependent tone. These findings provide the first direct evidence that high blood pressure upregulates the Ca(L) channel alpha1C subunit in VSMCs in vivo and suggest that membrane depolarization is a potential signal involved in this interaction that may contribute to the development of abnormal vascular tone.  相似文献   

12.
Insulin and basic fibroblast growth factor (bFGF) play an important role in the pathogenesis of atherosclerosis and have been shown to have vasodilatory effects. Since modulation of vascular ion channels determines membrane potential and thereby influences essential Ca2+-dependent intracellular pathways, we have investigated the effect of insulin and bFGF on Ca2+-activated K+ channels (BKCa) in human umbilical vein endothelial cells (HUVEC) and smooth muscle cells. The latter were obtained from either atherosclerotic plaques (SMCP) or from media segments (SMCM) of human coronary arteries. Using the patch-clamp technique, insulin (100 microU/ml) caused a significant increase in BKCa open-state probability in SMCP and HUVEC, whereas no significant changes were observed in SMCM. Basic FGF (30 ng/ml) revealed a significant increase in BKCa activity in HUVEC and a significant decrease in the BKCa open-state probability in SMCP, but caused no changes in SMCM. Thus, growth factors modulate vascular BKCa in a cell-type specific manner, which may be of importance concerning vasoactive and atherogenic effects of growth factors.  相似文献   

13.
Large-conductance Ca2+-dependent K+ channels (KCa), which are abundant on the sarcolemma of vascular myocytes, provide negative feedback via membrane hyperpolarization that limits Ca2+ entry through L-type Ca2+ channels (ICaL). We hypothesize that local accumulation of subsarcolemmal Ca2+ during ICaL openings amplifies this feedback. Our goal was to demonstrate that Ca2+ entry through voltage-gated ICaL channels can stimulate adjacent KCa channels by a localized interaction in enzymatically isolated rabbit coronary arterial myocytes voltage clamped in whole-cell or in cell-attached patch clamp mode. During slow-voltage-ramp protocols, we identified an outward KCa current that is activated by a subsarcolemmal Ca2+ pool dissociated from bulk cytosolic Ca2+ pool (measured with indo 1) and is dependent on L-type Ca2+ channel activity. Transient activation of unitary KCa channels in cell-attached patches could be detected during long step depolarizations to +40 mV (holding potential, -40 mV; 219 pS in near-symmetrical K+). This local interaction between the channels required the presence of Ca2+ in the pipette solution, was enhanced by the ICaL agonist Bay K 8644, and persisted after impairment of the sarcoplasmic reticulum by incubation with 10 micromol/L ryanodine and 30 micromol/L cyclopiazonic acid for at least 60 minutes. Furthermore, we provide the first direct evidence of simultaneous openings of single KCa (67 pS) and ICaL (3.9 pS) channels in near-physiological conditions, near resting membrane potential. Our data imply a novel sensitive mechanism for regulating resting membrane potential and tone in vascular smooth muscle.  相似文献   

14.
ATP-sensitive K+ channels with a conductance of 30 pS in smooth muscle cells of porcine coronary artery were found to be highly active in the intact cell-attached patch configuration when the pipette contained a physiological concentration of Ca2+ (greater than 10(-4) M). In the inside-out configuration, these channels were activated by extracellular Ca2+ and blocked by cytosolic ATP and glibenclamide. Endothelin applied to the pipette specifically blocked these channels in a concentration-dependent manner in the cell-attached configuration (half-maximal inhibition, 1.3 x 10(-9) M). A K+ channel opener, nicorandil, activated these channels even in the presence of 10(-8) M endothelin. In the whole-cell current-clamp method, the cell membrane was depolarized by endothelin and then repolarized by nicorandil. The membrane depolarization is closely related to contraction of smooth muscle cells. These results suggest that the ATP-sensitive K+ channels are important in controlling the vascular tone of the coronary artery and that endothelin can increase vascular tone by blocking these channels.  相似文献   

15.
Vasodilatory factors produced by the endothelium are critical for the maintenance of normal blood pressure and flow. We hypothesized that endothelial signals are transduced to underlying vascular smooth muscle by vanilloid transient receptor potential (TRPV) channels. TRPV4 message was detected in RNA from cerebral artery smooth muscle cells. In patch-clamp experiments using freshly isolated cerebral myocytes, outwardly rectifying whole-cell currents with properties consistent with those of expressed TRPV4 channels were evoked by the TRPV4 agonist 4alpha-phorbol 12,13-didecanoate (4alpha-PDD) (5 micromol/L) and the endothelium-derived arachidonic acid metabolite 11,12 epoxyeicosatrienoic acid (11,12 EET) (300 nmol/L). Using high-speed laser-scanning confocal microscopy, we found that 11,12 EET increased the frequency of unitary Ca2+ release events (Ca2+ sparks) via ryanodine receptors located on the sarcoplasmic reticulum of cerebral artery smooth muscle cells. EET-induced Ca2+ sparks activated nearby sarcolemmal large-conductance Ca2+-activated K+ (BKCa) channels, measured as an increase in the frequency of transient K+ currents (referred to as "spontaneous transient outward currents" [STOCs]). 11,12 EET-induced increases in Ca2+ spark and STOC frequency were inhibited by lowering external Ca2+ from 2 mmol/L to 10 micromol/L but not by voltage-dependent Ca2+ channel inhibitors, suggesting that these responses require extracellular Ca2+ influx via channels other than voltage-dependent Ca2+ channels. Antisense-mediated suppression of TRPV4 expression in intact cerebral arteries prevented 11,12 EET-induced smooth muscle hyperpolarization and vasodilation. Thus, we conclude that TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels that elicits smooth muscle hyperpolarization and arterial dilation via Ca2+-induced Ca2+ release in response to an endothelial-derived factor.  相似文献   

16.
NO causes pulmonary vasodilation in patients with pulmonary hypertension. In pulmonary arterial smooth muscle cells, the activity of voltage-gated K+ (Kv) channels controls resting membrane potential. In turn, membrane potential is an important regulator of the intracellular free calcium concentration ([Ca2+]i) and pulmonary vascular tone. We used patch clamp methods to determine whether the NO-induced pulmonary vasodilation is mediated by activation of Kv channels. Quantitative fluorescence microscopy was employed to test the effect of NO on the depolarization-induced rise in [Ca2+]i. Blockade of Kv channels by 4-aminopyridine (5 mM) depolarized pulmonary artery myocytes to threshold for initiation of Ca2+ action potentials, and thereby increased [Ca2+]i. NO (approximately 3 microM) and the NO-generating compound sodium nitroprusside (5-10 microM) opened Kv channels in rat pulmonary artery smooth muscle cells. The enhanced K+ currents then hyperpolarized the cells, and blocked Ca(2+)-dependent action potentials, thereby preventing the evoked increases in [Ca2+]i. Nitroprusside also increased the probability of Kv channel opening in excised, outside-out membrane patches. This raises the possibility that NO may act either directly on the channel protein or on a closely associated molecule rather than via soluble guanylate cyclase. In isolated pulmonary arteries, 4-aminopyridine significantly inhibited NO-induced relaxation. We conclude that NO promotes the opening of Kv channels in pulmonary arterial smooth muscle cells. The resulting membrane hyperpolarization, which lowers [Ca2+]i, is apparently one of the mechanisms by which NO induces pulmonary vasodilation.  相似文献   

17.
Hypertension is a perplexing multiorgan disease involving renal primary pathology and enhanced angiotensin II vascular reactivity. Here, we report that a novel form of a local Ca2+ signaling in arterial smooth muscle is linked to the development of angiotensin II-induced hypertension. Long openings and reopenings of L-type Ca2+ channels in arterial myocytes produce stuttering persistent Ca2+ sparklets that increase Ca2+ influx and vascular tone. These stuttering persistent Ca2+ sparklets arise from the molecular interactions between the L-type Ca2+ channel and protein kinase Calpha at only a few subsarcolemmal regions in resistance arteries. We have identified AKAP150 as the key protein, which targets protein kinase Calpha to the L-type Ca2+ channels and thereby enables its regulatory function. Accordingly, AKAP150 knockout mice (AKAP150-/-) were found to lack persistent Ca2+ sparklets and have lower arterial wall intracellular calcium ([Ca2+]i) and decreased myogenic tone. Furthermore, AKAP150-/- mice were hypotensive and did not develop angiotensin II-induced hypertension. We conclude that local control of L-type Ca2+ channel function is regulated by AKAP150-targeted protein kinase C signaling, which controls stuttering persistent Ca2+ influx, vascular tone, and blood pressure under physiological conditions and underlies angiotensin II-dependent hypertension.  相似文献   

18.
Large-conductance potassium (BK) channels in vascular smooth muscle cells (VSMCs) sense both changes in membrane potential and in intracellular Ca(2+) concentration. BK channels may serve as negative feedback regulators of vascular tone by linking membrane depolarization and local increases in intracellular Ca(2+) concentration (Ca(2+) sparks) to repolarizing spontaneous transient outward K(+) currents (STOCs). BK channels are composed of channel-forming BKalpha and auxiliary BKbeta1 subunits, which confer to BK channels an increased sensitivity for changes in membrane potential and Ca(2+). To assess the in vivo functions of this ss subunit, mice with a disrupted BKbeta1 gene were generated. Cerebral artery VSMCs from BKbeta1 -/- mice generated Ca(2+) sparks of normal amplitude and frequency, but STOC frequencies were largely reduced at physiological membrane potentials. Our results indicate that BKbeta1 -/- mice have an abnormal Ca(2+) spark/STOC coupling that is shifted to more depolarized potentials. Thoracic aortic rings from BKbeta1 -/- mice responded to agonist and elevated KCl with a increased contractility. BKbeta1 -/- mice had higher systemic blood pressure than BKbeta1 +/+ mice but responded normally to alpha(1)-adrenergic vasoconstriction and nitric oxide-mediated vasodilation. We propose that the elevated blood pressure in BKbeta1 -/- mice serves to normalize Ca(2+) spark/STOC coupling for regulating myogenic tone. The full text of this article is available at http://www.circresaha.org.  相似文献   

19.
Potassium channels in the peripheral microcirculation   总被引:8,自引:0,他引:8  
Vascular smooth muscle (VSM) cells, endothelial cells (EC), and pericytes that form the walls of vessels in the microcirculation express a diverse array of ion channels that play an important role in the function of these cells and the microcirculation in both health and disease. This brief review focuses on the K+ channels expressed in smooth muscle and endothelial cells in arterioles. Microvascular VSM cells express at least four different classes of K+ channels, including inward-rectifier K+ channels (Kin), ATP-sensitive K+ channels (KATP), voltage-gated K+ channels (Kv), and large conductance Ca2+-activated K+ channels (BKCa). VSM KIR participate in dilation induced by elevated extracellular K+ and may also be activated by C-type natriuretic peptide, a putative endothelium-derived hyperpolarizing factor (EDHF). Vasodilators acting through cAMP or cGMP signaling pathways in VSM may open KATP, Kv, and BKCa, causing membrane hyperpolarization and vasodilation. VSMBKc. may also be activated by epoxides of arachidonic acid (EETs) identified as EDHF in some systems. Conversely, vasoconstrictors may close KATP, Kv, and BKCa through protein kinase C, Rho-kinase, or c-Src pathways and contribute to VSM depolarization and vasoconstriction. At the same time Kv and BKCa act in a negative feedback manner to limit depolarization and prevent vasospasm. Microvascular EC express at least 5 classes of K+ channels, including small (sKCa) and intermediate(IKCa) conductance Ca2+-activated K+ channels, Kin, KATP, and Kv. Both sK and IK are opened by endothelium-dependent vasodilators that increase EC intracellular Ca2+ to cause membrane hyper-polarization that may be conducted through myoendothelial gap junctions to hyperpolarize and relax arteriolar VSM. KIR may serve to amplify sKCa- and IKCa-induced hyperpolarization and allow active transmission of hyperpolarization along EC through gap junctions. EC KIR channels may also be opened by elevated extracellular K+ and participate in K+-induced vasodilation. EC KATP channels may be activated by vasodilators as in VSM. Kv channels may provide a negative feedback mechanism to limit depolarization in some endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号