首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bone substitute materials can induce bone formation in combination with mesenchymal stem cells (MSC). The aim of the current study was to examine ectopic in vivo bone formation with and without MSC on a new resorbable ceramic, called calcium deficient hydroxyapatite (CDHA). Ceramic blocks characterized by a large surface (48 m2/g) were compared with beta-tricalcium phosphate (beta-TCP), hydroxyapatite (HA) ceramics (both ca. 0.5 m2/g surface) and demineralized bone matrix (DBM). Before implantation in the back of SCID mice carriers were freshly loaded with 2x10(5) expanded human MSC or loaded with cells and kept under osteogenic conditions for two weeks in vitro. Culture conditions were kept free of xenogenic supplements. Deposits of osteoid at the margins of ceramic pores occurred independent of osteogenic pre-induction, contained human cells, and appeared in 416 MSC/CDHA composites compared to 216 MSC/beta-TCP composites. ALP activity was significantly higher in samples with MSC versus empty controls (p<0.001). Furthermore, ALP was significantly (p<0.05) higher for all ceramics when compared to the DBM matrix. Compared to previous studies, overall bone formation appeared to be reduced possibly due to the strict human protocol. Ectopic bone formation in the novel biomaterial CDHA varied considerably with the cell pool and was at least equal to beta-TCP blocks.  相似文献   

2.
The in vitro effect of platelet-rich plasma (PRP) on cell loading, proliferation, and osteogenic differentiation of human mesenchymal stem cells (MSC) is assessed on distinct resorbable and synthetic calcium phosphate scaffolds. A high specific surface area scaffold composed of calcium-deficient hydroxyapatite (CDHA; 48m2/g) is compared with one made out of beta-tricalcium phosphate (beta-TCP; surface area <0.5 m2/g). Fivefold concentrated fresh PRP is applied to scaffolds loaded with 2 x 10(5) MSC (n = 5). These constructs are kept in a medium with osteogenic supplements for 3 weeks. The addition of PRP leads to a higher cell loading efficiency of MSC on CDHA (p = 0.0001), that reaches the values of beta-TCP. Proliferation over 21 days is improved by PRP both on CDHA (p = 0.0001) and beta-TCP (p = 0.014) compared to MSC/calcium phosphate composites. Without the addition of PRP, CDHA has a lower cell loading efficiency (p= 0.0001) and proliferation (p= 0.001) than beta-TCP. The ALP activity is higher in the MSC/ceramics groups than in the monolayer controls (p<0.05). The addition of PRP does not significantly affect ALP activity. However, ALP activity varies considerably within the cell donors and different PRP-pools (p = 0.001), while the cell numbers do not vary within these two parameters. PRP generates a positive effect on the loading efficiency of MSC on the high specific surface scaffold CDHA that thereby reaches the loading efficiency of beta-TCP. PRP improved proliferation, but its osteogenic properties on both calcium phosphate scaffolds are weak.  相似文献   

3.
Platelet-rich plasma (PRP) contains a mixture of growth factors that play an important role in wound and fracture healing. While PRP enhanced bone formation by autogenous cancellous bone grafts, its influence in combination with different bone substitutes remained unknown. This study evaluated the effect of PRP on osteogenic differentiation and ectopic bone formation of human mesenchymal stem cells (MSC) in distinct resorbable calcium phosphate ceramics. Calcium-deficient hydroxyapatite (CDHA) blocks with a large specific surface area (48 m2/g) and beta-tricalcium phosphate (beta-TCP) with a low specific surface area (<0.5 m2/g) were loaded with 2 x 10(5) bone marrow-derived MSC. Half of the specimens were treated with 5-fold concentrated PRP. Biocomposites were implanted subcutaneously into SCID mice or kept under osteogenic culture conditions for 2 weeks before implantation. The addition of PRP increased the specific alkaline phosphatase (ALP) activity (p = 0.012) in undifferentiated MSC/CDHA composites but not in MSC/beta-TCP composites. Osteogenic preinduction was ineffective for CDHA and reduced ALP activity of beta-TCP composites significantly at explantation. Ectopic bone formation was stronger in MSC/CDHA (7/32) compared to MSC/beta-TCP (2/30) composites, but no influence of PRP was evident. In conclusion, the effect of PRP depended on the type of ceramic and the differentiation status of the MSC, and enhanced ALP activity of MSC on the high surface scaffold CDHA only, but PRP did not improve osteogenesis in our setting.  相似文献   

4.
For tissue engineering of bone, a carrier matrix and efficient cell seeding are desirable. This study analysed the effect of fibrin glue on bone marrow stromal cells (BMSC) adhesion, proliferation (MTS-Test), differentiation (alkaline phosphatase (AP), osteocalcin (OC), ELISA) and compared the results with cells seeded within culture media on a decellularized, xenogenic bone matrix. There was no significant difference regarding cell adhesion. Proliferation after one week was significantly increased without fibrin glue. AP was increased in both groups when compared with porous scaffolds without cells. OC secretion was increased under both seeding conditions. Microscopic investigation of the cells with fibrin-glue showed less cell-cell contacts. This study reveals that cell seeding with medium demonstrates similar adherence rates compared with fibrin glue. Fibrin glue significantly decreases cell proliferation. Cell differentiation with respect to ALP and OC is not affected. Further studies are required to assess the long term and in vivo effects of both methods with respect to BMSC viability and differentiation. Fibrin sealants seem not necessary to achieve cell adherence when using a porous bone matrix.  相似文献   

5.
Wang J  Asou Y  Sekiya I  Sotome S  Orii H  Shinomiya K 《Biomaterials》2006,27(13):2738-2746
To obtain more extensive bone formation in composites of porous ceramics and bone marrow stromal cells (BMSCs), we hypothesized that a low-pressure system would serve to facilitate the perfusion of larger number of BMSCs into the porous scaffold, enhancing bone formation within the composites. After culturing BMSCs in osteogenic medium, porous blocks of beta-tricalcium phosphate (beta-TCP) were soaked in the cell suspension. Composites of the block and BMSCs were put immediately into a vacuum desiccator. Low pressure was applied to the low pressure group, while controls were left at atmospheric pressure. Composites were incubated in vitro or subcutaneously implanted into syngeneic rats, then analyzed biologically and histologically. In the in vitro group, cell suspension volume, cell seeding efficiency, alkaline phosphatase (ALP) activity, and DNA content in the beta-TCP blocks were significantly higher in low pressure group than in the controls. Scanning electron microscopy (SEM) demonstrated that a greater number of cells covered the central parts of the composites in the low pressure group. ALP activity in the composites was increased at 3 and 6 weeks after implantation into rats. Histomorphometric analysis revealed more uniform and extensive bone formation in the low pressure group than in the controls. The application of low pressure during the seeding of BMSCs in perfusing medium into a porous scaffold is useful for tissue-engineered bone formation.  相似文献   

6.
Tissue engineering has been used to enhance the utility of biomaterials for clinical bone repair by the incorporation of an osteogenic cell source into a scaffold followed by the in vitro promotion of osteogenic differentiation before host implantation. In this study, three-dimensional, partially demineralized bone scaffolds were investigated for their ability to support osteogenic differentiation of human bone marrow stromal cells (BMSCs) in vitro. Dynamic cell seeding resulted in homogeneous cell attachment and infiltration within the matrix and produced significantly higher seeding efficiencies when compared with a conventional static seeding method. Dynamically seeded scaffolds were cultured for 7 and 14 days in the presence of dexamethasone and evaluated on biochemical, molecular, and morphological levels for osteogenic differentiation. Significant elevation in alkaline phosphatase activity was observed versus controls over the 14-day culture, with a transient peak indicative of early mineralization on day 7. On the basis of RT-PCR, dexamethasone-treated samples showed elevations in alkaline phosphatase and osteocalcin expression levels at 7 and 14 days over nontreated controls, while bone sialoprotein was produced only in the presence of dexamethasone at 14 days. Scanning electron microscopy evaluation of dexamethasone-treated samples at 14 days revealed primarily cuboidal cells indicative of mature osteoblasts, in contrast to nontreated controls displaying a majority of cells with a fibroblastic cell morphology. These results demonstrate that partially demineralized bone can be successfully used with human BMSCs to support osteogenic differentiation in vitro. This osseous biomaterial may offer new potential benefits as a tool for clinical bone replacement.  相似文献   

7.
背景:采用低频脉冲电磁场干预骨髓间充质干细胞增殖分化的研究很多,但采用高频(> 300 MHz)脉冲电磁场干预的研究国内未见报道。 目的:观察> 300 MHz高频脉冲电磁场照射能否促进骨髓间充质干细胞增殖,并向成骨分化。 方法:分离培养SD大鼠骨髓间充质干细胞,取第3代细胞随机分为4组:成骨诱导组、成骨诱导+电磁照射组、电磁场照射组、空白对照组。观察各组骨髓间充质干细胞培养过程中细胞形态、数量、总蛋白量等方面变化。 结果与结论:与未经高频脉冲电磁场照射组相比,经高频脉冲电磁场照射后,骨髓间充质干细胞胞体稍有增多,但分化方面区别微弱。电磁场照射组细胞增殖速度、总蛋白含量均低于较空白对照组(P  < 0.05)。但电磁照射组细胞凋亡率较空白对照组增加(P < 0.05)。说明高频脉冲电磁场促进骨髓间充质干细胞的成骨分化趋势不明显,可抑制其增殖,促进其凋亡。  相似文献   

8.
Sun H  Wu C  Dai K  Chang J  Tang T 《Biomaterials》2006,27(33):5651-5657
In the present study, the effects of a calcium magnesium silicate bioactive ceramic (akermanite) on proliferation and osteoblastic differentiation of human bone marrow stromal cells (hBMSC) have been investigated and compared with the classical ceramic (beta-tricalcium phosphate, beta-TCP). Akermanite and beta-TCP disks were seeded with hBMSC and kept in growth medium or osteogenic medium for 10 days. Proliferation and osteoblastic differentiation were evaluated on day 1, 4, 7 and 10. The data from the Alamar Blue assay and lactic acid production assay showed that hBMSC proliferated more significantly on akermanite than on beta-TCP. The analysis of osteoblast-related genes, including alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP) and osteocalcin (OC), indicated that akermanite ceramics enhanced the expression of osteoblast-related genes, but type I collagen (COL I) showed no noticeable difference among akermanite and beta-TCP ceramics. Furthermore, this stimulatory effect was observed not only in osteogenic medium, but also in normal growth medium without osteogenic reagents such as l-ascorbic acid, glycerophosphate and dexamethasone. This result suggests that akermanite can promote osteoblastic differentiation of hBMSC in vitro even without osteogenic reagents, and may be used as a bioactive material for bone regeneration and tissue engineering applications.  相似文献   

9.
Polygonatum sibiricum polysaccharide (PSP) is a traditional Chinese medicine and is widely used to treat many diseases for hundreds of years conventionally. This study was to access the effects of PSP on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in the mice. Cells collected from BALB/C mice in the bone marrow were isolated and cultured with osteogenic medium (OM) with different concentrations of PSP. The proliferation and morphological changes of BMSCs were observed using an inverted microscope. Flow cytometric analysis was used to identify the BMSCs. MTT test was performed to analyze the proliferation and viability of the cells. ELISA was used to determine the expression levels of alkaline phosphatase (ALP), osteocalcin (OC), N-terminal propeptide of type I procollagen (PINP) and bone morphogenetic protein-2 (BMP-2). Immunocytochemistry and western blot were respectively used to determine the expressions of bone sialoprotein (BSP) and SPARC/osteonectin (OSN). The growth curves of the proliferation and differentiation of the Control, OM, 17β-E2 and PSP groups were increased. Compared to the Control and OM groups, the expression levels of ALP, OC, PINP and BMP-2 were significantly increased in the PSP induced group (P<0.05). Immunocytochemistry and western blot showed that BSP and SPARC were increased after induction of PSP compared to the OM group (P<0.05). The study demonstrates that PSP promotes the proliferation and enhances the viability of BMSCs during osteogenic differentiation. Therefore, PSP may be a potential treatment of osteoporosis in the clinic.  相似文献   

10.
A fundamental component of bone tissue engineering is an appropriate scaffold as a carrier for osteogenic cells. The aim of the study was to evaluate the response of human bone marrow stromal cells (BMSC) to scaffolds made of three biodegradable polymers: poly(L-lactide-co-ε-caprolactone) (poly(LLA-co-CL)), poly(L-lactide-co-1,5dioxepan-2-one) (poly(LLA-co-DXO)), and poly(L-lactide) (poly(LLA)). Cellular response was evaluated in terms of attachment, proliferation, and differentiation. SEM disclosed earlier cell attachment and better spreading on poly(LLA-co-CL) and poly(LLA-co-DXO) scaffolds than on poly(LLA) after 1 h. At 24 h and 14 days postseeding, BMSCs had spread well, forming multiple cellular layers on the scaffolds. Cell proliferation was higher on poly(LLA-co-CL) and on poly(LLA-co-DXO) than on poly(LLA) after 1 and 7 days. Cell growth cycles of BMSC were longer on the scaffolds than on coverslips. After 7 and 14 days cultivation on scaffolds, the expression of osteogenic markers such as ALP, Col I, OPN, and Runx2 were stimulated by BMSC, which indicating that poly(LLA-co-DXO), poly(LLA-co-CL), and poly(LLA) could support the osteogenic differentiation of BMSC in vitro. Poly(LLA-co-CL) and poly(LLA-co-DXO) promoted better attachment and growth of BMSC than poly(LLA). BMSC also retained their osteogenic differentiation potential, indicating biological activity of BMSC on the scaffolds. The promising results of this in vitro study indicate that these copolymers warrant further evaluation for potential application in bone tissue engineering.  相似文献   

11.
Calcium phosphates (CaPs) have been investigated as substrates to promote bone formation both in vitro and in vivo. The aim of this study was to examine the proliferation and differentiation of rat bone marrow stromal cells (BMSCs) cultured on three-dimensional (3D) octacalcium phosphate (OCP) crystal assemblies. The cytotoxicity of OCP crystal assemblies was evaluated by measuring the lactate dehydrogenase (LDH) release from BMSCs during 10h of incubation with OCP crystal assemblies. The proliferation of BMSCs on OCP crystal assemblies in medium with or without osteogenic supplements was also investigated using the MTT assay with tissue culture treated plastic (TP) as the control. The tissues formed by BMSCs cultured on OCP crystal assemblies for 24 days were examined following staining with haematoxylin and eosin (H&E), alkaline phosphatase (ALP) and Van Gieson's techniques. The influence of OCP crystal assemblies on mRNA expression of alpha chain of collagen type I (Coll-Ia), ALP and osteocalcin (OC), osteonectin (ON), osteopontin (OP), lumican, Cbfa1, EST317 and EST350 by the BMSCs were also investigated using semi-quantitative RT-PCR. Although OCP crystals were relatively cytotoxic compared with TP, proliferation of BMSCs occurred when seeded onto OCP crystal assemblies. BMSCs cultured on OCP demonstrated similar proliferation rates as found on the control and no significant difference (P<0.05) in the number of cells cultured in medium supplemented with or without osteogenic additives on TP and OCP. The deposition of collagen and ALP were detected in tissue synthesised by BMSCs cultured on OCP crystals assemblies. OCP crystal assemblies down-regulated basal bone ECM proteins, including Coll-Ia, ON and lumican, in the first week of culture, whilst up-regulation of the same genes was observed after 24 days of culture. The observed down-regulation of Cbfa1 on OCP substrates was consistent with the negative effect of OCP crystal assemblies on the genes encoding bone ECM proteins. The up-regulation of OC mRNA expression by OCP crystal assemblies could be related to the requirement for synthesis of more OC proteins to control the concentration of calcium ions in culture medium.  相似文献   

12.
Mineralized and partially or fully demineralized biomaterials derived from bovine bone matrix were evaluated for their ability to support human bone marrow stromal cell (BMSC) osteogenic differentiation in vitro and bone-forming capacity in vivo in order to assess their potential use in clinical tissue-engineering strategies. BMSCs were either seeded on bone-derived scaffolds and cocultured in direct cell-to-scaffold contact, allowing for the exposure of soluble and insoluble matrix-incorporated factors, or cocultured with the scaffold preparations in a transwell system, exposing them to soluble matrix-incorporated factors alone. Osteoblast-related markers, alkaline phosphatase (ALP) activity and bone sialoprotein (BSP) and osteopontin (OP) mRNA expression were evaluated in BMSCs following 14 days of cocultivation in both systems. The data demonstrate that BMSCs from some donors express significantly higher levels of all osteoblast-related markers following cocultivation in direct cell-to-scaffold contact with mineralized scaffolds in comparison to fully demineralized preparations, while BMSCs from other donors display no significant differences in response to various scaffold preparations. In contrast, BMSCs cocultured independently with soluble matrix-incorporated factors derived from each scaffold preparation displayed significantly lower levels of ALP activity and BSP mRNA expression in comparison to untreated controls, while no significant differences were observed in marker levels between cells cocultured similarly with different biomaterial preparations. In addition, BMSCs were seeded directly on mineralized and partially or fully demineralized biomaterials and implanted in subcutaneous sites of athymic mice for 8 weeks to evaluate their in vivo bone-forming capacity. The ex vivo incorporation of BMSCs into all bone-derived scaffold preparations substantially increased the mean extent and frequency of samples containing de novo bone formation over similar nonseeded controls, as determined by histological and histomorphometrical analysis. No statistically significant differences were observed in the extent or frequency of bone formation between various scaffold preparations seeded with BMSCs from different donors. These results demonstrate that the in vivo osteoinductivity of bone-derived scaffolds can be modulated by ex vivo incorporated BMSCs and the extent of scaffold demineralization plays a significant role in influencing in vitro osteogenic differentiation of BMSCs depending on the coculture system and BMSC donor.  相似文献   

13.
Hori Y  Inoue S  Hirano Y  Tabata Y 《Tissue engineering》2004,10(7-8):995-1005
This study is an investigation of the proliferation and differentiation of bone marrow stromal cells (BMSCs) on film substrates with different surface properties. Films of noncharged polymers with several water wettabilities; cell culture plates coated with collagen type I or IV, gelatin, or basic fibroblast growth factor (bFGF); and glass were used. BMSCs isolated from rat bone marrow were cultured on the various substrates in medium with dexamethasone [Dex(+)] or without dexamethasone [Dex(-)] to assess cell proliferation and differentiation. The number of proliferated BMSCs depended on the water wettability of substrates, although the cell number was greater in Dex(-) medium than in Dex(+) medium. Protein-coated substrates exhibited a high proliferation rate compared with noncoated substrates. Alkaline phosphatase (ALP) activity increased with increasing cell number, whereas ALP activity per cell correlated well with cell number. When cultured in Dex(+) medium containing bFGF or on culture plates coated with bFGF, BMSC proliferation tended toward enhancement with an increase in the amount of bFGF added in solution form, whereas it did not depend on the amount of bFGF in coated form. On the other hand, ALP activity and calcium content of BMSCs became maximal with bFGF coated at about 1 x 10(3) to 2 x 10(3) ng, in contrast to bFGF in solution form. Irrespective of the amount of bFGF, ALP activity and calcium content levels for bFGF in coated form were higher than for bFGF in solution form. It is concluded that the type of culture substrate and the manner of addition of bFGF affect the proliferation and differentiation of BMSCs.  相似文献   

14.
Peter SJ  Lu L  Kim DJ  Mikos AG 《Biomaterials》2000,21(12):1207-1213
The objective of this study was to assess the osteoconductivity of a poly(propylene fumarate)/beta-tricalcium phosphate (PPF/beta-TCP) composite in vitro. We examined whether primary rat marrow stromal cells would attach, proliferate, and express differentiated osteoblastic function when seeded on PPF/beta-TCP substrates. Attachment studies showed that a confluent monolayer of cells had adhered to the substrates within an 8 h time frame for marrow stromal cells seeded at confluent numbers. Proliferation and differentiated function of the cells were then investigated for a period of 4 weeks for an initial seeding density of 42,000 cells/cm2. Rapid proliferation during the first 24 h as determined by 3H-thymidine incorporation was mirrored by an initial rapid increase in total cell number by DNA assay. A lower proliferation rate and a gradual increase in cell number persisted for the remainder of the study, resulting in a final cell number of 128,000 cells/cm2. Differentiated cell function was assessed by measuring alkaline phosphatase (ALP) activity and osteocalcin (OC) production throughout the time course. Both markers of osteoblastic differentiation increased significantly over a 4-week period. By day 28, cells grown on PPF/beta-TCP reached a maximal ALP activity of 11 (+/- 1) x 10(-7) micromol/min/cell, while the OC production reached 40 (+/- 1) x 10(-6) ng/cell. These data show that a PPF/beta-TCP composite exhibits in vitro osteoconductivity similar to or better than that of control tissue culture polystyrene.  相似文献   

15.
背景:用骨膜修复骨缺损,已被大量实验所证实。但其来源有限,限制了临床大量应用。因此,应用组织工程学的原理和方法构建人工骨膜,值得进一步探索和研究。 目的:将经成骨诱导的兔骨髓来源的间充质干细胞与猪小肠黏膜下层复合构建组织工程骨膜。 方法:取健康新西兰幼兔骨髓,密度梯度离心法分离骨髓间充质干细胞并进行体外扩增培养、成骨诱导分化及鉴定。将诱导分化的骨髓间充质干细胞与猪小肠黏膜下层复合构建组织工程骨膜。观察细胞在生物材料上附着、生长、增殖及细胞分泌细胞外基质情况。 结果与结论:经成骨诱导的兔骨髓间充质干细胞在猪小肠黏膜下层上黏附、增殖速度加快,并能长入材料的孔隙内,分泌大量的细胞外基质成分,骨膜厚度随复合培养时间的延长而增加,类似生物骨膜。说明将经成骨诱导的骨髓间充质干细胞与小肠黏膜下层复合可以构建具有生理功能的组织工程骨膜。  相似文献   

16.
Tissue engineering approaches using the combination of porous ceramics and bone marrow mesenchymal stem cells (BMSCs) represent a promising bone substitute for repairing large bone defects. Nevertheless, optimal conditions for constructing tissue-engineered bone have yet to be determined. It remains unclear if transplantation of predifferentiated BMSCs is superior to undifferentiated BMSCs or freshly isolated bone marrow mononucleated cells (BMNCs) in terms of new bone formation in vivo. The aim of this study was to investigate the effect of in vitro osteogenic differentiation (β-glycerophosphate, dexamethasone, and l-ascorbic acid) of human BMSCs on the capability to form tissue-engineered bone in unloaded conditions after subcutaneous implantation in nude mice. After isolation from human bone marrow aspirates, BMNCs were divided into three parts: one part was seeded onto porous beta-tricalcium phosphate ceramics immediately and transplanted in a heterotopic nude mice model; two parts were expanded in vitro to passage 2 before cell seeding and in vivo transplantation, either under osteogenic conditions or not. Animals were sacrificed for micro-CT and histological evaluation at 4, 8, 12, 16, and 20 weeks postimplantation. The results showed that BMSCs differentiated into osteo-progenitor cells after induction, as evidenced by the altered cell morphology and elevated alkaline phosphatase activity and calcium deposition, but their clonogenicity, proliferating rate, and seeding efficacy were not significantly affected by osteogenic differentiation, compared with undifferentiated cells. Extensive new bone formed in the pores of all the scaffolds seeded with predifferentiated BMSCs at 4 weeks after implantation, and maintained for 20 weeks. On the contrary, scaffolds containing undifferentiated BMSCs revealed limited bone formation only in 1 out of 6 cases at 8 weeks, and maintained for 4 weeks. For scaffolds with BMNCs, woven bone was observed sporadically only in one case at 8 weeks. Overall, this study suggests that ectopic osteogenesis of cell/scaffold composites is more dependent on the in vitro expansion condition, and osteo-differentiated BMSCs hold the highest potential concerning in vivo bone regeneration.  相似文献   

17.
目的 探讨延缓衰老基因Klotho对骨髓间充质干细胞(BMSCs)增殖和分化的影响。 方法 体外条件下培养大鼠骨髓间充质干细胞,构建分泌型Klotho(sKL)过表达的BMSCs。Western blotting检测细胞及培养基中sKL的表达;MTT法检测细胞增殖能力;Western blotting检测衰老标志物P53、P21蛋白的表达。利用成骨诱导液定向诱导BMSCs向成骨细胞分化,应用碱性磷酸酶(ALP)染色鉴定成骨效果;利用成脂诱导液定向诱导BMSCs向脂肪细胞分化,应用油红O染色鉴定成脂效果。 结果 Western blotting结果显示,sKL组细胞和培养基中sKL蛋白表达显著上调(P<0.05),P53、P21表达显著下调(P<0.05);MTT结果显示,各组细胞吸光度值(A值)差别无显著性(P>0.05),sKL组成骨及成脂能力明显强于对照组(P<0.05)。 结论 sKL增强了大鼠BMSCs的延缓衰老能力,对BMSCs的成骨分化和成脂分化产生一定的促进作用,而对BMSCs的增殖无显著影响。  相似文献   

18.
Human bone marrow stromal cell responses on electrospun silk fibroin mats   总被引:27,自引:0,他引:27  
Fibers with nanoscale diameters provide benefits due to high surface area for biomaterial scaffolds. In this study electrospun silk fibroin-based fibers with average diameter 700+/-50 nm were prepared from aqueous regenerated silkworm silk solutions. Adhesion, spreading and proliferation of human bone marrow stromal cells (BMSCs) on these silk matrices was studied. Scanning electron microscopy (SEM) and MTT analyses demonstrated that the electrospun silk matrices supported BMSC attachment and proliferation over 14 days in culture similar to native silk fibroin (approximately 15 microm fiber diameter) matrices. The ability of electrospun silk matrices to support BMSC attachment, spreading and growth in vitro, combined with a biocompatibility and biodegradable properties of the silk protein matrix, suggest potential use of these biomaterial matrices as scaffolds for tissue engineering.  相似文献   

19.
Liu Q  Cen L  Yin S  Chen L  Liu G  Chang J  Cui L 《Biomaterials》2008,29(36):4792-4799
This study investigated the in vitro effects of akermanite, a new kind of Ca-, Mg-, Si-containing bioceramic, on the attachment, proliferation and osteogenic differentiation of human adipose-derived stem cells (hASCs). Parallel comparison of the cellular behaviors of hASCs on the akermanite was made with those on beta-tricalcium phosphate (beta-TCP). Scanning electron microscope (SEM) observation and fluorescent DiO labeling were carried out to reveal the attachment and growth of hASCs on the two ceramic surfaces, while the quantitative assay of cell proliferation with time was detected by DNA assay. Osteogenic differentiation of hASCs cultured on the akermanite and beta-TCP was assayed by ALP expression and osteocalcin (OCN) deposition, which was further confirmed by Real-time PCR analysis for markers of osteogenic differentiation. It was shown that hASCs attached and spread well on the akermanite as those on beta-TCP, and similar proliferation behaviors of hASCs were observed on the two ceramics. Both of them exhibited good compatibility to hASCs with only minor cytotoxicity as compared with the tissue culture plates. Interestingly, the osteogenic differentiation of hASCs could be enhanced on the akermanite compared with that on the beta-TCP when the culture time was extended to approximately 10 days. Thus, it can be ascertained that akermanite ceramics may serve as a potential scaffold for bone tissue engineering.  相似文献   

20.
采用静电纺丝技术制备胶原/壳聚糖复合纳米纤维膜,研究其作为引导骨再生生物膜的细胞生物相容性及诱导成骨性。以乙酸为溶剂,聚环氧乙烯(PEO)为增塑剂,采用静电纺丝技术制备胶原纳米纤维膜及不同比例的胶原/壳聚糖复合纳米纤维膜(胶原、壳聚糖、PEO质量比5∶1∶4,5∶2∶3,5∶4∶1),电子显微镜观察4种纳米纤维膜的表面形态;将骨髓间充质干细胞种植于胶原纳米纤维膜及表面形态较好的胶原/壳聚糖纳米纤维膜上,通过MTT法、碱性磷酸酶检测、细胞内胶原检测、免疫荧光染色及茜素红染色法观察,研究其细胞生物相容性及诱导成骨性。扫描电子显微镜观察胶原纳米纤维膜及质量比为5∶1∶4的胶原/壳聚糖复合纳米纤维膜的纤维光滑,直径均一。MTT法检测显示,胶原纳米纤维膜和胶原/壳聚糖复合纳米纤维膜均可促进骨髓间充质干细胞的粘附和增殖。细胞培养14 d后,胶原/壳聚糖复合纳米纤维膜上细胞内胶原含量检测为2.02 mg/gport,高于胶原纳米纤维膜组的1.63 mg/gport胶原含量(P<0.05),且胶原/壳聚糖复合纳米纤维膜上细胞内碱性磷酸酶、骨钙素及钙化结节的形成均高于胶原纳米纤维膜组。胶原/壳聚糖复合纳米纤维膜可促进骨髓间充质干细胞的增殖和分化,有望应用于骨再生的研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号