首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of co-administration of either the dopamine precursor, L-Dopa, or the directly-acting, mixed dopamine (DA) agonist, apomorphine, with the alpha-adrenoceptor agonists, clonidine and guanfacine, upon the motor activity of hypoactive L-Dopa-tolerant MPTP-treated C57 BL/6 mice were measured in four experiments. In each case, MPTP (2 x 40 mg/kg, s.c., separated by a 24-hr interval) was administered eight-to-ten weeks before behavioural testing. It was found that clonidine co-administered with L-Dopa (20 mg/kg) restored motor activity in a dose- and parameter-related manner: locomotion and total activity were restored by the 1 mg/kg dose, rearing behaviour by the 0.3 and 1 mg/kg doses. The restorative effects of clonidine (1 mg/kg), co-administered with L-Dopa, were antagonised completely by pretreatment with yohimbine (1 mg/kg), but not by prazosin (1 mg/kg). Guanfacine (1 mg/kg) co-administered with L-Dopa (20 mg/kg) restored locomotor, but not rearing, behaviour in L-Dopa-tolerant MPTP-treated mice. The antikinesic action of guanfacine was antagonised completely by yohimbine (1 mg/kg), but not prazosin (1 mg/kg). Clonidine (1 or 3 mg/kg) co-administered with apomorphine (0.1, 0.3, 1.0 or 3.0 mg/kg), directly-acting DA agonist, did not restore motor behaviour in the hypokinesic L-Dopa-tolerant MPTP-treated mice. Nor did apomorphine, by itself, affect the motor activity of these animals. Neurochemical analysis indicated marked DA, DOPAC and HVA depletions in the striatum, and to a much lesser extent in the frontal cortex, of MPTP-treated mice. The synergistic antiparkinsonian action of clonidine with L-Dopa, but not apomorphine, in hypokinetic MPTP mice for the restoration of responding to a suprathreshold dose of L-Dopa, to which "wearing-off" had been induced previously, is discussed.  相似文献   

2.
Summary. The antiparkinsonian effects of the uncompetitive NMDA antagonists, memantine, amantadine and MK-801, in combination with an acute subthreshold dose of L-Dopa (5 mg/kg) in drug-naive MPTP-treated mice or a suprathreshold dose (20 mg/kg) in L-Dopa tolerant MPTP-treated mice were investigated. In the former case, memantine (locomotion: 3 mg/kg; rearing: 1 mg/kg) and amantadine (locomotion and rearing: 10 mg/kg) injected 60 min before the subthreshold dose of L-Dopa (5 mg/kg), each induced an antiparkinsonian action in hypokinesic MPTP-treated mice that consisted of dose-specific, as opposed to dose-related, elevations of locomotion and rearing behaviour. At the same time, higher doses of memantine reduced further the rearing (10 and 30 mg/kg) and locomotor (30 mg/kg) behaviour of the MPTP-treated mice. MK-801 plus L-Dopa elevated locomotion (0.1 mg/kg) but reduced rearing at the 0.3 mg/kg dose. In control, saline-treated mice, memantine (3, 10 and 30 mg/kg) and MK-801 (0.1 and 0.3 mg/kg) increased locomotor behaviour but decreased rearing behaviour, while amantadine produced no effects. Memantine increased locomotor (1 and 3 mg/kg, s.c.; 1 mg/kg dose restored activity) and rearing (0.3 and 3 mg/kg) activity in the L-Dopa tolerant MPTP-treated mice, whereas amantadine (3 and 10 mg/kg) restored both locomotor (30 mg/kg significantly increased locomotion but did not restore the activity level) and rearing (3 mg/kg only) activity. MK-801 (0.1 and 0.3 mg/kg, s.c.) also increased significantly locomotor activity of L-Dopa-tolerant MPTP mice although the antikinetic action was not reversed, thereby precluding a restorative effect of the compound. These results, demonstrating both a synergistic and a restorative effect of the NMDA antagonists in co-administration with L-Dopa, demonstrate a putative antiparkinson action by these compounds in a functional animal model that incorporates the "wearing-off" complications of L-Dopa administration in the disorder. Received May 29, 2000; accepted September 13, 2000  相似文献   

3.
This experiment attempted to determine the mechanism by which amphetamine reduces locomotor hyperactivity in neonatal rats given brain dopamine (DA)-depleting 6-hydroxydopamine (6-OHDA) injections. Brain DA neurons were destroyed selectively in neonatal rats by intraventricular (i.v.t.) injections of 6-OHDA following desmethylimipramine (DMI) pretreatment. Control rats received DMI and i.v.t. injections of the 6-OHDA vehicle solution. Rats given the 6-OHDA treatment displayed 7-fold increases in locomotor activity compared to controls during days 16–55 of life. Throughout this period, amphetamine (1 mg/kg) reduced locomotor hyperactivity in 6-OHDA-treated rats but increased locomotor activity in control rats. The reduction of hyperactivity caused by amphetamine (0.5–4 mg/kg) was dose-related and was not accompanied by stereotyped behavior. Like amphetamine, methylphenidate (4 mg/kg) reduced locomotor hyperactivity in rats given 6-OHDA. The DA antagonist, spiroperidol (50–200 μg/kg) failed to attenuate the hyperactivity-reducing effect of amphetamine in 6-OHDA-treated rats at doses which abolished the stimulant effect of amphetamine in control rats. However, the serotonin antagonist methysergide (0.5–4 mg/kg) produced dose-dependent antagonism of the effect of amphetamine in 6-OHDA-treated rats. Pretreatment with propranolol (5 mg/kg), phentolamine (5 mg/kg), atropine (0.5 mg/kg) or naloxone (10 mg/kg) failed to alter the reduction in locomotor hyperactivity caused by amphetamine. The serotonin releasing agent, fenfluramine (3 mg/kg), and the serotonin agonist, quipazine (0.5–4 mg/kg), both reduced locomotor hyperactivity in 6-OHDA-treated rats while not altering locomotion in control rats. These results confirm previous observations that amphetamine reduces locomotor hyperactivity caused by neonatal 6-OHDA administration and suggest that this effect is mediated by increased serotonergic neurotransmission.  相似文献   

4.
The effects of co-administration of the dopamine precursor, L-Dopa, with anticonvulsant and putative anticonvulsive agents upon the motor activity of hypoactive MPTP-treated C57 BL/6 mice were measured in six experiments. In each case, MPTP (2 x 40 mg/kg, s.c., separated by a 24-hr interval) was administered four to six weeks prior to behavioural testing. Thus, the effects of these agents combined with either a single acute, subthreshold dose (5 mg/kg, s.c.) of L-Dopa, or, with chronically-administered, suprathreshold doses (20 mg/kg, s.c.) of L-Dopa were studied. In the former, lamotrigine, FCE 26743 and L-Deprenyl, injected 60 min before subthreshold L-Dopa (5 mg/kg), each induced an antiparkinsonian action in MPTP-treated mice that consisted of dose-specific, as opposed to dose-related, elevations of locomotion and rearing behaviour. In the latter, lamotrigine (all three measures of activity at 3 mg/kg), FCE 26743 (locomotion and total activity at 3; rearing at 1 and 3 mg/kg) and L-Deprenyl (locomotion and total activity at 1 and 3mg/kg), but not phenytoin (neither at 1 nor 3 mg/kg), reinstated the motor activity-stimulating effects of the threshold dose of L-Dopa (20 mg/kg) in L-Dopa-tolerant, MPTP-treated mice. Neurochemical analyses confirmed severe DA depletions in MPTP-treated mice. Since neither lamotrigine, FCE 26743 nor L-Deprenyl, nor subthreshold L-Dopa, by themselves increased the motor behaviour of MPTP-treated mice, a synergistic effect of the co-administration is concluded. Further, since the suprathreshold dose of L-Dopa by itself failed to stimulate motor activity in the MPTP mice following chronic (25 daily injections) administrations of the compound, it is suggested that a restorative effect, in combination with lamotrigine, FCE 26743 or L-Deprenyl was evidenced. The potential therapeutic benefits of anticonvulsant or putative anticonvulsive compounds for parkinsonian symptoms are discussed.  相似文献   

5.
Male rat pups were administered 6-hydroxydopamine (6-OHDA, 75 microg, intracisternally, 30 min after desipramine, 25 mg/kg, s.c.) on Days 1 or 2 after birth, or were sham-operated (receiving vehicle). In four experiments, the acute effects of apomorphine, with or without pretreatment with MK-801 (0.03 mg/kg), upon motor activity in test chambers was measured. Acute treatment with apomorphine (0.1 mg/kg) increased locomotor, rearing and total activity markedly compared to both the acute saline administered 6-OHDA rats and the sham-operated rats administered saline. Acute MK-801 (0.03 mg/kg) co-administered shortly before (5 min) apomorphine (0.3 or 1.0 mg/kg) reduced markedly locomotion and total activity in 6-OHDA-treated and sham-operated rats. Rearing behaviour was increased in both the 6-OHDA groups of rats. Acute MK-801 increased activity in the 6-OHDA-treated rats, which was not observed in sham-operated rats. At the 0.3 and 1.0 mg/kg doses of apomorphine, neonatal 6-OHDA treatment increased all three parameters of motor activity. Acute treatment with apomorphine (0.1 mg/kg) induced different effects on the motor activity of 6-OHDA-treated and sham-operated mice. In sham-operated rats apomorphine reduced motor activity during the 1st 30-min period but increased locomotion and total activity, but not rearing, during the 2nd and 3rd periods, whereas in 6-OHDA-treated rats, apomorphine increased locomotor, rearing and total activity markedly. Dopamine loss and serotonin elevation in the striatum and olfactory tubercle were confirmed. The present findings confirm the influence of non-competitive glutamate antagonists in attenuating the behavioural supersensitivity to dopamine antagonists.  相似文献   

6.
Two experiments were performed to investigate the interactive effects of postnatal iron administration and adult MPTP treatment upon the function of C57 Bl/6 mice tested at adult age and to ascertain the possible ameliatory effects of a subthreshold dose of L-Dopa co-administered with different doses of the uncompetitive glutamate antagonist, MK-801. Experiment I indicated that postnatal iron induced marked deficits (hypoactivity), initially, in all three parameters of motor activity at the 5.0 and 7.5 mg/kg doses, and to a lesser extent at the 2.5 mg/kg dose. Later combination with MPTP (2x40 mg/kg) potentiated severely these deficits. During the final period of testing a marked hyperactivity was obtained for the two higher dose groups; this effect was abolished in mice administered MPTP. Experiment II indicated that the deficits in motor activity parameters induced by postnatal iron at 7.5 mg/kg were alleviated in a dose-related manner by the co-administration of the uncompetitive glutamate antagonist, MK-801, with a subthreshold dose of L-Dopa. Postnatal iron (7.5 mg/kg) administration followed by low doses of MPTP (2x20 mg/kg) 3 months later virtually abolished all motor activity. The combination of these compounds increased also the motor activity of mice treated with MPTP (2x20 mg/kg) or mice treated with the combination of postnatal iron and MPTP. The combination of MK-801 with L-Dopa increased locomotor (0.3 mg/kg), rearing (0.1 and 0.3 mg/kg) and total activity (0.3 mg/kg) of iron-treated mice during the initial, hypoactive 30-min period of testing. Locomotor activity (0.1 mg/kg) of MPTP-treated mice was increased too during this period. During the final 30-min period of testing all three parameters of activity (locomotion, 0.3 mg/kg; rearing and total activity, 0.1 and 0.3 mg/kg) were enhanced in the iron-treated mice, locomotion (0.1 mg/kg) and rearing (0.1 mg/kg) in the iron plus MPTP treated mice and only locomotion (0.1 mg/kg) in the MPTP-treated mice. In control mice (vehicle+saline), the higher doses of MK-801 (0.1 and 0.3 mg/kg) enhanced both locomotor and total activity. Analyses of total iron concentration in the frontal cortex and basal ganglia of Fe(2+) and vehicle treated mice indicated that marked elevations basal ganglia iron levels of the 5.0 and 7.5 mg/kg groups, later injected either saline or MPTP, were obtained (Experiment I). In Experiment II, iron concentrations in the basal ganglia were elevated in both the Fe(2+)-sal and Fe(2+)-MPTP groups to 170 and 177% of Veh.-sal values, respectively. There was a significant increase in the frontal cortex of iron-treated mice later administered either saline or MPTP (2x40 mg/kg) in Experiment I as well as in those given iron followed by MPTP (2x20mg/kg) in Experiment II. The implications of iron overload in parkinsonism seem confirmed by the interactive effects of postnatal administration of the metal followed by adult MPTP treatment upon motor activity and the activity-enhancing effects of co-administration of L-Dopa with MK-801.  相似文献   

7.
Recent studies provide evidence that phospholipase A2 (PLA2) may play a role in the development of experimental parkinsonism. In this investigation an attempt was made to determine a possible protective effect of quinacrine (QNC), a PLA2 inhibitor on MPTP as well as 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in rodents. For MPTP studies, adult male mice (C57 BL) were treated with MPTP (30 mg/kg, i.p.) daily for 5 days. QNC was injected i.p. in the doses of 0, 10, 30 and 60 mg/kg daily 30 min before MPTP in four different groups. Two other groups of mice received either vehicle (control) or a high dose of QNC (60 mg/kg). Two hours after the last injection of MPTP, striata were collected for the analysis of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and glutathione (GSH). For the 6-OHDA study, male Wistar rats were infused with 6-OHDA (60 microg) in the right striatum under chloral hydrate anesthesia. The rats in different groups were treated with 0, 5, 15 and 30 mg/kg QNC (i.p.) for 4 days, while first injection was given 30 min before 6-OHDA. On day 5, rats were sacrificed and striata were stored at -80 degrees C. Administration of MPTP or 6-OHDA significantly reduced striatal DA, which was significantly attenuated by QNC. Concomitant treatment with QNC also protected animals against MPTP or 6-OHDA-induced depletion of striatal GSH. Our findings clearly suggest the role of PLA2 in MPTP and 6-OHDA induced neurotoxicity and oxidative stress. However, further studies are warranted to explore the therapeutic potential of PLA2 inhibitors for the treatment of Parkinson's disease.  相似文献   

8.
Male albino rats treated with 6-hydroxydopamine (6-OHDA) became more hyperactive than did vehicle-treated controls when both groups were water-deprived. Rats were treated with vehicle, 150 or 250 micrograms of 6-OHDA intraventricularly, after pretreatment with desmethylimpramine (25 mg/kg) and pargyline (50 mg/kg). Eleven days after these treatments, under ad libitum water conditions, the 6-OHDA-treated rats were slightly hypoactive. After several days of water-deprivation all three groups showed increased mean locomotor activity levels, but rats treated with 6-OHDA showed a much greater increase than did vehicle-treated rats. Under subsequent ad libitum and deprivation conditions, locomotor activity decreased and increased, respectively, in all 3 groups. Again, the changes in activity levels of the 6-OHDA-treated groups were greater than those of the vehicle-treated group. In addition, rats treated with 250 micrograms 6-OHDA seemed to become sensitized to the novel environment of the stabilimeter rather than habituating to it. Dopamine (DA) levels were decreased as a result of the injections of 6-OHDA, and significant correlations were found between DA levels in the caudate-putamen and nucleus accumbens, and locomotor activity levels. These results, as well as those obtained by others, suggest that there is an interaction among DA levels, deprivational states, and locomotor activity levels in rats.  相似文献   

9.
This experiment examined the relationship between the extent of brain dopamine (DA) neuron destruction in the neonatal rat and locomotor hyperactivity during subsequent development. Brain DA neurons were destroyed selectively in neonatal rats by intraventricular injections of 6-hydroxydopamine (6-OHDA) following desmethylimipramine (DMI) pretreatment of both days 3 and 6 of life. Groups of rats received total doses of 50, 70, 100 or 200 microgram of 6HDA or the vehicle solution. Each group of rats given 6-OHDA displayed 3- to 5-fold increases in locomotor activity relative to vehicle control rats on days 16 and 18 of life. Rats given 50 or 70 microgram of 6-OHDA displayed hyperactivity that diminished during days 18-32 of life, approaching the level of activity seen in vehicle-treated rats. It contrast, rats given 100 or 200 microgram of 6-OHDA displayed consistently high levels of locomotion during days 18-32 of life. When tested as adults (days 55-66 of life) only those rats given 200 micrograms of 6-OHDA as neonates continued to display locomotor hyperactivity. The extent of 6-OHDA-induced depletion of DA was proportional to the magnitude of locomotor hyperactivity seen during neonatal life. Brain DA was depleted to the greatest extent in rats which displayed permanent hyperactivity. Regardless of the extent of depletion of brain DA, adult rats given intraventricular injections of 125, 200 or 275 micrograms of 6-OHDA at 48 days of age (following pargyline and DMI pretreatment) displayed no significant change in locomotor activity. These results indicate that the magnitude and duration of locomotor hyperactivity seen following neonatal 6-OHDA injections are correlated with the extent of loss of central DA neurons and suggest that brain DA projections exert important influences on the ontogeny of normal locomotion.  相似文献   

10.
Striatal dopamine (DA) and serotonin (5-HT) functions are altered following DA denervation. Previous research indicates that intrastriatal coadministration of D1 and 5-HT2 receptor agonists synergistically increase locomotor behavior in DA-depleted rats. In the present study, we examined whether striatal 5-HT2 mechanisms also account for supersensitive D1-mediated locomotor behavior following DA denervation. Adult male Sprague-Dawley rats were subjected to bilateral striatal cannulation and then received either intracerebroventricular (i.c.v.) or intrastriatal 6-hydroxydopamine (6-OHDA; 200 microg or 20 microg/side, respectively). After at least 3 weeks, i.c.v.-lesioned rats received intrastriatal infusions of the 5-HT2 receptor antagonist ritanserin (2.0 microg/side) or its vehicle (DMSO) followed by systemic SKF 82958, a D1 agonist (1.0 mg/kg, i.p.) and locomotor activity was monitored. In another experiment, intrastriatal sham and 6-OHDA-lesioned rats received bilateral intrastriatal infusions of ritanserin (2.0 microg/side) or its vehicle (DMSO) followed by intrastriatal infusions of SKF 82958 (5.0 microg/side) or vehicle (0.9% saline). Rats with DA loss demonstrated supersensitive locomotor responses to both systemic and intrastriatal SKF 82958. Ritanserin pretreatment blunted systemic SKF 82958-induced hyperlocomotion and returned intrastriatal D1-mediated hyperactivity to sham lesion levels. The results of this study suggest that striatal 5-HT2 receptors contribute to D1-mediated hyperkinesias resulting from DA loss and suggest a pharmacological target for the alleviation of dyskinesia that can develop with continued DA replacement therapy.  相似文献   

11.
Summary Four experiments were performed to investigate the anti-akinesia effects of combining a sub-threshold dose (5mg/kg, s.c.) of L-Dopa with different doses and combinations of COMT and MAO inhibitors upon the hypokinesia observed in MPTP-treated mice. Ro 40-7592 (1 and 3 mg/kg, s.c.), a novel COMT inhibitor, 60 min before L-Dopa reinstated both locomotion and rearing during a 2-hr interval after L-Dopa in MPTP mice; control mice were unaffected. The combination of Ro 40-7592 (3 mg/kg, s.c.) and pargyline (5 mg/kg, s.c.), a MAO inhibitor, with L-Dopa produced increases in both the peak effect and duration of action indicating a distinct potentiation of the effects of Ro 40-7592 by pargyline. L-Deprenyl, a MAOB inhibitor, together with L-Dopa, restored locomotion and rearing behaviour at all three doses applied (1, 3 and 10 mg/kg, s.c.); in control mice, motor activity was stimulated at the higher doses (3 and 10 mg/kg, s.c.), independent of L-Dopa administration. Combining L-Deprenyl (3 mg/kg, s.c.) with Ro 40-7592 (3 mg/kg, s.c.) one hr before L-Dopa to MPTP mice potentiated the restorative effects of each compound by itself, although no increase in peak effect was obtained. In the control mice, L-Deprenyl plus Ro 40-7592 or L-Deprenyl, by itself, stimulated motor activity following injection of L-Dopa. Marked dopamine (DA) depletions in the striatum of MPTP-treated mice were evident. The present results demonstrate that the effects of the COMT/MAO inhibitors in combination, and in conjunction with L-Dopa (at a dose that was without effect by itself), were well in excess of a summation of their individual effects. It was concluded therefore that a synergism of the restorative, anti-akinesic action of these compounds in MPTP-treated mice could offer a broader therapeutic spectrum in the treatment of Parkinson's disorder.  相似文献   

12.
The restricted localization of dopamine (DA) D3 receptors in the rat cerebellum lobule 9/10 appears to provide a method for investigating the in vivo selectivity of dopaminergic compounds for the D3 receptor subtype. Sprague-Dawley rats implanted with a cannula aimed at lobule 9/10 were microinjected with DA receptor ligands and immediately placed into activity chambers to record their spontaneous locomotor activity for short term (0 to 20 min) and delayed (20 to 40 min) effects. The DA D2/D3 receptor agonists quinelorane (0.1 to 2.5 microg) and 7-OH-DPAT (0.1 to 10 microg) decreased locomotor activity in the first 20 min post-microinjection. In contrast, the DAD1, receptor agonist 6-Br-APB (0.1 to 10 microg) did not affect locomotor activity during this time period, but markedly increased locomotion between 20 and 40 min at the highest dose tested. The DA receptor antagonists haloperidol and raclopride (1 to 10 microg) were also found to reduce locomotor activity. Furthermore, quinelorane and 7-OH-DPAT, but not haloperidol, when microinjected into lobules 1/2 or 6/7 (where no DA D3 receptors have been detected) decreased locomotor scores. These results show that both DA receptor agonists and antagonists decrease locomotor activity when microinjected into lobule 9/10 of the cerebellum. Additionally, DA receptor agonists can reduce spontaneous locomotion when microinjected outside of lobule 9/10. This would suggest that, at least for quinelorane and 7-OH-DPAT, the locomotor decreasing effects following microinjection into cerebellar lobule 9/10 may not be mediated by activity at DA D3 receptors, and that this behavioural assay is unlikely to provide a means for studying the in vivo pharmacology of the DA D3 receptor.  相似文献   

13.
The characteristics of motor function and brain dopamine (DA) metabolism in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice after immersion immobilization stress were investigated. There was no significant difference in locomotor activities between MPTP-treated and saline-treated mice, but locomotor activities of MPTP-treated mice after stress decreased more remarkably than those of saline-treated mice. Immediately after stress, striatal DA concentrations of MPTP-treated mice were significantly lower than those of saline-treated mice. Striatal DA levels improved when 24 h passed after stress. The striatal and cortical (DOPAC + HVA)/DA ratios of MPTP-and stress-treated mice was significantly higher than that of saline-and stress-treated mice. It is due to the decreased DA level and the enhancement of DA turnover that MPTP-treated mice became remarkably akinetic after stress, and that L-DOPA therapy is not effective when the symptoms in patients with Parkinson's disease worsen due to stress.  相似文献   

14.
Dopamine (DA) neurons are implicated in the hyperlocomotion of neonatal 6-hydroxydopamine (6-OHDA)-lesioned rats, an animal model of attention deficit hyperactivity disorder (ADHD). Because serotonin (5-HT) neurons mediate some DA agonist effects, we investigated the possible role of 5-HT neurons on locomotor activity. Rats were treated at 3 days after birth with vehicle or 6-OHDA (134 μg ICV; desipramine pretreatment, 20 mg/kg IP, 1 h), and at 10 weeks with vehicle or 5,7-dihydroxytryptamine (5,7-DHT; 75 μg ICV; pretreatment with desipramine and pargyline, 75 mg/kg IP, 30 min), to destroy DA and/or 5-HT fibers. Intense spontaneous hyperlocomotor activity was produced in rats lesioned with both 6-OHDA and 5,7-DHT. Locomotor time in this group was 550 ± 17 s in a 600 s session, vs. 127 ± 13 s in the 6-OHDA group and <75 s in 5,7-DHT and intact control groups (p < 0.001). Oral activity dose-effect curves established that 5,7-DHT attenuated DA D1 receptor supersensitivity and further sensitized 5-HT2c receptors. Acute treatment with dextroamphetamine (0.25 mg/kg SC) reduced locomotor time in 6-OHDA+5,7-DHT-lesioned rats to 76 ± 37 s (p < 0.001). Striatal DA was reduced by 99% and 5-HT was reduced by 30% (vs. 6-OHDA group). Because combined 6-OHDA (to neonates) and 5,7-DHT (to adults) lesions produce intense hyperlocomotion that is attenuated by amphetamine, we propose this as a new animal model of ADHD. The findings suggest that hyperactivity in ADHD may be due to injury or impairment of both DA and 5-HT neurons.  相似文献   

15.
We investigated the effect of GM1 gangliosides on a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) animal model of Parkinson disease. Five groups of mice (saline, GM1 (30 mg/kg), MPTP, MPTP + GM1 (15 mg/kg), MPTP + GM1 (30 mg/kg] were compared. GM1 was given daily via intraperitoneal injection before and during 13 daily doses of MPTP (30 mg/kg). Mice were tested for locomotion (1) within 2 h of an MPTP dose (to measure reduced motor activity), and (2) within 24 h of an MPTP dose (after animals had recovered and exhibited hyperactivity). We found that mice given GM1 gangliosides exhibited significantly less MPTP-induced behavior. This effect was most evident with the 15 mg/kg GM1 dose. GM1 also appeared to attenuate MPTP-induced neurochemical changes. GM1 effects indicating enhancement of DA turnover and preservation of DA, DOPAC and HVA concentrations in the striatum were found after the 8th MPTP dose. These latter neurochemical changes, however, were transient and not present after the 13th MPTP dose. Our data would suggest that gangliosides may reduce acute MPTP-induced neurotoxicity in mice either through an increase in DA neuron survival and/or the augmentation of striatal DA activity.  相似文献   

16.
The factors contributing to substantia nigra pars compacta (SNc) dopamine (DA) neuron death and striatal DA depletion in Parkinson's disease (PD) are still poorly understood. However, mitochondrial dysfunction, cellular energy depletion and oxidative stress appear to play important roles in the pathogenesis of PD. In view of this, the current study examined the potential of nicotinamide, a form of the B-complex vitamin niacin, to protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced SNc cell loss and striatal DA depletion in two mouse MPTP models that respond differently to putative neuroprotective agents. Adult male C57Bl/6 mice received nicotinamide (125, 250 or 500 mg/kg i.p.) prior to either acute (four injections in 1 day at 2-h intervals) or sub-acute (two injections per day at 4-h intervals for 5 days) MPTP administration. Striatal DA levels, changes in numbers of tyrosine hydroxylase (TH)- and cresyl violet-stained cells in the SNc at 2 and 6 weeks following the last MPTP exposure were analyzed. Nicotinamide administration resulted in a dose-dependent sparing of striatal DA levels and SNc neurons in acute MPTP-treated animals. Only the highest dose of nicotinamide had similar effects in sub-acute MPTP-treated animals. At 6 weeks after MPTP exposure, there was some spontaneous recovery of striatal DA levels in both models: neuroprotective effects were still apparent in acute but not sub-acute MPTP-treated animals. These results show neuroprotective effects of nicotinamide in different mouse Parkinson models associated with different forms of cell death and suggest that nicotinamide may have broad neuroprotective potential in PD.  相似文献   

17.
Summary In Experiment 1, groups of mice were administered either saline or MPTP (2 × 30mg/kg, s.c., separated by a 24-hr interval) 30min after being injected either PBN (15, 50 or 150mg/kg, s.c., low, medium and high doses, respectively) or L-Deprenyl (0.25 or 10.0mg/kg, s.c., low and high doses, respectively), the reference compound used, or saline. Tests of spontaneous motor activity 14 days later indicated that the MPTP-induced hypokinesia for locomotion and rearing was alleviated by prior administration with PBN (50 or 150mg/kg) or L-Deprenyl (10.0mg/kg); lower doses of PBN (15mg/kg) and L-Deprenyl (0.25mg/kg) did not affect the MPTP-induced deficits. Dopamine (DA) concentrations in the striatum confirmed a more severe loss of DA in the MPTP, PBN(15) + MPTP and Deprenyl(0.25) + MPTP groups than in the control group. Significant protection of DA was observed in the PBN(50) + MPTP, PBN(150) + MPTP and Deprenyl(10) + MPTP groups that did not exhibit an hypokinetic behaviour. In Experiment 2, the effects of repeated treatment with PBN (50mg/kg, s.c. over 12 days), post-MPTP, were studied in aged (15-month-old) and young (3-month-old) mice. Subchronic administration of PBN increased substantially the motor activity of old and young mice that had received MPTP. Aged control (saline) mice showed an activity deficit compared to young control mice; this deficit was abolished by repeated PBN treatment. The results suggest that moderate-to-high doses of PBN whether injected in a single dose prior to MPTP or subchronically following MPTP injections may afford protective effects against both the functional changes and DA-loss caused by MPTP treatment, possibly through an antioxidant mechanism.  相似文献   

18.
The systemic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to young (2 months old) and aging (12 months old) C57BL/6 mice (4 x 20 mg/kg i.p. given 12 hr apart) reduced tyrosine hydroxylase (TH)-immunoreactive (IR) fibers in the striatum and reduced dopamine (DA) concentration to 35% of controls in young and 22% of controls in aging mouse brain 5 weeks after administration. Stereotaxic injection of GD1a ganglioside (3 x 100 micrograms, 5 days apart) into the striatum of MPTP-treated young mice restored striatal DA concentration to 52% of the control concentration 5 weeks after MPTP injection. Similar injections of GD1a ganglioside restored striatal DA concentration of MPTP-treated aging mice to only 31% of the control concentration. Immunocytochemical analysis showed significant recovery of TH-IR fibers in the striatum of MPTP-depleted young mice treated with GD1a ganglioside, while TH-IR fibers in the striatum of MPTP-depleted aging mice treated with GD1a ganglioside showed less recovery. We conclude that treatment of MPTP-depleted aging mice with GD1a ganglioside results in more limited recovery in the nigrostriatal DA system than in young mice.  相似文献   

19.
Summary Four experiments were performed to investigate whether or not co-administration of NMDA-antagonists potentiate the effect of an ineffective dose of L-Dopa on motor activity in hypoactive MPTP-treated mice. Motor activity was measured in an automated system recording both locomotion (horizontal) and rearing (vertical) activity. L-Dopa alone, at doses of 10 and 20 mg/kg, but not 5 mg/kg, expressed an anti-akinesia effect in MPTP-treated mice. The non-competitive NMDA-antagonist MK-801 (0.03, 0.1, and 0.3mg/kg) increased by itself both locomotion (0.1 and 0.3 mg/kg) and rearing (0.03 mg/kg) in control (saline-treated) mice whereas no effect was seen in the MPTP-treated mice. Combined with 5 mg/kg L-Dopa, MK-801 (0.1 mg/kg) increased locomotion in MPTP-treated mice. There was no interaction seen between L-Dopa and MK 801 in the control mice. CGP40116 and CGP40117, the active D- and the inactive L-stereoisomer of the competitive NMDA-inhibitor CGP 37849, respectively, were also administered together with 5 mg/kg L-Dopa. Both doses (0.003 and 0.03 mg/kg) of CGP 40116 in contrast to CGP 40117, produced anti-akinesia effect in MPTP-treated mice. CGP 40116 (0.0001 to 0.1 mg/kg) together with 5 mg/kg L-Dopa did not affect behaviour in control mice but produced (0.01 mg/kg CGP 40116 and 5 mg/kg L-Dopa) in the MPTP-treated mice an anti-akinesia effect. Our findings indicate that the non-competitive NMDA-antagonist MK-801, at doses with reported side-effects, only increase locomotion while rearing remained unaltered in MPTP-treated mice when combined with 5 mg/kg L-Dopa. Only the active stereoisomer CGP 40116 in contrast to CGP 40117, at doses far below reported side-effects, dose-dependently modulated the anti-akinesia effect of a subthreshold dose of L-Dopa. Such data thus support the notion that this behavioural modulation was regulated via NMDA-receptors. The synergism between L-Dopa and the competitive NMDA-antagonist CGP40116 has a potential in treatment of Parkinson's disease to reduce the side-effects of doses of L-Dopa that are used today.  相似文献   

20.
Dopamine (DA) plays an important role in a number of behavioral processes and neurological disorders. The intranasal administration of DA provides improved brain penetrability in comparison to systemic administration. We investigated the effects of intranasal administration of DA on the activity of dopaminergic neurons of the mesostriatal and mesolimbic systems and on motor activity. Rats previously implanted with guide-cannulae in the neostriatum (NS) and nucleus accumbens (NAc) were submitted to microdialysis procedure under urethane anesthesia. Vehicle or DA (0.03, 0.3, or 3.0 mg/kg) was administered bilaterally into the nostrils. In a separate study, animals received an intraperitoneal (i.p.) injection of vehicle or DA (0.03, 0.3, 3.0, or 30.0 mg/kg). Samples were collected every 10 min and analyzed for the content of DA and metabolites using high-performance liquid chromatography. For the open field study, rats were given intranasal vehicle or DA (0.03, 0.3, or 3.0 mg/kg) and placed into the field for 30 min. Motor activity (locomotion and rearing) and grooming were analyzed in blocks of 10 min using Ethovision. Intranasal DA (3.0 mg/kg) significantly increased DA levels in the NS and NAc immediately after administration. A comparable effect was obtained only after i.p. administration of 30 mg/kg DA. In the open field, the 3.0 mg/kg dose significantly decreased grooming behavior in the second 10 min interval and significantly increased locomotor activity in the third 10 min interval. The data indicate that intranasal administration of DA can influence dopaminergic functions and motor activity, and has a potential application in the therapy of diseases affecting the dopaminergic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号