首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromosome 22q shows a high frequency of loss of heterozygosity (LOH) in ovarian cancers suggesting the existence of one or more important tumor suppressor genes (TSGs). The tissue inhibitor of metalloproteinase-3 (TIMP-3) is a plausible TSG candidate since it is often encompassed within these regions of LOH. TIMP-3 has not previously been investigated for somatic mutations or promoter hypermethylation in ovarian cancer. We analyzed 65 ovarian cancers for both somatic genetic mutations and TIMP-3 promoter hypermethylation. Screening of all coding exons of TIMP-3 did not reveal any somatic genetic mutations and only 1/65 showed TIMP-3 methylation. Our data indicate that inactivation of TIMP-3 by somatic mutation or promoter hypermethylation is rare in ovarian cancer.  相似文献   

2.
The putative tumour suppressor gene EP300 is located on chromosome 22q13 which is a region showing frequent loss of heterozygosity (LOH) in colon, breast and ovarian cancers. We analysed 203 human breast, colon and ovarian primary tumours and cell lines for somatic mutations in EP300. LOH across the EP300 locus was detected in 38% of colon, 36% of breast, and 49% of ovarian primary tumours but no somatic mutations in EP300 were identified in any primary tumour. Analysis of 17 colon, 11 breast, and 11 ovarian cancer cell lines identified truncating mutations in 4 colon cancer cell lines (HCT116, HT29, LIM2405 and LIM2412). We confirmed the presence of a previously reported frameshift mutation in HCT116 at codon 1699 and identified a second frameshift mutation at codon 1468. Bi-allelic inactivation of EP300 was also detected in LIM2405 that harbours an insC mutation at codon 927 as well an insA mutation at codon 1468. An insA mutation at codon 1468 was identified in HT29 and a CGA>TGA mutation at codon 86 was identified in LIM2412. Both these lines were heterozygous across the EP300 locus and western blot analysis confirmed the presence of an apparently wild-type protein. Our study has established that genetic inactivation of EP300 is rare in primary colorectal, breast and ovarian cancers. In contrast, mutations are common among colorectal cancer cell lines with 4/17 harbouring homozygous or heterozygous mutations. The rarity of EP300 mutations among these tumour types that show a high frequency of LOH across 22q13 may indicate that another gene is the target of the loss. It is possible that bi-allelic inactivation of EP300 is not necessary and that haploinsufficiency is sufficient to promote tumorigenesis. Alternatively, silencing of EP300 may be achieved by epigenetic mechanisms such as promoter methylation.  相似文献   

3.
《Annals of oncology》2016,27(8):1449-1455
The significant activity of poly(ADP-ribose)polymerase (PARP) inhibitors in the treatment of germline BRCA mutation-associated ovarian cancer, which represents ∼15% of HGS cases, has recently led to European Medicines Agency and food and drug administration approval of olaparib. Accumulating evidence suggests that PARP inhibitors may have a wider application in the treatment of sporadic ovarian cancers. Up to 50% of HGS ovarian cancer patients may exhibit homologous recombination deficiency (HRD) through mechanisms including germline BRCA mutations, somatic BRCA mutations, and BRCA promoter methylation. In this review, we discuss the role of somatic BRCA mutations and BRCA methylation in ovarian cancer. There is accumulating evidence for routine somatic BRCA mutation testing, but the relevance of BRCA epigenetic modifications is less clear. We explore the challenges that need to be addressed if the full potential of these markers of HRD is to be utilised in clinical practice.  相似文献   

4.
PURPOSE: A very high frequency of somatic mutations in the transforming growth factor-beta signaling component km23 has been reported in a small series of ovarian cancers (8 of 19, 42%). Functional studies showed that some mutations disrupt km23 function, resulting in aberrant transforming growth factor-beta signaling and presumably enhanced tumorigenicity. If verified, this would elevate mutation of km23 as the single most frequent somatic event in ovarian cancer. EXPERIMENTAL DESIGN: We sought to verify the frequency of silencing of km23 among 104 primary ovarian cancers (49 serous, 18 mucinous, 29 endometrioid/clear cell, and 8 undifferentiated) as well as 72 breast and 61 colorectal cancers by undertaking both somatic mutation and promoter methylation analyses. All four exons of km23 were individually amplified from genomic DNA with primers complementary to surrounding intronic sequences and analyzed by single-stranded conformational polymorphism analysis. RESULTS: Two germ line polymorphisms were identified, but none of the 237 tumors analyzed harbored somatic km23 mutations. In addition, promoter methylation analysis showed that in all cases, the 5' CpG island was unmethylated. CONCLUSIONS: Our data suggest that silencing of km23, either through somatic genetic mutation or promoter hypermethylation, is rare in ovarian, breast, and colorectal cancers.  相似文献   

5.
Wu X  Zhu Z  Li W  Fu X  Su D  Fu L  Zhang Z  Luo A  Sun X  Fu L  Dong JT 《Breast cancer research : BCR》2012,14(3):R73-16

Introduction

The chromodomain helicase DNA binding protein 5 (CHD5) has recently been identified as a tumor suppressor in a mouse model. The CHD5 locus at 1p36 is deleted, and its mutation has been detected in breast cancer. We, therefore, evaluated whether CHD5 plays a role in human breast cancer.

Methods

We screened mutations in 55 tumors, determined promoter methylation in 39 tumors, measured RNA expression in 90 tumors, analyzed protein expression in 289 tumors, and correlated expression changes with clinicopathological characteristics of breast cancer. Functional effects of CHD5 on cell proliferation, invasion and tumorigenesis were also tested.

Results

Although only one mutation was detected, CHD5 mRNA expression was significantly reduced, accompanied by frequent genomic deletion and promoter methylation, in breast cancer. The extent of methylation was significantly associated with reduced mRNA expression, and demethylating treatment restored CHD5 expression. Lower CHD5 mRNA levels correlated with lymph node metastasis (P = 0.026). CHD5 protein expression was also reduced in breast cancer, and lack of CHD5 expression significantly correlated with higher tumor stage, ER/PR-negativity, HER2 positivity, distant metastasis and worse patient survival (P ≤ 0.01). Functionally, ectopic expression of CHD5 in breast cancer cells inhibited cell proliferation and invasion in vitro and tumorigenesis in nude mice. Consistent with the inhibition of invasion, CHD5 down-regulated mesenchymal markers vimentin, N-cadherin and ZEB1 in breast cancer cells.

Conclusion

Down-regulation of CHD5, mediated at least in part by promoter methylation, contributes to the development and progression of human breast cancer.  相似文献   

6.
Previous studies have demonstrated frequent allelic losses of distal chromosome 11q in ovarian carcinomas. The tumor suppressor gene(s) presumably targeted by these losses have not yet been identified. PPP2R1B is a candidate tumor suppressor gene at 11q23 that has recently been shown to be mutated in a subset of colorectal and lung cancers. We evaluated 5 ovarian carcinoma cell lines and 27 primary ovarian carcinomas for allelic losses of 11q23 and for mutations in the open reading frame of PPP2R1B. We also evaluated the primary tumors for allelic losses at 17p13, another chromosomal region frequently affected by losses of heterozygosity (LOH) in ovarian cancers. 11q23 and 17p13 allelic losses were identified in 25% and 74% of the carcinomas, respectively. No mutations within PPP2R1B coding sequences were found. These findings indicate that mutations of the PPP2R1B gene are infrequent in ovarian cancer and that deletions affecting the distal portion of chromosome 11q in ovarian cancer likely target inactivation of other genes.  相似文献   

7.
Germline mutations in tumor suppressor genes, or less frequently oncogenes, have been identified in up to 19 familial cancer syndromes including Li-Fraumeni syndrome, familial paraganglioma, familial adenomatous polyposis coli and breast and ovarian cancers. Multiple genes have been associated with some syndromes as approximately 26 genes have been linked to the development of these familial cancers. With this increased knowledge of the molecular determinants of familial cancer comes an equal expectation for efficient genetic screening programs. We have trialled denaturing high-performance liquid chromatography (dHPLC) as a tool for rapid germline mutation scanning of genes implicated in three familial cancer syndromes — Cowden syndrome (PTEN mutation), multiple endocrine neoplasia type 2 (RET mutation) and von Hippel-Lindau disease (VHL mutation). Thirty-two mutations, including 21 in PTEN, 9 in RET plus a polymorphism, and 2 in VHL, were analyzed using the WAVE DNA fragment analysis system with 100% detection efficiency. In the case of the tumor suppressor gene PTEN, mutations were scattered along most of the gene. However, mutations in the RET proto-oncogene associated with multiple endocrine neoplasia type 2 were limited to specific clusters or “hot spots.” The use of GC-clamped primers to scan for mutations scattered along PTEN exons was shown to greatly enhance the sensitivity of detection of mutant hetero- and homoduplex peaks at a single denaturation temperature compared to fragments generated using non-GC-clamped primers. Thus, when scanning tumor suppressor genes for germline mutation using dHPLC, the incorporation of appropriate GC-clamped primers will likely increase the efficiency of mutation detection.  相似文献   

8.
PURPOSE: Germ-line variants in CHEK2 have been associated with increased breast, thyroid, prostate, kidney, and colorectal cancer risk; however, the prevalence of somatic inactivation of CHEK2 in common cancer types is less clear. The aim of this study was to determine if somatic mutation and/or epigenetic modification play a role in development of sporadic breast, colon, or ovarian cancers. EXPERIMENTAL DESIGN: We undertook combined genetic and epigenetic analysis of CHEK2 in sporadic primary breast, ovarian, and colon tumors [all exhibiting chromosome 22q loss of heterozygosity (LOH)] and cancer cell lines. Expression of Chk2 was assessed by immunohistochemistry in 119 ovarian tumors. RESULTS: Two novel germ-line variants were identified; however, none of the primary tumors harbored somatic mutations. Two CpG clusters previously implicated in CHEK2 silencing were investigated for evidence of hypermethylation. No methylation was detected at the distal CpG island. The proximal CpG cluster was methylated in all tumor and normal DNA, suggesting that this might not represent a true CpG island and is not relevant in the control of CHEK2 expression. Twenty-three percent of ovarian tumors were negative for Chk2 protein by immunohistochemistry, but there was no significant correlation between LOH across the CHEK2 locus and intensity of Chk2 staining (P = 0.12). CONCLUSIONS: LOH across the CHEK2 locus is common in sporadic breast, ovarian, and colorectal cancers, but point mutation or epigenetic inactivation of the retained allele is uncommon. Loss of Chk2 protein in ovarian cancer was not associated with allelic status, suggesting that inactivation does not occur as a consequence of haploinsufficiency.  相似文献   

9.
Lysyl oxidase (LOX) and HRAS-like suppressor (HRASLS) are silenced in human gastric cancers and are reported to have growth-suppressive activities in ras-transformed mouse/rat fibroblasts. Here, we analyzed whether or not LOX and HRASLS are tumor suppressor genes in human gastric cancers. Loss of heterozygosity and promoter methylation of LOX were detected in 33% (9 of 27) and 27% (26 of 96) of gastric cancers, respectively. Biallelic methylation and loss of heterozygosity with promoter methylation were also demonstrated in gastric cancers. Silencing of LOX was also observed in colon, lung, and ovarian cancer cell lines. As for mutations, only one possible somatic mutation was found by analysis of 96 gastric cancer samples and 58 gastric and other cancer cell lines. When LOX was introduced into a gastric cancer cell line, MKN28, in which LOX and HRASLS were silenced, it reduced the number of anchorage-dependent colonies to 57 to 61%, and the number of anchorage-independent colonies to 11 to 23%. Sizes of tumors formed in nude mice were reduced to 19 to 26%. Growth suppression in soft agar assay was also observed in another gastric cancer cell line, KATOIII. On the other hand, neither loss of heterozygosity nor a somatic mutation was detected in HRASLS, and its introduction into MKN28 did not suppress the growth in vitro or in vivo. These data showed that LOX is a tumor suppressor gene inactivated by methylation and loss of heterozygosity in gastric cancers, and possibly also in other cancers.  相似文献   

10.
The tumor suppressor adenomatous polyposis coli (APC) has recently been implicated in parathyroid development. We here report clinical, histopathological and molecular investigations in parathyroid tumors arising in two patients; one familial adenomatous polyposis (FAP) syndrome patient carrying a constitutional APC mutation, and one Lynch syndrome patient demonstrating a germline MLH1 mutation as well as a non-classified, missense alteration of the APC gene. We sequenced the entire APC gene in tumor and constitutional DNA from both cases, assessed the levels of APC promoter 1A and 1B methylation by bisulfite Pyrosequencing analysis and performed immunohistochemistry for APC and parafibromin. In addition, copy number analysis regarding the APC gene on chromosome 5q21-22 was performed using qRT-PCR. Histopathological workup confirmed both tumors as parathyroid adenomas without signs of malignancy or atypia. No somatic mutations or copy number changes for the APC gene were discovered in the tumors; however, in both cases, the APC promoter 1A was hypermethylated while the APC promoter 1B was unmethylated. APC promoter 1B-specific mRNA and total APC mRNA levels were higher than in normal parathyroid samples. Immunohistochemical analyses revealed strong APC protein immunoreactivity and positive parafibromin expression in both parathyroid tumors. Absence of additional somatic APC mutations and copy number changes in addition to the positive APC immunoreactivity obtained suggest that the tumors arose without biallelic inactivation of the APC tumor suppressor gene. The finding of an unmethylated APC promoter 1B and high APC 1B mRNA levels could explain the maintained APC protein expression. Moreover, the findings of positive parafibromin and APC immunoreactivity as well as a low MIB-1 proliferation index and absence of histopathological features of malignancy/atypical adenoma indicate that the parathyroid adenomas arising in these patients did not harbor malignant potential.  相似文献   

11.
12.
Recent studies identified that PARK2 gene was a candidate tumor suppressor gene in colorectal cancers and glioblastomas. The aim of this study was identify whether PARK2 somatic mutation is present in other solid tumor as well. In this study, we analyzed the entire coding sequences of human PARK2 gene in gastric, colorectal, breast, lung and prostate carcinoma by single-strand conformation polymorphism (SSCP) and subsequent direct DNA sequencing. We found two missense mutations (p.Ser9Thr and p.Gly450Val) in colon carcinomas (4.3 %), which were not overlapped with the known PARK2 mutations. Our data suggest that somatic mutational events in PARK2 gene may be rare in colorectal, gastric, prostate, breast and lung carcinomas and may not play an important role in the development of these cancers.  相似文献   

13.
BACKGROUND: Most human female cells contain two X chromosomes, only one of which is active. The process of X-chromosome inactivation, which occurs early in development, is usually random, producing tissues with equal mixtures of cells having active X chromosomes of either maternal or paternal origin. However, nonrandom inactivation may occur in a subset of females. If a tumor suppressor gene were located on the X chromosome and if females with a germline mutation in one copy of that suppressor gene experienced nonrandom X-chromosome inactivation, then some or all of the tissues of such women might lack the wild-type suppressor gene function. This scenario could represent a previously unrecognized mechanism for development of hereditary cancers. We investigated whether such a mechanism might contribute to the development of hereditary ovarian cancers. METHODS: Patterns of X-chromosome inactivation were determined by means of polymerase chain reaction amplification of the CAG-nucleotide repeat of the androgen receptor (AR) gene after methylation-sensitive restriction endonuclease digestion of blood mononuclear cell DNA from patients with invasive (n = 213) or borderline (n = 44) ovarian cancer and control subjects without a personal or family history of cancer (n = 50). BRCA1 gene status was determined by means of single-strand conformational polymorphism analysis and DNA sequencing. All statistical tests were two-sided. RESULTS AND CONCLUSIONS: Among individuals informative for the AR locus, nonrandom X-chromosome inactivation was found in the DNA of 53% of those with invasive cancer versus 28% of those with borderline cancer (P = .005) and 33% of healthy control subjects (P = .016). Nonrandom X-chromosome inactivation can be a heritable trait. Nine of 11 AR-informative carriers of germline BRCA1 mutations demonstrated nonrandom X-chromosome inactivation (.0002 < P < .008, for simultaneous occurrence of both). IMPLICATIONS: Nonrandom X-chromosome inactivation may be a predisposing factor for the development of invasive, but not borderline, ovarian cancer.  相似文献   

14.
There is a clear association between germ-line BRCA1 mutations and inherited ovarian cancer; however, the association between BRCA1 mutations and sporadic ovarian cancer remains ambiguous. The frequency of BRCA1 promoter hypermethylation as an epigenetic means of BRCA1 inactivation was determined for a large, population-based cohort of ovarian cancer patients. BRCA1 promoter hypermethylation was determined by methylation-specific restriction digestion of tumor DNA, followed by Southern blot analysis and confirmed by methylation-specific PCR. BRCA1 promoter hypermethylation was observed in 12 of 98 ovarian tumors. BRCA1 methylation status of the primary tumor was conserved in six recurrent tumors after interim chemotherapy. None of the 12 tumors with BRCA1 promoter hypermethylation demonstrated BRCA1 protein expression by immunohistochemistry. BRCA1 methylation was only seen in ovarian cancer patients without a family history suggestive of a breast/ ovarian cancer syndrome. Therefore, the 12 BRCA1 methylated tumors represented 15% (12 of 81) of the sporadic cancers analyzed in this study. Although the clinical significance of BRCA1 promoter hypermethylation is yet to be determined, promoter hypermethylation may be an alternative to mutation in causing the inactivation of the BRCA1 tumor suppressor gene in sporadic ovarian cancer.  相似文献   

15.
Epigenetic silencing of TCEAL7 (Bex4) in ovarian cancer   总被引:2,自引:0,他引:2  
  相似文献   

16.
Germline mutations are responsible for familial cancer syndromes which account for approximately 5–10% of all types of cancers. These mutations mainly occur at tumor suppressor genes or genome stability genes, such as DNA repair genes. Here we have identified a cancer predisposition family, in which eight members were inflicted with a wide spectrum of cancer including one diagnosed with lung cancer at 22 years old. Sequencing analysis of tumor samples as well as histologically normal specimens identified two germline mutations co-existing in the familial cancer syndrome, the mutation of tumor suppressor gene P53 V157D and mismatch repair gene PMS2 R20Q. We further demonstrate that P53 V157D and/or PMS2 R20Q mutant promotes lung cancer cell proliferation. These two mutants are capable of promoting colony formation in soft agar as well as tumor formation in transgenic drosophila system. Collectively, these data have uncovered the important role of co-existing germline P53 and PMS2 mutations in the familial cancer syndrome development.  相似文献   

17.

Introduction

Phosphatidylinositol 3-kinases (PI3Ks) are a group of lipid kinases that regulate signaling pathways involved in cell proliferation, adhesion, survival, and motility. Even though PIK3CA amplification and somatic mutation have been reported previously in various kinds of human cancers, the genetic change in PIK3CA in human breast cancer has not been clearly identified.

Methods

Fifteen breast cancer cell lines and 92 primary breast tumors (33 with matched normal tissue) were used to check somatic mutation and gene copy number of PIK3CA. For the somatic mutation study, we specifically checked exons 1, 9, and 20, which have been reported to be hot spots in colon cancer. For the analysis of the gene copy number, we used quantitative real-time PCR and fluorescence in situ hybridization. We also treated several breast cancer cells with the PIK3CA inhibitor LY294002 and compared the apoptosis status in cells with and without PIK3CA mutation.

Results

We identified a 20.6% (19 of 92) and 33.3% (5 of 15) PIK3CA somatic mutation frequency in primary breast tumors and cell lines, respectively. We also found that 8.7% (8 of 92) of the tumors harbored a gain of PIK3CA gene copy number. Only four cases in this study contained both an increase in the gene copy number and a somatic mutation. In addition, mutation of PIK3CA correlated with the status of Akt phosphorylation in some breast cancer cells and inhibition of PIK3CA-induced increased apoptosis in breast cancer cells with PIK3CA mutation.

Conclusion

Somatic mutation rather than a gain of gene copy number of PIK3CA is the frequent genetic alteration that contributes to human breast cancer progression. The frequent and clustered mutations within PIK3CA make it an attractive molecular marker for early detection and a promising therapeutic target in breast cancer.  相似文献   

18.
Previously we analysed overlapping homozygous deletions in lung and breast tumours/tumour lines and defined a small region of 120 kb (part of LCTSGR1) at 3p21.3 that contained putative lung and breast cancer tumour suppressor gene(s) (TSG). Eight genes including RASSF1 were isolated from the minimal region. However, extensive mutation analysis in lung tumours and tumour lines revealed only rare inactivating mutations. Recently, de novo methylation at a CpG island associated with isoform A of RASSF1 (RASSF1A) was reported in lung tumours and tumour lines. To investigate RASSF1A as a candidate TSG for various cancers, we investigated: (a) RASSF1A methylation status in a large series of primary tumour and tumour lines; (b) chromosome 3p allele loss in lung tumours and (c) RASSF1 mutation analysis in breast tumours. RASSF1A promoter region CpG island methylation was detected in 72% of SCLC, 34% of NSCLC, 9% of breast, 10% of ovarian and 0% of primary cervical tumours and in 72% SCLC, 36% NSCLC, 80% of breast and 40% of ovarian tumour lines. In view of the lower frequency of RASSF1 methylation in primary breast cancers we proceeded to RASSF1 mutation analysis in 40 breast cancers. No mutations were detected, but six single nucleotide polymorphisms were identified. Twenty of 26 SCLC tumours with 3p21.3 allelic loss had RASSF1A methylation, while only six out of 22 NSCLC with 3p21.3 allele loss had RASSF1A methylation (P=0.0012), one out of five ovarian and none out of six cervical tumours with 3p21.3 loss had RASSF1A methylation. These results suggest that (a) RASSF1A inactivation by two hits (methylation and loss) is a critical step in SCLC tumourigenesis and (b) RASSF1A inactivation is of lesser importance in NSCLC, breast, ovarian and cervical cancers in which other genes within LCTSGR1 are likely to be implicated.  相似文献   

19.
Inherited mutations in the BRCA1 gene confer increased susceptibility to breast and ovarian cancer. Its role in sporadic carcinogenesis is not well defined. Somatic mutations in breast cancers have not been reported and to date there are only three reports of somatic mutations in sporadic ovarian cancers. To investigate the contribution of BRCA1 mutations to sporadic breast and ovarian cancer in the Chinese population, we analysed 62 samples from Chinese women using the protein truncation test. There were 40 cases of breast cancer under age 50 and 22 cases of ovarian cancer, all unselected for family history. There was no age selection for the ovarian cancers. We found two somatic BRCA1 mutations in exon 11, one in a breast cancer and the other in an ovarian cancer, both of which result in truncated proteins. Our results indicate that somatic BRCA1 mutations, like somatic mutations in the BRCA2 gene, though very rare, can be found in both breast and ovarian cancers and support a tumor suppressor function for BRCA1 in sporadic tumors.  相似文献   

20.
Mutations in CDH1, encoding E-cadherin, are the underlying genetic defect in approximately one-third of the hereditary diffuse gastric cancer (HDGC) families described so far. Tumours arising in these families show abnormal or absence of E-cadherin expression, following the model of tumour suppressor gene inactivation. A single study has been reported showing inactivation of the CDH1 wild-type allele in tumour cells from HDGC families either by promoter methylation or by somatic mutation. In order to find the genetic alteration responsible for the presence of diffuse gastric cancers in four members of a Caucasian family, we have screened the coding sequence of CDH1 for germline mutations and searched for the second inactivating hit in the tumour samples. In this family, we have found a germline splice-site mutation in all members affected by gastric cancer and, in one tumour, a somatic deletion affecting at least exon 8 of CDH1. Our results show that a CDH1 intragenic deletion is the second hit inactivating the wild-type allele, in one of the tumours in this family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号