首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Basic fibroblast growth factor (FGF-2) is up-regulated in response to a nerve lesion and promotes axonal regeneration by activation of the tyrosine kinase receptor fibroblast growth factor receptor 1 (FGFR1). To determine the effects of elevated FGFR1 levels on neurite outgrowth, overexpression was combined with lysosomal inhibition of receptor degradation. In pheochromocytoma (PC12) cells, FGFR1 overexpression resulted in flattened morphology, increased neurite outgrowth and activation of extracellular signal-regulated kinase (ERK) and AKT. Degradation of FGFR1 was inhibited by the lysosomal inhibitor leupeptin and by the proteasomal inhibitor lactacystin. In rat primary adult neurons, FGFR1 overexpression enhanced FGF-2-induced axon growth which was further increased by co-treatment with leupeptin. Lysosomal inhibition of receptor degradation concomitant with ligand stimulation of neurons overexpressing FGFR1 provides new insight in tyrosine kinase receptor-mediated promotion of axon regeneration and demonstrates that adult sensory neurons express sub-optimal levels of tyrosine kinase receptors for neurotrophic factors.  相似文献   

2.
A decline in the ability to discriminate speech from noise due to age-related hearing loss (presbycusis) may reflect impaired auditory information processing within the central nervous system. Presbycusis may result, in part, from functional loss of the inhibitory neurotransmitter GABA. The present study assessed age-related changes of the GABA(A) receptor in the inferior colliculus of young-adult, middle-aged, and aged rats related to: (i) receptor subunit composition and (ii) receptor function. Western blotting was used to measure protein levels of selected GABA(A) receptor subunits in preparations obtained from the inferior colliculus of Fischer 344 and Fischer 344/Brown-Norway F1 hybrid rats. In both strains, the aged group exhibited significant increases in gamma1 subunit protein and a decrease in alpha1 subunit protein. To examine the functional consequence of this putative age-related subunit change, we measured the ability of exogenous GABA to flux/translocate chloride ions into microsac preparations derived from Fischer 344 inferior colliculus. GABA-mediated chloride influx was significantly increased in samples prepared from the inferior colliculus of aged animals. Together with previous studies, these results strongly suggest an age-related change in GABA(A) receptor composition. These changes may reflect a compensatory up-regulation of inhibitory function in the face of significant loss of presynaptic GABA release. These findings provide one example of plastic neurotransmitter receptor changes which can occur during the ageing process.  相似文献   

3.
Jung EJ  Jung EJ  Min SY  Kim MA  Kim WH 《Human pathology》2012,43(10):1559-1566
Fibroblast growth factor receptor 2 is a member of receptor tyrosine kinase family, and fibroblast growth factor receptor 2 gene amplification or missense mutation has been observed in various human cancers, including gastric carcinoma. Recent studies have shown that anti-fibroblast growth factor receptor 2 agents inhibit tumor progression in various human cancers, such as endometrial carcinoma and gastric carcinoma, which remains one of the most frequent causes of cancer-related death worldwide. We considered that knowledge of the status of fibroblast growth factor receptor 2 gene amplification in gastric carcinoma might aid in targeted cancer therapy. In this study, fibroblast growth factor receptor 2 amplification status was evaluated by fluorescence in situ hybridization in 313 surgically resected gastric carcinoma tissues, and the results were validated by quantitative real-time polymerase chain reaction. In addition, potential associations between clinicopathologic parameters and the presence of fibroblast growth factor receptor 2 amplification were investigated, and survival analysis was performed. Of the 313 cases, 14 (4.5%) showed fibroblast growth factor receptor 2 amplification by fluorescence in situ hybridization. Fibroblast growth factor receptor 2 amplification was found to be associated with a higher pT stage (P = .023), higher pN stage (P = .038), and distant metastasis (P = .009) and to be significantly associated with lower cancer-specific survival by univariate analysis (P = .012). Gastric carcinoma with fibroblast growth factor receptor 2 amplification was found to be associated with advanced disease and a poor prognosis. We believe that the determination of fibroblast growth factor receptor 2 amplification status could allow the identification of a subset of cancers sensitive to targeted fibroblast growth factor receptor 2 inhibitor-based therapy.  相似文献   

4.
He XP  Butler L  Liu X  McNamara JO 《Neuroscience》2006,141(1):515-520
The kindling model of epilepsy is a form of neuronal plasticity induced by repeated induction of pathological activity in the form of focal seizures. A causal role for the neurotrophin receptor, tyrosine receptor kinase B, in epileptogenesis is supported by multiple studies of the kindling model. Not only is tyrosine receptor kinase B required for epileptogenesis in this model but enhanced activation of tyrosine receptor kinase B has been identified in the hippocampus in multiple models of limbic epileptogenesis. The neurotrophin ligand mediating tyrosine receptor kinase B activation during limbic epileptogenesis is unknown. We hypothesized that neurotrophin-4 (NT4) activates tyrosine receptor kinase B in the hippocampus during epileptogenesis and that NT4-mediated activation of tyrosine receptor kinase B promotes limbic epileptogenesis. We tested these hypotheses in NT4-deficient mice with a targeted deletion of NT4 gene using the kindling model. The development and persistence of amygdala kindling were examined in wild type (+/+) and NT4 null mutant (-/-) mice. No differences were found between +/+ and -/- mice with respect to any facet of the development or persistence of kindling. Despite the absence of NT4, activation of the tyrosine receptor kinase B receptor in the mossy fiber pathway as assessed by phospho-trk immunohistochemistry was equivalent to that of +/+ mice. Together these findings demonstrate that NT4 is not required for limbic epileptogenesis nor is it required for activation of tyrosine receptor kinase B in hippocampus during limbic epileptogenesis.  相似文献   

5.
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family involved in plasticity and neuroprotective processes. In recent years, we have reported the presence of BDNF mRNA in the supraoptic nucleus (SON) as well its sensitivity to osmotic stress. The rat SON is a relatively homogenous nucleus mainly consisting of magnocellular soma with their dendritic processes. BDNF may be released from dendrites to the extracellular space to stimulate tyrosine kinase (Trk) B receptors which are hypothetically present on these subcellular SON compartments. The main goal of this work was thus to study the presence and the in vivo BDNF-IR release from SON using the push-pull perfusion technique following systemic (i.p.) or local (within the SON) osmotic stimulation. BDNF was detected by immunocytochemistry and its release was measured by immunological assay (ELISA). Likewise, TrkB receptor localization in the SON-mRNA and their respective proteins-were studied by in situ hybridization and immunohistofluorescence techniques, respectively. Phosphorylation of CREB was detected by immunohistofluorescence. We present here direct evidence of in vivo dendritic BDNF release from SON which is highly sensitive to osmotic stress. The osmotic response latency period clearly depends on the mode of stimulus application (210 min for i.p. route vs. 15 min for intra-SON administration). The fact that BDNF is released as a very rapid peak when osmotic stimulation is locally applied is strong evidence in favor of an intra-SON origin of this secretion. Osmotic stress also increased phosphorylated cAMP response element binding protein immunoreactivity in the SON. In addition, we show in control rats that truncated forms of tyrosine kinase B receptor 2 mRNA represent the most abundant messenger in the SON as compared with brain-derived neurotrophic factor full-length catalytic receptor or truncated forms of tyrosine kinase B receptor 1 mRNA. In conclusion, it is likely that BDNF and their receptors are involved in neuronal plasticity changes induced by osmotic stress in the SON.  相似文献   

6.
The function of the multi-PDZ domain scaffold protein GRIP1 (glutamate receptor interacting protein 1) in neurons is unclear. To explore the function of GRIP1 in hippocampal neurons, we used RNA interference (RNAi) to knock down the expression of GRIP1. Knockdown of GRIP1 by small interfering RNA (siRNA) in cultured hippocampal neurons caused a loss of dendrites, associated with mislocalization of the GRIP-interacting proteins GIuR2 (AMPA receptor subunit), EphB2 (receptor tyrosine kinase) and KIF5 (also known as kinesin 1; microtubule motor). The loss of dendrites by GRIP1-siRNA was rescued by overexpression of the extracellular domain of EphB2, and was phenocopied by overexpression of the intracellular domain of EphB2 and extracellular application of ephrinB-Fc fusion proteins. Neurons from EphB1-EphB2-EphB3 triple knockout mice showed abnormal dendrite morphogenesis. Disruption of the KIF5-GRIP1 interaction inhibited EphB2 trafficking and strongly impaired dendritic growth. These results indicate an important role for GRIP1 in dendrite morphogenesis by serving as an adaptor protein for kinesin-dependent transport of EphB receptors to dendrites.  相似文献   

7.
Kelly A  Maguire C  Lynch MA 《Neuroscience》2000,95(2):359-365
Previous findings have indicated that nerve growth factor may play a role in the expression of long-term potentiation in perforant path-granule cell synapses and that nerve growth factor treatment restores the ability of aged rats to sustain long-term potentiation. In this study, we have attempted to analyse the changes which occur in nerve growth factor release and tyrosine receptor kinase phosphorylation following tetanization in tissue prepared from dentate gyrus of young rats, as well as aged rats which did or did not sustain long-term potentiation. We report that KCl-stimulated nerve growth factor release was significantly increased in slices of the dentate gyrus or whole hippocampus, but not in synaptosomes prepared from the dentate gyrus. KCl-induced nerve growth factor release was also significantly enhanced in slices prepared from tetanized, compared with untetanized, tissue obtained from young rats and aged rats which sustained long-term potentiation; this response was absent in tissue prepared from aged rats which failed to sustain long-term potentiation, perhaps due to the enhanced basal nerve growth factor release observed in this tissue. Tetanization increased tyrosine receptor kinase phosphorylation in the dentate gyrus of young rats and aged rats which sustained long-term potentiation. In parallel with the changes in nerve growth factor release, tyrosine receptor kinase phosphorylation was markedly increased in untetanized tissue, which may contribute to the lack of effect in tetanized tissue prepared from aged rats which failed to sustain long-term potentiation. We observed that nerve growth factor concentration and tyrosine receptor kinase expression were decreased in aged, compared with young, rats. The data suggest that deficits in nerve growth factor release and subsequent signalling may contribute to age-related deficits in long-term potentiation.  相似文献   

8.
《Neuroscience》1999,95(2):359-365
Previous findings have indicated that nerve growth factor may play a role in the expression of long-term potentiation in perforant path–granule cell synapses and that nerve growth factor treatment restores the ability of aged rats to sustain long-term potentiation. In this study, we have attempted to analyse the changes which occur in nerve growth factor release and tyrosine receptor kinase phosphorylation following tetanization in tissue prepared from dentate gyrus of young rats, as well as aged rats which did or did not sustain long-term potentiation. We report that KCl-stimulated nerve growth factor release was significantly increased in slices of the dentate gyrus or whole hippocampus, but not in synaptosomes prepared from the dentate gyrus. KCl-induced nerve growth factor release was also significantly enhanced in slices prepared from tetanized, compared with untetanized, tissue obtained from young rats and aged rats which sustained long-term potentiation; this response was absent in tissue prepared from aged rats which failed to sustain long-term potentiation, perhaps due to the enhanced basal nerve growth factor release observed in this tissue. Tetanization increased tyrosine receptor kinase phosphorylation in the dentate gyrus of young rats and aged rats which sustained long-term potentiation. In parallel with the changes in nerve growth factor release, tyrosine receptor kinase phosphorylation was markedly increased in untetanized tissue, which may contribute to the lack of effect in tetanized tissue prepared from aged rats which failed to sustain long-term potentiation. We observed that nerve growth factor concentration and tyrosine receptor kinase expression were decreased in aged, compared with young, rats.The data suggest that deficits in nerve growth factor release and subsequent signalling may contribute to age-related deficits in long-term potentiation.  相似文献   

9.
We investigated the cellular and subcellular distributions of neuregulin tyrosine kinase receptor ErbB4 in the postnatal rat frontal cortex and hippocampus by light-, confocal- and electron-microscopic immunocytochemistry. At birth, ErbB4-immunoreactivity (ErbB4-IR) was prominent in the apical cytoplasm and dendrites of cortical plate neurons and hippocampal pyramidal cells. Throughout postnatal development and in adulthood, ErbB4-IR in both regions remained confined to the somatodendritic compartment of neurons, which increased in number to reach the adult pattern by the end of the first postnatal month (P30). At all ages examined, double-labeling experiments revealed that ErbB4-IR always co-localized with the neuronal marker neuronal nuclei (NeuN) and never with glial markers Nestin or glial fibrillary acidic protein (GFAP). Immunoperoxidase labeling at the ultrastructural level confirmed the exclusive localization of ErbB4-IR in somatodendrites, and notably in dendritic spines. Immunogold labeling showed preponderant ErbB4-IR in the cytoplasm, where it was associated with microtubules. Furthermore, ErbB4-IR was abundant in the nucleus of adult cortical and hippocampal neurons, suggesting a role for ErbB4 nuclear signaling in the brain beyond embryonic development. Taken together, these results show that ErbB4 is expressed by neuronal somatodendrites in cerebral cortex and hippocampus from birth to adulthood, and support a role for neuregulins in dendritic growth and plasticity.  相似文献   

10.
背景:细胞外调节蛋白激酶和酸性成纤维细胞生长因子受体2在肠缺血-再灌注损伤修复中的作用尚无研究报道。 目的:观察大鼠肠缺血-再灌注损伤后外源性酸性成纤维细胞生长因子对细胞外调节蛋白激酶和酸性成纤维细胞生长因子受体2表达的影响,探讨细胞外调节蛋白激酶和酸性成纤维细胞生长因子受体2与酸性成纤维细胞生长因子促进创伤修复的关系。 方法:以大鼠肠系膜上动脉夹闭45 min造成肠缺血-再灌注损伤模型,于再灌注即刻应用酸性成纤维细胞生长因子行干预。分别于再灌注2,6,12,24 h取大鼠小肠组织标本,利用免疫组化和RT-PCR检测酸性成纤维细胞生长因子受体的表达及免疫组化检测细胞外调节蛋白激酶表达的规律。 结果与结论:在正常大鼠,酸性成纤维细胞生长因子受体2主要分布在小肠绒毛上皮细胞的肠腔侧、侧壁和小肠隐窝朝向隐窝腔的一侧细胞膜上。缺血-再灌注初期,酸性成纤维细胞生长因子受体2及细胞外调节蛋白激酶的表达未发生明显变化,但随着再灌注时间的延长表达水平逐渐提高,并于再灌注后6-12 h达高峰。经酸性成纤维细胞生长因子治疗后,大鼠小肠组织小肠黏膜损伤程度减轻,酸性成纤维细胞生长因子受体2及细胞外调节蛋白激酶的表达量高于未治疗大鼠。结果表明缺血-再灌注损伤后,酸性成纤维细胞生长因子干预可上调酸性成纤维细胞生长因子受体2及细胞外调节蛋白激酶的表达,提示外源性酸性成纤维细胞生长因子通过促进内源性酸性成纤维细胞生长因子受体2和细胞外调节蛋白激酶的生成可能是其参与内脏损伤修复的机制之一。  相似文献   

11.
Intraocular grafts of embryonic rat septum and co-grafts of septum plus hippocampus were studied with immunohistochemical markers after one and six months (short term) and 12 months (long term) of survival. Neurons in all the septal tissues expressed the epitope for the rat beta-nerve growth factor receptor in sections reacted with the monoclonal antibody 192-IgG. Stained fibers traversed the interface of the short and long term co-grafts and 192-IgG-positive processes were most prominent in the septum when combined with the hippocampal formation. In contrast, labeled processes were sparse and the perikarya of positive neurons appeared shrunken in the long term single septal transplants. Axon and dendrite profiles in the grafts were examined with antibodies that recognize the phosphorylated heavy neurofilament unit (RT97) and the high molecular weight microtubule-associated protein termed MAP 2, respectively. In the short term single and double grafts, characteristic arrays of RT97-positive processes defined the tissues and axonal tracts connecting the septum with the hippocampus. Typical immunostaining of the neuronal somas and the dendrite arbors were were outlined with the MAP 2 antibody. After one year in oculo, extensive changes in the patterns of axonal and dendritic immunoreactivity were noted in the isolated septal grafts. Abnormalities identified with the RT97 antibody included hypertrophied axons, short fragments of kinked axons and neurofilaments in the neuronal perikarya. The formation of circular "abnormal fiber aggregates" composed of densely packed abnormal and normal axonal processes were also distinctive in only the long term single septal transplants. In addition, a reduction in the density of dendrites and the presence of truncated arbors stained with the MAP 2 antibody suggested that regression of the dendrites had occurred. These spatial modifications in axonal and dendritic staining were not present in the septal portion of the combined preparations. In astrocytes, an increase in the antigenicity to glial fibrillary acidic protein paralleled the age of the transplant and was most extensive in the septal grafts. The results illustrate that intraocular co-grafts of hippocampus protect septal neurons and glial cells from abnormal changes in immunoreactivity to antibodies directed against cytoskeletal proteins and exemplify the long term supportive effects of the hippocampus on the morphology of septal neurons, including neurons that express the receptor for nerve growth factor.  相似文献   

12.
Cytochrome oxidase was histochemically localized in the hippocampus and dentate gyrus of various species of mammals. The most intense staining was observed within stratum moleculare of areas CA1-3 and the outer molecular layer of the dentate gyrus, as well as the somatic and basal dendritic layers of CA3. These regions correspond to the synaptic terminal fields of major excitatory afferent pathways to the hippocampus. The somata of CA3 pyramidal cells and various interneurons were more intensely stained than CA1 pyramidal cells and dentate granule cells, and these levels appeared to correlate positively with their reported rates of spontaneous firing. At the electron-microscopic level, the highest concentrations of densely reactive mitochondria were localized within the distal apical dendritic profiles of principal cells (granule and pyramidal) and certain interneurons (pyramidal basket and stratum pyramidale interneurons). The specific layers in which these structures were found are known to receive intense excitatory input from the perforant pathway. High concentrations of reactive mitochondria were also observed within the somata and proximal dendrites of CA3 pyramidal cells and various interneurons, confirming our light-microscopic observations. These results demonstrated that not only can soma and dendrites of the same cell have disparate but distinct levels of cytochrome oxidase activity, but the pattern of reactivity within a neuron's apical and basal dendrites, or even within specific dendritic segments of the same dendrite can be quite different. While the levels of somatic reactivity correlate with reported levels of spontaneous and/or synaptic activity, the degree of dendritic and somatic staining appeared to be more closely related to the intensity of convergent and/or pathway-specific excitatory synaptic input.  相似文献   

13.
14.
Prieto AL  O'Dell S  Varnum B  Lai C 《Neuroscience》2007,150(2):319-334
Protein phosphorylation serves as a critical biochemical regulator of short-term and long-term synaptic plasticity. Receptor protein tyrosine kinases (RPTKs) including members of the trk, eph and erbB subfamilies have been shown to modulate signaling cascades that influence synaptic function in the central nervous system (CNS). Tyro3 is one of three RPTKs belonging to the "TAM" receptor family, which also includes Axl and Mer. Tyro3 is the most widely expressed of these receptors in the CNS. Despite recent advances suggesting roles for members of this receptor family in the reproductive and immune systems, their functions in the CNS remain largely unexplored. In an effort to elucidate the roles of Tyro3 and its ligand, the protein growth arrest-specific gene6 (Gas6) in the hippocampus and cortex, we performed a detailed study of the localization and signaling of Tyro3 polypeptides in rat hippocampal and cortical neurons. Tyro3 was readily detected in dendrites and in the soma where it was distributed in a punctate pattern. Tyro3 exhibited only a limited level of co-localization with postsynaptic density protein-95 (PSD-95), suggesting that while located within dendrites, it was not confined to the postsynaptic compartment. In addition, Tyro3 was also identified in the axons and growth cones of immature neurons. The prominent expression of Tyro3 in dendrites suggested that it may be capable of modulating signaling pathways triggered by synaptic transmission. We have provided evidence in support of this role by demonstrating that Gas6 induced the phosphorylation of Tyro3 in cortical neurons in vitro, resulting in the recruitment of the mitogen-activated protein kinase (MAPK) and the phosphoinositide-3 kinase (PI(3)K) signaling pathways. As these pathways play critical roles in the induction of hippocampal long-term potentiation (LTP), these findings suggest that Tyro3 signaling may influence synaptic plasticity in the dendritic compartment of hippocampal and cortical neurons.  相似文献   

15.
The HER-2/neu oncogene encodes a transmembrane receptor with intrinsic tyrosine kinase activity. A pilot study was performed to investigate downstream effects of HER-2/neu (or related growth factor receptor) activation by identifying phosphorylated tyrosine. Fifty-four breast carcinomas were evaluated for HER-2/neu overexpression by the HercepTest (Dako, Carpinteria, CA) and the monoclonal CB11 antibody (Ventana, Tucson, AZ). Phosphotyrosine (an indication of tyrosine kinase activity) was detected by an antiphosphotyrosine mouse monoclonal antibody (Upstate Biotechnology, Lake Placid, NY). The gene amplification status was evaluated in 50 of the 54 cases by fluorescence in situ hybridization (FISH) using the Ventana gene probe. The HER-2/neu oncogene amplification was detected in 28% (14 of 50) of cases. Of the 14 cases showing oncogene amplification, tyrosine kinase activity was detected in 9 (64.2%) cases. There was moderate agreement between HER-2/neu gene amplification and tyrosine kinase activity (κ = 0.43). Immunohistochemical staining of 3+ (with both HercepTest and CB11) showed better agreement with HER-2/neu oncogene amplification and increased tyrosine kinase activity than 2+ immunohistochemical staining. Overall, oncogene amplification and overexpression correlated with increased tyrosine kinase activity, supporting the mechanism of tyrosine kinase activation by HER-2/neu amplification and overexpression. However, 7 cases showing increased tyrosine kinase activity did not show gene amplification or 3+ receptor expression (by either HercepTest or CB11), raising the possibility of other growth factor receptors operating via the tyrosine kinase pathway. There was no apparent correlation between tyrosine kinase activity and hormone receptor status (estrogen or progesterone). Increased tyrosine kinase activity is more commonly associated with higher-grade tumors and thus may correlate with aggressive biologic behavior in breast carcinoma. The results of this pilot study suggest that a larger-scale investigation into downstream activation of tyrosine kinase and correlation to clinical outcome or response to Herceptin therapy may identify subsets of patients whose clinical response or outcome may be predicted by tyrosine kinase activation. H P 32:1344-1350. Copyright © 2001 by W.B. Saunders Company  相似文献   

16.
Immunocytochemical and electron microscopic methods were used to examine neurons in regio superior of rat hippocampus displaying cholecystokinin octapeptide-like immunoreactivity. Cholecystokinin-immunoreactive synaptic terminals and somata are found in all layers of regio superior but are most numerous in stratum pyramidale. The vast majority of terminals form symmetric synaptic contacts onto the somata and proximal dendrites of hippocampal pyramidal cells and onto smaller dendrites which may also arise from pyramidal cells. A very small number of Cholecystokinin-immunoreactive terminals form synapses that appear asymmetric and contact dendritic shafts or spines. The somata of some pyramidal cells receive symmetric synapses from Cholecystokinin-immunoreactive terminals that are joined by cytoplasmic bridges to form parts of pericellular baskets. These and adjacent pyramidal cell somata are also contacted by terminals that are not immunoreactive for cholecystokinin. No cholecystokinin-positive terminals contacted the initial segments of pyramidal cell axons. Cholecystokinin-immunoreactive cells are found in all layers of regio superior. Their somata receive a few symmetric synapses, most of which are formed by terminals not immunoreactive for cholecystokinin. Their dendrites receive a greater number of both symmetric and asymmetric contacts, some of which are immunoreactive for cholecystokinin.We conclude the following: (1) The localization of cholecystokinin immunoreactivity in synaptic terminals contacting the somata and dendrites of hippocampal pyramidal cells is consistent with the suggestion that cholecystokinin acts as a neurotransmitter at these sites and at sites in other parts of the cerebral cortex. (2) Results from the present and previous studies suggest that cholecystokinin-like immunoreactivity may co-exist with γ-aminobutyrate in some non-pyramidal neurons of regio superior. (3) Cholecystokinin-immunoreactive terminals arise mainly from non-pyramidal cells intrinsic to the hippocampus, one class of which appears to be a type of basket cell.  相似文献   

17.
Immunostaining of cytoskeletal elements has proved to be a useful technique for tracing ontogenetic development in the human central auditory system. In the present study, dendritic development in brainstem auditory nuclei (dorsal and ventral cochlear nuclei, medial and lateral superior olivary nuclei, and inferior colliculus) was studied using an antibody to a microtubule-associated protein, MAP2, a molecule which stabilizes dendritic processes by promoting assembly of microtubules. At 21–22 weeks of gestation, cells within the auditory nuclei first demonstrate cytoplasmic MAP2 immunoreactivity, but no dendritic structures have formed. Filamentous background staining at this stage may represent immunoreactivity in astrocytic processes. By the 24th fetal week, somata of auditory neurons are strongly immunostained and have developed short dendritic processes. During the perinatal period, dendrites extend up to 100–120 μm in length but are still sparsely branched and lack terminal formations. By the sixth postnatal month, neurons in all auditory nuclei have acquired dendritic arbors with a mature appearance. Thus MAP2 immunohistochemistry demonstrates that dendrogenesis in human brainstem auditory nuclei begins 16 weeks prior to term birth but does not reach the stage of mature dendritic morphology until several months into the postnatal period. This extended course of development implies a significant period of time during which neuronal activity could influence dendritic structure and function.  相似文献   

18.
Serotonin (5-HT) is a monoamine neurotransmitter. Serotonin may modulate afferent fiber discharges in the cochlea, inferior colliculus (IC) and auditory cortex. Specific functions of serotonin are exerted upon its interaction with specific receptors; one of those receptors is the serotonin 2B receptor. The aim of this study was to investigate the differences in gene expression of serotonin 2B receptors with age in cochlea and IC, and the possible correlation between gene expression and functional hearing measurements in CBA/CaJ mice. Immunohistochemical examinations of protein expression of IC in mice of different age groups were also performed. Gene expression results showed that serotonin 2B receptor gene was upregulated with age in both cochlea and IC. A significant correlation between gene expression and functional hearing results was established. Immunohistochemical protein expression studies of IC showed more serotonin 2B receptor cells in old mice relative to young adult mice, particularly in the external nucleus. We conclude that serotonin 2B receptors may play a role in the pathogenesis of age-related hearing loss.  相似文献   

19.
Neurons throughout the rat medial geniculate body, including the dorsal and ventral divisions, display a variety of responses to auditory stimuli. To investigate possible structural determinants of this variability, measurements of axon terminal profile area and postsynaptic dendrite diameter were made on inferior colliculus and corticothalamic terminal profiles in the medial geniculate body identified by anterograde tracer labeling following injections into the inferior colliculus or cortex. Over 90% of the synapses observed were axodendritic, with few axosomatic synapses. Small (<0.5 μm2) and large (>1.0 μm2) collicular profiles were found throughout the medial geniculate, but were smaller on average in the dorsal division (0.49±0.49 μm2) than in the ventral division (0.70±0.64 μm2). Almost all corticothalamic profiles were small and ended on small-caliber dendrites (0.57±0.25 μm diameter) throughout the medial geniculate. A few very large (>2.0 μm2) corticothalamic profiles were found in the dorsal division and in the marginal zone of the medial geniculate. GABA immunostaining demonstrated the presence of GABAergic profiles arising from cells in the inferior colliculus. These profiles were compared with GABAergic profiles not labeled with anterograde tracer, which were presumed to be unlabeled inferior colliculus profiles or thalamic reticular nucleus profiles. The distributions of dendritic diameters postsynaptic to collicular, cortical and unlabeled GABAergic profiles were compared with dendritic diameters of intracellularly labeled medial geniculate neurons from rat brain slices.

Our results demonstrate a corticothalamic projection to medial geniculate body that is similar to other sensory corticothalamic projections. However, the heterogeneous distributions of excitatory inferior collicular terminal sizes and postsynaptic dendritic diameters, along with the presence of a GABAergic inferior collicular projection to dendrites in the medial geniculate body, suggest a colliculogeniculate projection that is more complex than the ascending projections to other sensory thalamic nuclei. These findings may be useful in understanding some of the differences in the response characteristics of medial geniculate neurons in vivo.  相似文献   


20.
The HER-2/neu oncogene encodes a transmembrane receptor with intrinsic tyrosine kinase activity. A pilot study was performed to investigate downstream effects of HER-2/neu (or related growth factor receptor) activation by identifying phosphorylated tyrosine. Fifty-four breast carcinomas were evaluated for HER-2/neu overexpression by the HercepTest (Dako, Carpinteria, CA) and the monoclonal CB11 antibody (Ventana, Tucson, AZ). Phosphotyrosine (an indication of tyrosine kinase activity) was detected by an antiphosphotyrosine mouse monoclonal antibody (Upstate Biotechnology, Lake Placid, NY). The gene amplification status was evaluated in 50 of the 54 cases by fluorescence in situ hybridization (FISH) using the Ventana gene probe. The HER-2/neu oncogene amplification was detected in 28% (14 of 50) of cases. Of the 14 cases showing oncogene amplification, tyrosine kinase activity was detected in 9 (64.2%) cases. There was moderate agreement between HER-2/neu gene amplification and tyrosine kinase activity (kappa = 0.43). Immunohistochemical staining of 3+ (with both HercepTest and CB11) showed better agreement with HER-2/neu oncogene amplification and increased tyrosine kinase activity than 2+ immunohistochemical staining. Overall, oncogene amplification and overexpression correlated with increased tyrosine kinase activity, supporting the mechanism of tyrosine kinase activation by HER-2/neu amplification and overexpression. However, 7 cases showing increased tyrosine kinase activity did not show gene amplification or 3+ receptor expression (by either HercepTest or CB11), raising the possibility of other growth factor receptors operating via the tyrosine kinase pathway. There was no apparent correlation between tyrosine kinase activity and hormone receptor status (estrogen or progesterone). Increased tyrosine kinase activity is more commonly associated with higher-grade tumors and thus may correlate with aggressive biologic behavior in breast carcinoma. The results of this pilot study suggest that a larger-scale investigation into downstream activation of tyrosine kinase and correlation to clinical outcome or response to Herceptin therapy may identify subsets of patients whose clinical response or outcome may be predicted by tyrosine kinase activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号