首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CHARGE syndrome is an autosomal dominant condition that is caused by mutations in the CHD7 gene. Few familial cases of this syndrome have been reported and these were characterized by a wide clinical variability. We here report on five CHD7 mutation positive families and comment on their clinical features. We observed somatic and germline mosaicism as well as parent-to-child transmission of non-mosaic CHD7 mutations as causes of familial CHARGE syndrome. In one family with two affected sibs a somatic mutation was identified in lymphocytes of a clinically unaffected parent (2520G > A in exon 8). This is the second report of somatic CHD7 mosaicism in an unaffected parent. In two further families with affected siblings, we could not detect the mutation in parental lymphocytes suggesting germline mosaicism. The previously reported clinical variability was strikingly present in all five families. We find that alterations in CHD7 can result in a very mild phenotype, characterized by only a few minor symptoms of the CHARGE syndrome clinical spectrum. Such a mild phenotype was present in two families that shared the same 6322G > A missense mutation. These two families showed parent-to-child transmission. Phenotypically milder forms of CHARGE syndrome have a higher risk of transmission to multiple family members.  相似文献   

2.
The oculocerebrorenal syndrome of Lowe (OCRL) (MIM:309000) is an X-linked multisystemic disorder affecting the eyes, nervous system and kidneys due to mutations in OCRL1 gene. The gene contains 24 exons, and encodes a 105kDa phosphatydylinositol 4,5-biphosphate [PtdIns(4,5)P(2)] 5-phosphatase localized primarily in the trans-Golgi network and the lysosomes. The large majority of the OCRL1 mutations producing Lowe syndrome are either missense mutations localized mainly in the catalytic domain or non-sense/frameshift mutations resulting in truncated proteins. Rarely, in about 6% of the cases, the disease results from large gene deletions occurring in the 5' part of the gene. Here we report a new case of a patient with Lowe syndrome due to a deletion of about 4Mb, encompassing the OCRL1 gene, detected by PCR and CGH array. The mother was carrier of the same deletion.  相似文献   

3.
Addis M  Loi M  Lepiani C  Cau M  Melis MA 《Human mutation》2004,23(5):524-525
The oculocerebrorenal syndrome of Lowe (OCRL, also called OCRL1) is a rare X-linked disorder characterized by major abnormalities of eyes, nervous system, and kidneys. The gene responsible for OCRL was identified by positional cloning and encodes an inositol polyphosphate-5-phosphatase. We performed the molecular analysis in 9 Italian patients and 26 relatives and we detected the mutations in all the examined patients. Eight mutations out of nine had never been described and consisted of truncating mutations (frameshift, nonsense, splice site and genomic deletion), and missense mutations. The mutations were distributed in the second half of the gene as previously described in other populations. In three cases the mutations were absent in the mothers confirming the occurrence of novel mutations in this disorder. Our results on the Italian population are similar to the data previously obtained in other populations.  相似文献   

4.
The Conradi-Hünermann-Happle (CHH) syndrome (X-chromosomal dominant chondrodysplasia punctata type II; MIM 302960) is an X-linked dominant disorder that is characterized by ichthyosis, chondrodysplasia punctata, cataracts and short stature. The disease occurs almost exclusively in females and shows increased disease expression in successive generations (anticipation). Recently, causative mutations in the emopamil binding protein (EBP) have been identified. To better appreciate the genetics of this syndrome we analyzed the EBP gene in seven independent families using PCR, conformation-sensitive gel electrophoresis, direct sequencing and restriction enzyme analysis. We found five novel mutations: three nonsense mutations in exon 2 and exon 3 and two frameshift mutations, one deletion in exon 4 and an insertion in exon 5. In two families, known mutations affecting exon 2 were identified. Surprisingly, we failed to detect the mutation in a grandmother exhibiting minor disease symptoms such as sectorial cataract and attribute this to gonadal and somatic mosaicism. Gonadal mosaicism appeared also to be involved in the case of healthy parents having two affected girls, one of whom died due to the disease. We conclude that gonadal mosaicism has to be considered when dealing with seemingly sporadic cases.  相似文献   

5.
Congenital central hypoventilation syndrome (CCHS), a rare disorder characterized by alveolar hypoventilation and autonomic dysregulation, is caused by mutations in the PHOX2B gene. Most mutations occur de novo, but recent evidence suggests that up to 25% are inherited from asymptomatic parents with somatic mosaicism for these mutations. However, to date, germline mosaicism has not been reported. This report describes a family with recurrence of PHOX2B mutation-confirmed CCHS due to germline mosaicism. The first occurrence was a baby girl, noted on day 2 of life to have multiple episodes of apnea, bradycardia, and cyanosis while breathing room air. PHOX2B gene testing confirmed the diagnosis of CCHS with a heterozygous polyalanine repeat expansion mutation (PARM); genotype 20/27 (normal 20/20). Both parents tested negative for this mutation using fragment analysis (limit of detection <1%). Upon subsequent pregnancy [paternity confirmed using short tandem repeat (STR) analysis], amniocentesis testing identified the PHOX2B 20/27 genotype, confirmed with repeat testing. Elective abortion was performed at 21.5 weeks gestation. Testing of abortus tissue confirmed amniocentesis testing. The PHOX2B 20/27 expansion was not observed in a paternal sperm sample. This case represents the first reported family with recurrence of PHOX2B mutation-confirmed CCHS without detection of a parental carrier state or mosaicism, confirming the previously hypothesized possibility of germline mosaicism for PHOX2B mutations. This is an important finding for genetic counseling of CCHS families, suggesting that even if somatic mosaicism is not detected in parental samples, there is still reason for careful genetic counseling and consideration of prenatal testing during subsequent pregnancies. ? 2012 Wiley Periodicals, Inc.  相似文献   

6.
7.
Sotos syndrome, which is characterized by overgrowth, macrocephaly, distinctive facial features, and developmental delay, arises from mutations and deletions of the NSD1 gene at 5q35.3. Sixteen NSD1 intragenic deletions (including one in a mosaic condition) and one partial duplication have been reported in patients with Sotos syndrome. Here, we describe a boy aged 4 years and 10 months that showed facial dysmorphism (including frontal bossing, widely spaced eyes, deeply set eyes, a wide nasal bridge, anteverted nares, and a wide mouth), normal growth, and a psychomotor delay. High‐resolution array comparative genomic hybridization (CGH) analysis identified a mosaic heterozygous intragenic NSD1 deletion of 38 kb, which included part of intron 2 and the entire exon 3, and led to NSD1 haploinsufficiency. The deletion somatic mosaicism was subsequently confirmed by fluorescence in situ hybridization (FISH) analysis using fosmid clones. This patient presents the most atypical phenotype thus far associated with NSD1 haploinsufficiency. It is possible that this atypical phenotype may have resulted from the somatic mosaicism of the NSD1 defect. Our study confirms the usefulness of array CGH for increasing the detection rate of NSD1 abnormalities and for diagnosing syndromic patients that do not present an easily recognized phenotype. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
9.
This multicenter study evaluated the mutation spectrum and frequencies of the MLH1 and MSH2 genes and determined the occurrence of large genomic deletions in 93 unrelated Taiwanese families that fulfilled the Amsterdam criteria II by denaturing high-performance liquid chromatography analysis, DNA sequencing for aberrant chromatograms, and multiplex ligation-dependent probe amplification analysis. In total, 38 pathogenic mutations (10 large deletions and 28 point mutations or small deletion/insertions) in the MSH2 or MLH1 gene were identified in 61 of the 93 families (66%). Three of the 10 large deletions and 14 of the 28 point mutations or small insertions/deletions have not been reported elsewhere. Three mutations in the MLH1 gene, the MLH1 c.1846_1848delAAG (5 families), deletion exons 11–15 (4 unrelated families), and MLH1 c.793C>T (13 unrelated families), accounted for 35% of all cases with pathogenic mutations. Haplotype analysis indicated that mutant c.793C>T alleles were derived from two distinct common founders that might be inherited from a single ancestor of presumably Chinese origin. As a mutation detection strategy for Taiwanese Lynch syndrome patients, we recommend that diagnosis starts with screening for large genomic deletions and continues by screening for common mutations in exons 10 and 16 of the MLH1 gene prior to searching for small mutations in the remaining exons.  相似文献   

10.
Two frequent missense mutations in Pendred syndrome   总被引:8,自引:3,他引:8  
Pendred syndrome is an autosomal recessive disorder characterized by early childhood deafness and goiter. A century after its recognition as a syndrome by Vaughan Pendred, the disease gene ( PDS ) was mapped to chromosome 7q22-q31.1 and, recently, found to encode a putative sulfate transporter. We performed mutation analysis of the PDS gene in patients from 14 Pendred families originating from seven countries and identified all mutations. The mutations include three single base deletions, one splice site mutation and 10 missense mutations. One missense mutation (L236P) was found in a homozygous state in two consanguineous families and in a heterozygous state in five additional non-consanguineous families. Another missense mutation (T416P) was found in a homozygous state in one family and in a heterozygous state in four families. Pendred patients in three non-consanguineous families were shown to be compound heterozygotes for L236P and T416P. In total, one or both of these mutations were found in nine of the 14 families analyzed. The identification of two frequent PDS mutations will facilitate the molecular diagnosis of Pendred syndrome.   相似文献   

11.
Germline mutations in BRCA1 predispose to breast and ovarian cancer. Most germline BRCA1 mutations are small insertions, deletions, or single base pair (bp) substitutions. These mutation classes are rarely found as somatic mutations in BRCA1. On the other hand, somatic deletions of multiple mega-base pairs (Mb) including BRCA1, as reflected by loss of heterozygosity, occur frequently in both inherited and sporadic breast and ovarian cancers. To determine whether deletions or rearrangements of hundreds to thousands of bps might contribute to inherited mutation in BRCA1, we developed a Long PCR strategy for screening the entire genomic BRCA1 locus in high-risk families. We evaluated genomic DNA from one high-risk family of European ancestry with BRCA1-linked cancer in which no genomic mutations had been detected using conventional methods. Long PCR revealed a complex mutation, g.12977 ins10 del1039 (based on GenBank L78833), comprising an inverted duplication and deletion in BRCA1 that removes portions of exon 3 and intron 3, including the 5' splice site for intron 3. As a result of the deletion, exon 3 is skipped, leading to a truncated protein and disease predisposition. Unlike previously reported large germline deletions in BRCA1, neither breakpoint resides within an Alu element. The g.12977 ins10 del1039 mutation was not detected among 11 other breast cancer families, nor among 406 breast cancer patients unselected for family history.  相似文献   

12.
Multiple osteochondromas (MO) is a hereditary skeletal disorder characterized by the presence of cartilage capped bony outgrowths at bone surface. Causative mutations in EXT1 or EXT2 genes have been described in 85-90 % of MO cases. However, in about 10-15 % of the MO cases, genomic alterations can not be detected, implying the potential role of other alterations. We have designed a custom-made Agilent oligonucleotide-based microarray, containing 44,000 probes, with tiling coverage of EXT1/2 genes and addition of 68 genes involved in heparan sulfate biosynthesis and other related pathways. Out of the 17 patient samples with previously undetected mutations, a low level of deletion of the EXT1 gene in about 10-15% of the blood cells was detected in two patients and mosaic deletion of the EXT2 was detected in one patient. Here we show that for the first time somatic mosaicism with large genomic deletions as the underlying mechanism in MO formation was identified. We propose that the existence of mosaic mutations and not alterations of other heparan sulfate biosynthesis related genes play a significant role in the development of MO in patients who are tested negative for mutations in Exostosins.  相似文献   

13.
Kubota T, Sakurai A, Arakawa K, Shimazu M, Wakui K, Furihata K, Fukushima Y. Identification of two novel mutations in the OCRL1 gene in Japanese families with Lowe syndrome. Clin Genet 1998: 54: 199–202. 0 Munksgaard, 1998
The oculocerebrorenal syndrome of Lowe (OCRL) is a rare X-linked disorder with features of congenital cataracts. Fanconi syndrome of the renal tubule, and mental retardation. The OCRLI gene has been positionally cloned and shown to encode a phosphatidylinositol 4.5–biphos-phate-5–phosphatase. OCRL is thus thought to be an inborn error of inositol polyphosphate metabolism. We analyzed the gene in two Japanese OCRL patients and their families by DNA sequencing and mismatch polymerase chain reaction (PCR) followed by restriction digestion. A novel nonsense mutation (C1399T) replacing the glutamine of codon 391 (Gln 391 Stop) was identified in exon 12 in 1 patient and also in his mother. A novel missense mutation (C1743G) was identified in exon 15 in the second patient, his mother and maternal grandmother. The missense mutation predicts a substitution of serine for arginine (Ser 505 Arg) in a domain highly conserved among the inosi-tol-5–phosphatase family. Our observations expand the range of OCRLI mutations that cause Lowe syndrome. and will be useful for genetic counseling in these two Fdmilies.  相似文献   

14.
Lowe oculocerebrorenal syndrome (OCRL) (MIM 309000) is a rare X-linked multisystem disorder characterized by congenital cataracts, muscular hypotonia, areflexia, mental retardation, maladaptive behavior, renal tubular dysfunction, vitamin-D-resistant rickets, and scoliosis. The underlying gene OCRL1 is located on chromosome Xq25-q26 and contains 24 exons. It encodes a 105-kDa phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P(2)) 5-phosphatase that is localized to the Golgi complex. To confirm the clinical diagnosis and to assess the carrier state of female relatives for genetic counseling we examined 6 independent patients and their families (a total of 23 individuals) using an improved mutation screening strategy for the OCRL1 gene by sequencing of large PCR amplicons. Four novel and two known mutations were identified: three premature terminations caused by either frameshift mutations (1899insT in exon 17 and 2104-2105delGT in exon 18) or a nonsense mutation (1399C > T in exon 12), two missense mutations (1676G > A and 1754C > T in exon 15), and a 6-bp deletion (1609-1614delAAGTAT in exon 14). An ophthalmological examination was performed in all patients and 14 female relatives. All genotypically proven carrier females showed characteristic lenticular opacities, while all proven noncarriers were lacking this phenotypic finding. The results confirm that ophthalmological evaluation is an apparently reliable first-line method to ascertain the carrier state in Lowe oculocerebrorenal syndrome. The high expressivity of lenticular symptoms in OCRL1 gene carriers is consistent with the hypothesis that (PtdIns[4,5]P(2)) 5-phosphatase activity has low functional reserve capacity for maintaining a balanced homeostasis of lenticular metabolism.  相似文献   

15.
Deletions of variable size involving one or more exons, 29 different missense, nonsense, or frameshift mutations, and three polymorphisms have been found in patients with ornithine transcarbamylase (OTC) deficiency. Most of the deletions and mutations were found in patients with severe disease manifested clinically as acute neonatal hyperammonemia. A small number of mutations or somatic mosaicism for deletions were found in males with “late onset” disease and in heterozygous females who were symptomatic. Approximately 10–15% of all molecular alterations associated with OTC defi ciency are large deletions involving all or part of the OTC gene with or without contiguous genes on the short arm of the X chromosome. Approximately 10% of all point mutations involve the CpG dinucleotide of codon 141 with a CGA→CAA transition producing a deleterious Arg→Gln substitu tion in position 109 of the mature enzyme and causing the elimination of a TaqI recognition site. The majority of the remaining mutations in the OTC gene are unique to the affected family and are usually not found in unrelated patients. To date, two mutations have been described in the sequence of the “leader” peptide, 23 mutations have been found in the coding sequence of the “mature” enzyme, and four mutations have been discovered in splicing recognition sites. Approximately 20 single base polymorphisms have been postulated to exist by comparing two reported OTC gene sequences; six of these substitutions cause amino acid changes of which three have been confirmed in patients. Of the known point mutations, 27 are single base substitutions: 17 missense, 6 nonsense, 4 splice site, and the remaining 2 are single base deletions. © 1993 Wiley-Liss, Inc.  相似文献   

16.
Mutations in COL2A1, the gene for type II-collagen, can result in a wide variety of phenotypes depending upon the nature of the mutation. Dominant negative mutations tend to result in severe and often lethal skeletal dysplasias such as achondrogenesis type 2, Kniest dysplasia, and spondyloepiphyseal dysplasia congenita. Stickler syndrome, a condition characterized by ophthalmological and orofacial features, deafness and arthritis, usually, but not exclusively, results from haploinsufficiency. Overlapping features of all these disorders can also be seen in the same family. Rare reports have demonstrated that phenotypic variability can be explained in some families by somatic mosaicism. Here, we describe five further examples of somatic mosaicism of COL2A1 mutations illustrating the importance of detailed clinical evaluation and molecular testing even in clinically normal parents of affected individuals.  相似文献   

17.
OCRL localizes to the primary cilium: a new role for cilia in Lowe syndrome   总被引:1,自引:0,他引:1  
Oculocerebral renal syndrome of Lowe (OCRL or Lowe syndrome), a severe X-linked congenital disorder characterized by congenital cataracts and glaucoma, mental retardation and kidney dysfunction, is caused by mutations in the OCRL gene. OCRL is a phosphoinositide 5-phosphatase that interacts with small GTPases and is involved in intracellular trafficking. Despite extensive studies, it is unclear how OCRL mutations result in a myriad of phenotypes found in Lowe syndrome. Our results show that OCRL localizes to the primary cilium of retinal pigment epithelial cells, fibroblasts and kidney tubular cells. Lowe syndrome-associated mutations in OCRL result in shortened cilia and this phenotype can be rescued by the introduction of wild-type OCRL; in vivo, knockdown of ocrl in zebrafish embryos results in defective cilia formation in Kupffer vesicles and cilia-dependent phenotypes. Cumulatively, our data provide evidence for a role of OCRL in cilia maintenance and suggest the involvement of ciliary dysfunction in the manifestation of Lowe syndrome.  相似文献   

18.
De novo pathogenic variants in the additional sex combs-like 3 (ASXL3) gene cause a rare multi-systemic neurodevelopmental disorder. There is growing evidence that germline and somatic mosaicism are more common and play a greater role in genetic disorders than previously acknowledged. There is one previous report of ASXL3-related syndrome caused by de novo pathogenic variants in two siblings suggesting gonadal mosaicism. In this report, we present five patients with ASXL3-related syndrome, describing two families comprising two non-twin siblings harbouring apparent de novo pathogenic variants in ASXL3. Parents were clinically unaffected and there was no evidence of mosaicism from genomic DNA on exome-trio data, suggesting germline mosaicism in one of the parents. We also describe clinical details of a patient with typical features of ASXL3-related syndrome and mosaic de novo pathogenic variant in ASXL3 in 30–35% of both blood and saliva sample on trio-exome sequencing. We expand the known genetic basis of ASXL3-related syndromes and discuss mosaicism as a disease mechanism in five patients from three unrelated families. The findings of this report highlight the importance of taking gonadal mosaicism into consideration when counselling families regarding recurrence risk. We also discuss postzygotic mosaicism as a cause of fully penetrant ASXL3-related syndrome.  相似文献   

19.
A set of neurofibromatosis type 1 (NF1) patients was screened for large NF1 gene deletions by comparing patient and parent genotypes at 10 intragenic polymorphic loci. Of 67 patient/parent sets (47 new mutation patients and 20 familial cases), five (7.5%) showed loss of heterozygosity (LOH), indicative of NF1 gene deletion. These five patients did not have severe NF1 manifestations, mental retardation, or dysmorphic features, in contrast to previous reports of large NF1 deletions. All five deletions were de novo and occurred on the maternal chromosome. However, two patients showed partial LOH, consistent with somatic mosaicism for the deletion, suggesting that mosaicism may be more frequent in NF1 than previously recognised (and may have bearing on clinical severity). We suggest that large NF1 deletions (1) are not always associated with unusual clinical features, (2) tend to occur more frequently on maternal alleles, and (3) are an important mechanism for constitutional and somatic mutations in NF1 patients.  相似文献   

20.
The Coffin-Lowry syndrome (CLS) is a rare X-linked semidominant syndrome characterized by severe psychomotor retardation, facial dysmorphism, digit abnormalities and progressive skeletal deformations. CLS is caused by mutations in a gene located in Xp22.2, RPS6KA3. This gene encodes for a growth factor-regulated serine/threonine protein kinase, RSK2 (ribosomal S6 kinase 2), acting in the Ras-mitogen-activated protein kinase signaling pathway. Mutations in the RPS6KA3 gene are extremely heterogeneous and lead to premature termination of translation and/or to loss of phosphotransferase activity of the RSK2 protein. Screening for RSK2 mutations is essential in most cases to confirm the diagnosis as well as for genetic counseling. Here we present 44 novel mutations in RSK2 causing CLS. The overall number of CLS mutations reported now is 128. Thirty-three percent of mutations are missense mutations, 15% nonsense mutations, 20% splicing errors and 29% short deletion or insertion events. Only four large deletions have so far been found. They are distributed throughout the RPS6KA3 gene, and the majority has been found in a single family. This study further confirms the high rate of new mutations at the RSK2 locus. It is important to consider the possibility of mosaicism when providing genetic counseling in CLS families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号