首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of 7-[(2-hydroxyethoxy)methyl]pyrrolo[2,3-d]pyrimidine derivatives related to the nucleoside antibiotics toyocamycin and sangivamycin were prepared and tested for their biological activity. Treatment of the sodium salt of 4-amino-6-bromo-5-cyanopyrrolo[2,3-d]pyrimidine (1) with (2-acetoxyethoxy)methyl bromide (2) afforded a mixture of 4-amino-6-bromo-5-cyano-7-[(2-acetoxyethoxy)methyl]pyrrolo[2,3-d] pyrimidine (3) and the corresponding N1 isomer. Debromination of this mixture gave the corresponding 4-amino-5-cyano-7-[(2-acetoxyethoxy)-methyl]pyrrolo[2,3-d]pyrimidi ne (4) and 4-amino-5-cyano-1-[(2-acetoxyethoxy)methyl]pyrrolo[2,3-d]pyrimidin e (5). Deacetylation of 4 and 5 furnished 4-amino-5-cyano-7-[(2-hydroxyethoxy)methyl]pyrrolo[2,3-d]pyrimidine (6) and the corresponding N1 isomer (7), respectively. The sites of attachment for the acyclic moiety for 6 and 7 were assigned on the basis of UV spectral studies as well as 13C NMR spectroscopy. Conventional functional group transformation of 6 provided a number of novel 5-substituted derivatives (8-10), including the sangivamycin derivative 8. The methyl formimidate derivative 10 was converted to the thioamide derivative 11 and the carbohydrazide derivative 12. Compounds 6 and 8-12 were tested for cytotoxicity to L1210 murine leukemic cells in vitro. None of these compounds caused significant inhibition of cell growth. Evaluation of compounds 4 and 6-12 for activity against human cytomegalovirus (HCMV) and herpes simplex virus type 1 (HSV-1) revealed that only the thioamide (11) was active. It inhibited HCMV but not HSV-1 at concentrations producing only slight cytotoxicity in human foreskin fibroblasts (HFF cells) and KB cells.  相似文献   

2.
In vitro evaluation of a series of previously prepared tubercidin analogues revealed that certain 5-halogen-substituted analogues were active against human cytomegalovirus (HCMV) at concentrations lower than those that produced comparable cytotoxicity in uninfected cells. In contrast, tubercidin was cytotoxic at all antiviral concentrations. Even though the antiviral selectivity of the 5-substituted compounds was slight, this observation led us to prepare a series of acyclic analogues. Treatment of the sodium salt of 4-chloropyrrolo[2,3-d]pyrimidine (2) with (2-acetoxyethoxy)methyl bromide (2a) provided the acyclic nucleoside 4-chloro-7-[(2-acetoxyethoxy)methyl]pyrrolo[2,3-d]pyrimidine (3). A nucleophilic displacement of the 4-chloro group with methoxide, methylamine, and dimethylamine yielded the corresponding 4-substituted compounds 4, 5, and 6, respectively, in good yield. Electrophilic substitution (chlorination, bromination, and iodination) was effected at the C-5 position of compound 3 with N-chlorosuccinimide, N-bromosuccinimide, and iodine monochloride, respectively, in methylene chloride. Removal of the acetyl group from these intermediates (7a-9a) with methanolic ammonia at room temperature afforded the 5-chloro (7b), 5-bromo (8b), and 5-iodo (9b) derivatives of 4-chloro-7-[(2-hydroxyethoxy)methyl]pyrrolo[2,3-d]pyrimidine. Treatment of compounds 7b-9b with methanolic ammonia at an elevated temperature produced the corresponding 5-halotubercidin analogues 10, 11, and 12, respectively. An alternate procedure for the preparation of these 4,5-disubstituted 7-[(2-hydroxyethoxy)methyl]pyrrolo[2,3-d]pyrimidines involved an electrophilic substitution prior to the condensation of the heterocycle with 2a. Treatment of 2 with N-chlorosuccinimide and N-bromosuccinimide gave compounds 13a and 13b, respectively. The condensation of 13a and 13b with 2a and subsequent treatment with methylamine and ethylamine furnished the corresponding 5-halo-4-substituted-pyrrolo[2,3-d]pyrimidines 14a, 14b, 14c, and 14d, respectively. Evaluation of the target compounds (4-6, 7b-9b, 10-12, and 14a-14d) for cytotoxicity and activity against HCMV and herpes simplex virus type 1 (HSV-1) revealed that all compounds except the 5-halogen-substituted compounds 10, 11, and 12 were inactive. Compounds 10, 11, and 12 were active against both viruses at noncytotoxic concentrations. The activity of compound 11 was particularly noteworthy, being at least 10-fold more potent than acyclovir.  相似文献   

3.
The sodium salt of 4-amino-3-cyanopyrazolo[3,4-d]pyrimidine (1) was condensed with (2-acetoxyethoxy)methyl bromide (2) to provide the corresponding protected acyclic nucleoside, 4-amino-3-cyano-1-[(2-acetoxyethoxy)methyl]-pyrazolo[3,4-d]pyrimid ine (3). Treatment of 3 with sodium methoxide in methanol provided a good yield of methyl 4-amino-1-[(2-hydroxyethoxy)methyl]pyrazolo[3,4-d]pyrimidine-3- formimidate (4). Treatment of the imidate (4) with sodium hydrogen sulfide gave the thiocarboxamide derivative 5. Aqueous base transformed 4 into 4-amino-1-[(2-hydroxyethoxy)methyl]pyrazolo[3,4-d]pyrimidine-3- carboxamide (6) in good yield. Treatment of 5 with mercuric chloride furnished the toyocamycin analogue 7. Evaluation of compounds 1, 3-7 revealed that only the heterocycle (1) and the thiocarboxamide acyclic nucleoside (5) were active. Compound 5 was the more potent with activity against human cytomegalovirus and herpes simplex virus type 1.  相似文献   

4.
A number of 6-substituted and 2,6-disubstituted pyrrolo[2,3-d]pyrimidine 2'-deoxyribonucleosides were prepared by the direct stereospecific sodium salt glycosylation procedure. Reaction of the sodium salt of 4-chloro-6-methyl-2-(methylthio)pyrrolo[2,3-d]pyrimidine (6a) or 4,6-dichloro-2-(methylthio)pyrrolo[2,3-d]pyrimidine (6b) with 1-chloro-2-deoxy-3,5-di-O-p-toluoyl-alpha-D-erythro-pentofuranose (9) provided the corresponding N7 2'-deoxy-beta-D-ribofuranosyl blocked derivatives (8a and 8c) which, on ammonolysis, gave 4-amino-6-methyl-2-(methylthio)-7-(2-deoxy-beta-D-erythro-pentofuranosyl )pyrrolo[2,3-d]pyrimidine (11a) and 4-amino-6-chloro-2-(methylthio)-7-(2-deoxy-beta-D-erythro-pentofuranosyl )pyrrolo[2,3-d]pyrimidine (11b), respectively. Dethiation of 11a and 11b afforded 6-methyl-2'-deoxytubercidin (10a) and 6-chloro-2'-deoxytubercidin (10b), respectively. Dehalogenation of 10b provided an alternate route to the reported 2'-deoxytubercidin (3a). Application of this glycosylation procedure to 4,6-dichloro and 4,6-dichloro-2-methyl derivatives of pyrrolo[2,3-d]pyrimidine (15a and 15b) gave the corresponding blocked 2'-deoxyribonucleosides (18a and 18b), which on ammonolysis furnished 10b and 4-amino-6-chloro-2-methyl-7-(2-deoxy-beta-D-erythro- pentofuranosyl)pyrrolo[2,3-d]pyrimidine (17), respectively. This stereospecific attachment of the 2-deoxy-beta-D-ribofuranosyl moiety appears to be due to a Walden inversion at the C1 carbon by the anionic heterocyclic nitrogen. Controlled deacylation of 4-chloro-7-(2-deoxy-3,5-di-O-p-toluoyl-beta-D-erythro-pentofuranosyl) pyrrolo[2,3-d]pyrimidine (20a) gave 4-chloro-7-(2-deoxy-beta-D-erythro-pentofuranosyl)pyrrolo[2,3-d] pyrimidine (20b). Dehalogenation of 20b gave the 2'-deoxynebularin analogue 7-(2-deoxy-beta-D-erythro-pentofuranosyl)pyrrolo[2,3-d]pyrimidine (19), and reaction of 20b with thiourea gave 7-(2-deoxy-beta-D-erythro-pentofuranosyl)pyrrolo[2,3-d]pyrimidine-4(3H)- thione (21). All of these compounds were tested in vitro against certain viruses and tumor cells. Only compounds 12a, 20b, and 21 showed significant activity against measles in vitro, and the activity is comparable to that of ribavirin. Although compounds 3a and 12b are slightly more active than ribavirin against HSV-2 in vitro, they are relatively more toxic to Vero cells. Compounds 3a and 20b exhibited moderate cytostatic activity against L1210 and P388 leukemia in vitro but are considerably less active than 2-chloro-2'-deoxyadenosine (1).  相似文献   

5.
A number of 7-[(1,3-dihydroxy-2-propoxy)methyl]pyrrolo[2,3d-d]pyrimidine derivatives that are structurally related to toyocamycin and sangivamycin and the seco nucleosides of tubercidin, toyocamycin, and sangivamycin were prepared and tested for their biological activity. Treatment of the sodium salt of 4-amino-6-bromo-5-cyanopyrrolo[2,3-d]-pyrimidine with 1,3-bis(benzyloxy)-2-propoxymethyl chloride afforded compound 3, which without isolation was debrominated to obtain 4-amino-5-cyano-7-[[1,3-bis(benzyloxy)-2- propoxy]methyl]pyrrolo[2,3-d]pyrimidine. Although catalytic hydrogenolysis failed, the benzyl ether functionalities of 4 were successfully cleaved by boron trichloride to afford 4-amino-5-cyano-7-[(1,3-dihydroxy-2- propoxy)methyl]pyrrolo[2,3-d]pyrimidine. Conventional functional group transformation of the cyano group of 6 provided a number of novel 5-substituted derivatives. Tubercidin (8a), toyocamycin (8b), and sangivamycin (8c) were treated separately with sodium metaperiodate and then with sodium borohydride to afford the 2',3'-seco derivatives 9a-c, respectively. The acyclic nucleoside 4-chloro-2-(methylthio)-7-[[1,3-bis(benzyloxy)-2- propoxy]methyl]pyrrolo[2,3-d]pyrimidine was aminated, desulfurized with Raney Ni, and then debenzylated to provide the tubercidin analogue 11. Cytotoxicity evaluation against L1210 murine leukemic cells in vitro showed that although the parent compounds tubercidin (8a), toyocamycin (8b), and sangivamycin (8c) were very potent growth inhibitors, the acyclic derivatives 6, 7a-c, and 9a-c had only slight growth-inhibitory activity. Evaluation of compounds 6, 7a, 7b, 7c, 9a, 9b, 9c, 11 for cytoxicity and activity against human cytomegalovirus (HCMV) and herpes simplex virus type 1 (HSV-1) revealed that only the carboxamide (7a) and the thioamide (7c) were active. Compound 7c was the more potent of the two, inhibiting HCMV but not HSV-1 at concentrations producing little cytotoxicity.  相似文献   

6.
The sodium salts of 4-chloro- and several 4-chloro-5-substituted-7H-pyrrolo[2,3-d]pyrimidines were treated with [1,3-bis(benzyloxy)-2-propoxy]methyl chloride (6) to provide the corresponding 4-chloro- and 4-chloro-5-substituted-7-[[1,3-bis(benzyloxy)-2-propoxy]methyl]pyrrolo [2,3-d]pyrimidines (7-11). Debenzylation with boron trichloride at -78 degrees C furnished 4-chloro- and several 4-chloro-5-substituted-7-[(1,3-dihydroxy-2-propoxy)methyl]pyrrolo[2,3- d]pyrimidines (12.16). Subsequent amination of 12-16 yielded the 4-amino-5-substituted-7-[(1,3-dihydroxy-2-propoxy)methyl]pyrrolo[2,3- d]pyrimidines (17-21). Treatment of 14 with methylamine and 13 and 14 with ethylamine yielded the 4-(alkylamino)-5-halo-7-[(1,3-dihydroxy-2- propoxy)methyl]pyrrolo[2,3-d]pyrimidines (22-24). Treatment of 12-15 with hydroxylamine in refluxing 2-propanol yielded the 5-substituted-4-(hydroxyamino)-7-[(1,3-dihydroxy-2-propoxy)methyl]pyrrol o [2,3-d]pyrimidines (25-28). Treatment of compound 12 with Pd/C under a hydrogen atmosphere has furnished the nebularine analogue 31. The antiproliferative activity of compounds 17-28 and 31 was studied using L1210 cells in vitro. The 4-amino- and 4-(hydroxyamino)-5-halogenated derivatives (compounds 18-20, 26-28) inhibited cell growth. Although the effect of compounds 18-20 and 27 on final growth rate was pronounced (IC50 = 2.3, 0.7, 2.8, and 3.7 microM, respectively), cells underwent at least one doubling before cell division stopped. The remaining compounds were less cytotoxic, with IC50's greater than 30 microM for 21, 23, 26, and 28, whereas no inhibition of L1210 cell growth was observed with compounds 17, 22, 24, 25, and 31 at 100 microM. The antiviral activity of these compounds also was tested. Compounds 18-20 and 26-28 were active against human cytomegalovirus and herpes simplex type 1. The 4-amino derivatives (18-20) were more active than the 4-hydroxyamino derivatives (26-28), the 4-amino-5-bromo and 4-amino-5-iodo derivatives produced more than five log reductions in virus titer at concentrations of 10-100 microM. Although some cytotoxicity was observed at these concentrations, compound 19 was active against murine cytomegalovirus in vivo. At 5.6 mg/kg, 14/15 animals survived compared to 10/15 treated with 5.6 mg/kg of ganciclovir or 1/15 treated with placebo.  相似文献   

7.
Two novel classical antifolates N-{4-[(2,4-diamino-5-methyl-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-6-yl)thio]benzoyl}-L-glutamic acid 3 and N-{4-[(2-amino-4-oxo-5-methyl-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-6-yl)thio]benzoyl}-L-glutamic acid 4 were designed, synthesized, and evaluated as antitumor agents. Compounds 3 and 4 were obtained from 2,4-diamino-5-methylpyrrolo[2,3-d]pyrimidine 7 and 2-amino-4-oxo-5-methylpyrrolo[2,3-d]pyrimidine 12, respectively, in a concise three-step sequence. Compound 3 is the first example, to our knowledge, of a 2,4-diamino classical antifolate that has potent inhibitory activity against both human dihydrofolate reductase (DHFR) and human thymidylate synthase (TS). Compound 4 was a dual DHFR-TS inhibitor against the bifunctional enzyme derived from Toxoplasma gondii (tg). Further evaluation of the mechanism of action of 3 implicated DHFR as its primary intracellular target. Both 3 and 4 were folylpolyglutamate synthetase (FPGS) substrates. Compound 3 also inhibited the growth of several human tumor cell lines in culture with GI50 < 10(-8) M. This study shows that the pyrrolo[2,3-d]pyrimidine scaffold is conducive to dual DHFR-TS and tumor inhibitory activity, and the potency is determined by the 4-position substituent.  相似文献   

8.
Bridge homologation of the previously reported classical two-carbon-bridged antifolates, a 5-substituted 2,4-diaminofuro[2,3-d]pyrimidine (1) [which is a 6-regioisomer of LY231514 (Alimta)] and a 6-subsituted 2-amino-4-oxopyrrolo[2,3-d]pyrimidine, afforded the three-carbon-bridged antifolates analogues 4 and 5, with enhanced inhibitory activity against tumor cells in culture (EC(50) values in the 10(-8)-10(-7) M range or less). These two analogues were synthesized via a 10-step synthetic sequence starting from methyl 4-bromobenzoate (14), which was elaborated to the alpha-chloromethyl ketone (8) followed by condensation with 2,6-diamino-pyrimidin-4-one (7) to afford the substituted furo[2,3-d]pyrimidine 9 and the pyrrolo[2,3-d]pyrimidine 10. Subsequent coupling of each regioisomer with diethyl-l-glutamate followed by saponification afforded 4 and 5. The biological results indicate that elongation of the C8-C9 bridge of the classical 5-substituted 2,4-diaminofuro[2,3-d]pyrimidine and 6-substituted 2-amino-4-oxopyrrolo[2,3-d]pyrimidine are highly conducive to antitumor activity in vitro, despite a lack of increase in inhibitory activity against the target enzymes. This supports our original hypothesis that truncation of the B-ring of a highly potent 6-6 ring system to a 6-5 ring system can be compensated by bridge homologation to restore the overall length of the molecule.  相似文献   

9.
Various acyclic, i.e., (2-hydroxyethoxy)methyl and (2-acetoxyethoxy)methyl, analogues of pyrimidine and purine nucleosides have been prepared and evaluated for their antiviral, antimetabolic, and cytotoxic properties. All of the pyrimidine analogues, including (E)-5-(2-bromovinyl)-1-[(2-hydroxyethoxy)methyl]uracil (12) and its O-acetyl derivative (13), were virtually devoid of antiviral, cytotoxic, and antimetabolic activities. However, several of the 8-substituted derivatives of 9-[(2-hydroxyethoxy)methyl]guanine (acyclovir) had higher antiviral specificity in vitro than the parent drug. The 8-methyl-, 8-amino-, 8-bromo-, and 8-iodoacyclovir derivatives have activities worthy of further investigation.  相似文献   

10.
Several 3,4,6-trisubstituted pyrazolo[3,4-d]pyrimidine ribonucleosides were prepared and tested for their biological activity. High-temperature glycosylation of 3,6-dibromoallopurinol with 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose in the presence of BF3 X OEt2, followed by ammonolysis, provided 6-amino-3-bromo-1-beta-D-ribofuranosylpyrazolo-[3,4-d]pyrimidin-4(5H)-on e. Similar glycosylation of either 3-bromo-4(5H)-oxopyrazolo [3,4-d]pyrimidin-6-yl methyl sulfoxide or 6-amino-3-bromopyrazolo [3,4-d]pyrimidin-4(5H)-one, and subsequent ammonolysis, also gave 7a. The structural assignment of 7a was on the basis of spectral studies, as well as its conversion to the reported guanosine analogue 1d. Application of this glycosylation procedure to 6-(methylthio)-4(5H)-oxopyrazolo[3,4-d]pyrimidine-3-carboxamide gave the corresponding N-1 glycosyl derivative. Dethiation and debenzoylation of 16a provided an alternate route to the recently reported 3-carbamoylallopurinol ribonucleoside thus confirming the structural assignment of 16a and the nucleosides derived therefrom. Oxidation of 16a and subsequent ammonolysis afforded 6-amino-1-beta-D-ribofuranosyl-4(5H)-oxopyrazolo[3, 4-d]pyrimidine-3-carboxamide. Alkaline treatment of 15a gave 6-azacadeguomycin. Acetylation of 15a, followed by dehydration with phosgene, provided the versatile intermediate 6-amino-1-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl)-4(5H)-oxopyrazolo [3, 4-d]pyrimidine-3-carbonitrile. Deacetylation of 19 gave 6-amino-1-beta-D-ribofuranosyl-4(5H)-oxopyrazolo[3, 4-d]pyrimidine-3-carbonitrile. Reaction of 19 with H2S gave 6-amino-1-beta-D-ribofuranosyl-4(5H)-oxopyrazolo[3, 4-d]pyrimidine-3-thiocarboxamide. All of these compounds were tested in vitro against certain viruses and tumor cells. Among these compounds, the guanosine analogues 7a and 20a showed significant activity against measles in vitro and were found to exhibit moderate antitumor activity in vitro against L1210 and P388 leukemia. 6-Azacadeguomycin and all other compounds were inactive against the viruses and tumor cells tested in vitro.  相似文献   

11.
The remarkably potent and specific activity against varicella-zoster virus (VZV) shown by 2'-deoxynucleosides of furo[2,3-d]pyrimidin-2(3H)-one and related ring systems is dependent on key structural features including the length and nature of the side-chain at C6 and the structure and stereochemistry of the sugar moiety at N3. Removal of the 3'-hydroxyl group from potent anti-VZV 2'-deoxynucleosides results in loss of the VZV activity, but such 2',3'-dideoxynucleoside analogues have shown anti-HCMV activity. We now report acyclic analogues with comparable side-chains at C6, but with the sugar moiety at N3 replaced with the (2-hydroxyethoxy)methyl group (present in the antiherpes drug acyclovir). Examples of both furo[2,3-d]- and pyrrolo[2,3-d]pyrimidin-2(3H)-one acyclic analogues were prepared and evaluated in a number of virus-infected cells and in tumor cell cultures. Certain of the long-chain analogues showed activity against VZV and HCMV. No significant activity against other DNA and RNA virus replication or against tumor cell proliferation was observed.  相似文献   

12.
Several pyrazolo[3,4-d]pyrimidine-4(5H)-selone ribonucleosides were prepared as potential antiparasitic agents. Treatment of 4-chloro-1-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl)pyrazolo [3,4-d]pyrimidine (5a) with selenourea and subsequent deacetylation gave 1-beta-D-ribofuranosylpyrazolo[3,4-d] pyrimidine-4(5H)-selone (6a). A similar treatment of 3-bromo-4-chloro-1-(2,3,5-tri-O-benzoyl-beta-D-ribofuranosyl)pyrazolo [3,4-d]pyrimidine (5b) with selenurea, followed by debenzoylation, gave the 3-bromo derivative of 6a (6b). Glycosylation of persilylated 4-chloro-6-methyl-pyrazolo [3,4-d]pyrimidine (7) with tetra-O-acetylribofuranose (8) provided the key intermediate 4-chloro-6-methyl-1-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl) pyrazolo[3,4-d]pyrimidine (9). Ammonolysis of 9 gave 4-amino-6-methyl-1-beta-D-ribofuranosylpyrazolo[3,4-d]pyrimidine (10), whereas treatment with sodium hydroxide gave 6-methylallopurinol ribonucleoside (11a). Reaction of 9 with either thiourea or selenourea, followed by deacetylation, provided 6-methylpyrazolo[3,4-d]pyrimidine-4(5H)-thione ribonucleoside (11c) and the corresponding seleno derivative (11d), respectively. The structural assignment of these nucleosides was made on the basis of spectral studies. These compounds were tested in vitro against certain viruses and tumor cells. All the compounds except 11c exhibited significant activity against HSV-2 in vitro, whereas 11c exhibited the most potent activity against measles and has a very low toxicity. Compounds 6a, 6b, and 11d were found to be potent inhibitors of growth of L1210 and P388 leukemia in vitro.  相似文献   

13.
A novel and direct synthesis of the antiviral and antitumor agent 4-amino-8-(beta-D-ribofuranosylamino)pyrimido[5,4-d]pyrimidine (ARPP, 8) and its alpha-anomer (11) has been developed. Treatment of 2,4,6,8-tetrachloropyrimido[5,4-d]pyrimidine (1) with 2,3-O-isopropylidene-D-ribofuranosylamine gave an anomeric mixture of 2,4,6-trichloro-8-(2,3-O-isopropylidene-beta- and -alpha-D-ribofuranosylamino)pyrimido[5,4-d]pyrimidines (3 and 4) in a ratio of 1.0:0.7. A nucleophilic displacement of the 4-chloro group of 3 and 4 with NH3 furnished 4-amino-2,6-dichloro-8-[(2,3-O-isopropylidene-beta-D-ribofuranosyl)amino ] pyrimido[5,4-d]pyrimidine (6) and its alpha-anomer (9), respectively. Catalytic hydrogenation of 6 and 9, followed by deisopropylidenation gave ARPP (8) and the alpha-anomer 11, respectively. Similarly, 3 and 4 have been transformed to 4-methoxy-8-(beta-D-ribofuranosylamino)pyrimido-[5,4-d]pyrimidine (MRPP, 14) and its alpha-anomer (17). Application of this procedure to 3 with NH2Me or NHMe2 resulted in the synthesis of 4-(methylamino)- and 4-(dimethylamino)-8-(beta-D-ribofuranosylamino)pyrimido [5,4-d]pyrimidine (24 and 27, respectively). A synthesis of 8-(beta-D-ribofuranosylamino)pyrimido[5,4-d]pyrimidin-4(3H)-one (21) has also been accomplished from 3 in three steps. Selective hydrogenation of 6 furnished 4-amino-6-chloro-8-[(2,3-O-isopropylidene-beta-D-ribofuranosyl)amino] pyrimido[5,4-d]pyrimidine (36), the structure of which was established by single-crystal X-ray diffraction analysis. Deisopropylidenation of 36 gave 6-chloro-ARPP (37). Extended treatment of 36 with NH3 furnished 4,6-diamino-8-[(2,3-O-isopropylidene-beta-D-ribofuranosyl)amino]pyrimido [5,4-d]pyrimidine (34), which on deisopropylidenation gave 6-amino-ARPP (35). An unambiguous synthesis of 34 and 36 has also been accomplished by the reaction of 4,6,8-trichloropyrimido[5,4-d]pyrimidine (28) with 2, followed by the treatment with NH3. Nucleophilic displacement studies with 1, 6, and 28 indicated the reactivity of the halogens in these compounds is in the order of 8 greater than 4 greater than 6 greater than 2. The structures of 3 and 9 have been assigned on the basis of 1H NMR data and further confirmed by single-crystal X-ray diffraction analysis. The exocyclic aminonucleosides synthesized during this study were tested for their activity against several RNA and DNA viruses in vitro and against L1210, WI-L2, and LoVo/L in cell culture. The effect of these compounds on the de novo nucleic acid biosynthesis has been studied. Compound 14 (MRPP) exhibited enhanced activity against L1210 in vivo, when compared to ARPP (8).  相似文献   

14.
7-Deaza (pyrrolo[2,3-d]pyrimidine) and 3-deaza (imidazo[4,5-c]pyridine) congeners of sulfenosine (5a and 9), sulfinosine (6a and 10), and sulfonosine (7a) have been prepared and evaluated for their antileukemic activity in mice. Amination of 2-amino-7-beta-D-ribofuranosylpyrrolo[2,3-d]pyrimidine-4(3H)-th ion e (4a) and its 2'-deoxy analogue (4c) with a chloramine solution gave the corresponding 4-sulfenamides (5a and 5c, respectively), which on selective oxidation with m-chloroperoxybenzoic acid (MCPBA) gave the respective diastereomeric 2-amino-7-beta-D-ribofuranosyl-pyrrolo[2,3-d]pyrimidine-4-sulfinamide (7-deazasulfinosine, 6a) and its 2'-deoxy derivative (6c). A similar amination of 7-(2-deoxy-beta-D-erythro-pentofuranosyl)pyrrolo[2,3-d]pyrimidine-4(3H)- thione (4b) gave the corresponding 4-sulfenamide derivative (5b). Oxidation of 5b with 1 molar equiv of MCPBA furnished (R,S)-7-(2-deoxy-beta-D-erythro-pentofuranosyl)pyrrolo[2,3-d]pyrimidine- 4- sulfinamide (6b), whereas use of excess of MCPBA afforded the corresponding sulfonamide derivative (7b). Treatment of 3-deaza-6-thioguanosine (8) with a chloramine solution gave 3-deazasulfenosine (6-amino-1-beta-D- ribofuranosylimidazo[4,5-c]pyridine-4-sulfenamide, 9). Controlled oxidation of 9 with MCPBA afforded 3-deazasulfinosine (10). As gauged by increases in the mean postinoculation life spans of L1210 inoculated mice, none of these nucleosides exhibited biologically significant activity (T/C greater than or equal to 125). Even so, antileukemic activity appeared to be influenced, albeit not uniformly, by structural modifications in the base and carbohydrate moieties of sulfenosine and sulfinosine. Thus, while several of the compounds were lacking in cytotoxic activity, eight others (4c, 5a, 5c, 6a, 6b, 7b, 9, and 10) were estimated to have reduced body burdens of viable L1210 cells by 16-77%.  相似文献   

15.
A number of pyrimidine acyclic nucleosides were synthesized and tested for activity against herpes simplex virus type 1. Synthesis of 1-[(2-hydroxyethoxy)methyl]cytosine (8) and 1-[(2-hydroxyethoxy)methyl]uracil (14) was accomplished in two or three steps from 2,4-diethoxypyrimidine and 2-(benzoyloxy)ethoxymethyl chloride. The 5-methyl (20), 5-(trifluoromethyl) (21), and 5-fluoro (22) analogues of 14 were available in two steps form the appropriate bis(trimethylsilyl)ated 5-substituted uracil and 2-(acetoxymethoxy)ethyl acetate or 2-(benzoyloxy)ethoxymethyl chloride. Bromination of 8 and 14 or iodination of 14 gave the 5-halogeno-1-[(2-hydroxyethoxy)methyl]pyrimidines 9, 23, and 24. These pyrimidine acyclic nucleosides exhibited little or no activity against herpes simplex virus type 1 or against a range of other DNA and RNA viruses. This is compatible with their lack of substrate properties toward herpes simplex virus induced thymidine kinase.  相似文献   

16.
New antifolates, characterized by a 6-5 fused ring system, a pyrrolo[2,3-d]pyrimidine ring, and a trimethylene bridge at position 5 (12a,b and 13a,b) were designed and efficiently synthesized. The synthetic method included (1) construction of the key intermediary acyclic skeleton, 5-[4-(tert-butoxycarbonyl)phenyl]- 2-(dicyanomethyl)pentanoates (6a,b), (2) cyclization with guanidine, followed by reduction to the pyrrolo[2,3-d]pyrimidine derivatives (8a,b and 9a,b), and (3) subsequent glutamate coupling and saponification. These antifolates were more growth-inhibitory by about 1 order of magnitude than methotrexate (MTX) against KB human epidermoid carcinoma cells and A549 human nonsmall cell lung carcinoma cells in in vitro culture. Growth inhibitory IC50 values for N-[4-[3-(2,4-diamino-7H-pyrrolo[2,3-d]pyrimidin-5- yl)propyl]benzoyl]-L-glutamic acid (12a) against KB and A549 were 0.27 and 4.5 ng/mL, while those for MTX were 5.0 and 35 ng/mL, respectively. Other members of this class of antifolates, 12b and 13a,b, showed good activities nearly equal to that of 12a.  相似文献   

17.
Two novel analogues, N-[2-amino-4-ethyl[(pyrrolo[2,3-d]pyrimidin-5-yl)ethyl]benzoyl]-l-glutamic acid (2) and N-[2-amino-4-ethyl-6-methyl[(pyrrolo[2,3-d]pyrimidin-5-yl)ethyl]benzoyl]-l-glutamic acid (4), were designed and synthesized as potent dual inhibitors of thymidylate synthase (TS) and dihydrofolate reductase (DHFR) and as antitumor agents. Compound 2 had inhibitory potency against human DHFR similar to N-[4-[2-(amino-3,4-dihydro-4-oxo-7H-pyrrolo[2,3-d]pyrimidin-5-yl)ethyl]benzoyl]-L-glutamic acid (LY231514) and 1, whereas 4 was inactive against human DHFR. Both 2 and 4 were more potent than LY231514 against E. coliTS. Against human TS, 2 was 7-fold less potent than LY231514 and 4 showed similar inhibitory activity as LY231514. In contrast to 2, which was an efficient substrate of human folypolyglutamate synthetase (FPGS), 4 was a poor substrate of FPGS. Compound 2 showed GI50 values in the nanomolar range against more than 18 human tumor cell lines in the standard NCI preclinical in vitro screen.  相似文献   

18.
Compounds 2-5 were designed as potential antifolate nonpolyglutamatable inhibitors of thymidylate synthase (TS). These analogues are structurally related to 2-amino-4-oxo-5-substituted quinazolines and 2-amino-4-oxo-5-substituted pyrrolo[2, 3-d]pyrimidines which have shown excellent inhibition of TS and, for the quinazoline, significant promise as clinically useful antitumor agents. Compounds 2-4 were synthesized by appropriate amine exchange reactions on pivaloyl-protected 5-dimethylaminomethyl-substituted 6-methyl pyrrolo[2,3-d]pyrimidine 7 which in turn was obtained from the Mannich reaction of pivaloylated-6-methyl pyrrolo[2, 3-d]pyrimidine 6. In instances where the amine exchange reaction was sluggish, the Mannich base was quaternized with methyl iodide which afforded much faster exchange reaction with improved yields. For compound 5, 4-mercaptopyridine was used as the nucleophile and reacted with 7. The analogues 2-4 inhibited Lactobacillus casei (lc) TS and recombinant human (h) TS with IC50 in the 10(-4) to 10(-5) M range. Compound 5 inhibited lcTS and hTS 20% at 26 and 25 microM, respectively. In addition, compound 5 inhibited the growth of Pneumocystis carinii and Toxoplasma gondii cells in culture by 76% at 32 x 10(-6) M and 50% at 831 x 10(-6) M, respectively.  相似文献   

19.
Novel acyclic halogenated tubercidins (4-amino-5-halo-7-[(2-hydroxyethoxy)-methyl]pyrrolo[2,3-d]pyrimidines) were examined for their ability to inhibit human cytomegalovirus (HCMV) in yield reduction assays. 5-Bromo acyclic tubercidin (compound 102) was a more potent inhibitor of virus replication than the chloro- and iodo-substituted analogs (compounds 100 and 104). At a 100 microM concentration, the bromo and chloro compounds were more potent than acyclovir but not ganciclovir. Virus titers were reduced more than 99% by compounds 102 and 104 whereas compound 100 and the equally potent acyclovir reduced titers by only 90%. Quantitation of viral DNA by DNA hybridization demonstrated strong inhibition of HCMV DNA synthesis by these compounds. The most potent inhibitor, compound 102, had a 50% inhibitory (I50) concentration (1.6 microM) comparable to that of ganciclovir (1.8 microM). Cytotoxicity in uninfected human cells was evaluated and revealed the following: cell growth rates slowed markedly in the presence of 10 microM compound 102 whereas the same concentration of compounds 100 and 104 led to only a slight prolongation of population doubling time; these compounds inhibited cellular DNA synthesis but not RNA or protein synthesis, as measured by incorporation of radiolabeled precursors into acid-precipitable macromolecules; flow cytometry indicated that compound 102 was a mid-S phase blocker, and adenosine antagonized the inhibition of [3H]dThd incorporation by compound 102. Together, these results demonstrate that compound 102 is a potent and selective inhibitor of viral and cellular DNA synthesis and that acyclic halogenated pyrrolo-pyrimidine nucleosides may have therapeutic potential.  相似文献   

20.
6-Amino-3-methyl-4-(4-nitrophenyl)-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (1) was used as a precursor for preparation of some novel 3,7-dimethyl-4-(4-nitrophenyl)-2,4-dihydropyrazolo[4',3':5,6]pyrano[2,3-d]pyrimidine derivatives 3-6, and some of their corresponding N(2)- and C(5)-S-acyclic nucleosides 7 and 8. Furthermore, the preparation of 5-amino-1-[3,7-dimethyl-4-(4-nitrophenyl)-2,4-dihydropyrazolo[4',3':5,6]pyrano[2,3-d]pyrimidin-5-yl]-1H-pyrazole derivatives 10-16 were described. Some of the prepared products were selected and tested for antiviral activity against Herpes Simplex Virus type-1 (HSV-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号