首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The demand for new vaccine adjuvants is well documented. New purified antigens from parasites, bacterial or viral pathogens, as well as recombinant subunit antigens and synthetic peptides, are often inherently weak immunogens; therefore, they need some kind of adjuvant to help initiate an immune response. In addition, there are very few adjuvants using the potential of the mucosal immune system, which may play an important role in the defence against air- and food-borne infections. Starch is a natural biocompatible and biodegradable polymer that is suitable for the production of various particulate adjuvant formulations, which can induce mucosal as well as systemic immune responses. This review gives an account of the different starch adjuvants used in immunisation studies. In particular, the properties of polyacryl starch microparticles as an oral vaccine adjuvant that induce protective immune responses in mice challenge experiments are summarised. In addition, a diphtheria booster vaccine has been proposed to be used to proving the concept in man and the possibilities to design an efficient vaccine formulation for human use are discussed.  相似文献   

2.
An oral vaccine formulation comprised of starch microparticles with conjugated antigens is being developed. In this report we have examined the uptake of such microparticles by the intestinal mucosa and examined whether the conjugated antigen can influence the uptake. Two model antigens were used: recombinant cholera toxin B subunit (rCTB), which is known to bind to the ubiquitous GM1-receptor, and human serum albumin (HSA) which is not known to have any specific binding properties. The uptake was studied in mouse ligated intestinal loops into which the microparticles were injected. The intestinal loops were excised, fixed in ice-cold 95% ethanol. Entire specimens were mounted, exposed to fluorescence-labeled reagents staining the cytoskeleton, the particles and/or M cells and examined in a confocal laser-scanning microscope. A qualitative difference in the uptake of the rCTB- and HSA-conjugated microparticles was seen. The rCTB-conjugated microparticles were found both in villi and in the follicles of the Peyer's patches. HSA-conjugated microparticles could only be detected in the follicles of the Peyer's patches and not in villi. The rCTB conjugated to the microparticles did not lose its ability to bind the GM1-receptor, as shown with a GM1-ELISA, and the uptake of rCTB-conjugated microparticles in villi is most probably facilitated by the rCTB binding to the GM1-receptor. The qualitative difference in uptake could be of importance for the development of an immune response as the cytokine and chemokine microenvironment during antigen presentation will decide the differentiation of the immune response induced.  相似文献   

3.
Several groups have shown that vaccine antigens can be encapsulated within polymeric microparticles and can serve as potent antigen delivery systems. We have recently shown that an alternative approach involving charged polylactide co-glycolide (PLG) microparticles with surface adsorbed antigen(s) can also be used to deliver antigen into antigen presenting cell (APC). We have described the preparation of cationic and anionic PLG microparticles which have been used to adsorb a variety of agents, which include plasmid DNA, recombinant proteins and adjuvant active oligonucleotides. These PLG microparticles were prepared using a w/o/w solvent evaporation process in the presence of the anionic surfactants, including DSS (dioctyl sodium sulfosuccinate) or cationic surfactants, including CTAB (hexadecyl trimethyl ammonium bromide). Antigen binding to the charged PLG microparticles was influenced by several factors including electrostatic and hydrophobic interactions. These microparticle based formulations resulted in the induction of significantly enhanced immune responses in comparison to alum. The surface adsorbed microparticle formulation offers an alternative and novel way of delivering antigens in a vaccine formulation.  相似文献   

4.
The objective of this work was to conduct an in vivo comparison of nanoparticles and microparticles as vaccine delivery systems. Poly (lactide-co-glycolide) (PLG) polymers were used to create nanoparticles size 110 nm and microparticles of size 800-900 nm. Protein antigens were then adsorbed to these particles. The efficacy of these delivery systems was tested with two protein antigens. A recombinant antigen from Neisseria meningitides type B (MenB) was administered intramuscularly (i.m.) or intraperitonealy (i.p.). An antigen from HIV-1, env glycoprotein gp140 was administered intranasally (i.n.) followed by an i.m. boost. From three studies, there were no differences between the nanoparticles and micro-particles formulations. Both particles led to comparable immune responses in mice. The immune responses for MenB (serum bactericidal activity and antibody titers) were equivalent to the control of aluminum hydroxide. For the gp140, the LTK63 was necessary for high titers. Both nanoparticles and microparticles are promising delivery systems.  相似文献   

5.
Adjuvant is originated from the Latin word "adjuvare" which means "help" in English to enhance the immunological responses when given together with antigens. The beginning of adjuvant was mineral oil which enhanced the immune response when it was given with inactivated Salmonella typhimurium. Aluminium salt was used to precipitate diphtheria toxoid and increased level of antibody response was demonstrated when administered with alum-precipitated antigens. Since 1930, aluminium salt has been used as DTaP (diphtheria-tetanus-acellular pertussis vaccine) adjuvant. Many candidates were tested for adjuvant activity but only aluminum salt is allowed to use for human vaccines. New adjuvant MF59, oil-in-water emulsion type, was developed for influenza vaccine for elderly (Fluad) and series of AS adjuvant are used for hepatitis B, pandemic flue, and human papiloma virus vaccines. Oil-adjuvanted influenza pandemic vaccines induced higher antibody response than alum-adjuvanted vaccine with higher incidence of adverse events, especially for local reactions. Alum-adjuvanted whole virion inactivated H5N1 vaccine was developed in Japan, and it induced relatively well immune responses in adults. When it applied for children, febrile reaction was noted in approximately 60% of the subjects, with higher antibodies. Recent investigation on innate immunity demonstrates that adjuvant activity is initiated from the stimulation on innate immunity and/or inflammasome, resulting in cytokine induction and antigen uptake by monocytes and macrophages. The probable reason for high incidence of febrile reaction should be investigated to develop a safe and effective influenza vaccine.  相似文献   

6.
This paper provides a review of the role of dendritic cells (DC) in microparticle-mediated immune response and the advantages of associating DNA to microparticles in order to increase the potency of DNA vaccination in vivo. To begin with, different methods for the preparation of DNA-loaded microparticle with poly(lactide) (PLA)/poly(lactide-co-glycolide) (PLGA) polymers are presented. Further, the effects of DNA-loaded microparticles on DC in vitro are extensively examined including transfection and stimulation of DC, a key feature of the immune response. Finally, in vivo tracking of DNA-loaded microparticles and induction of immune responses upon DNA-loaded microparticle administration in different animal models and with various routes of administration are reviewed.  相似文献   

7.
The antigenic extract Hot Saline from Brucella ovis was microencapsulated by the spray-drying technique with different polyesters (poly-lactide-co-glycolide RG502H [PLGA], and blends with poly- epsilon -caprolactone [PEC]) in order to obtain microparticles smaller than 5 microm. Microparticles were tested for encapsulation efficiency, release studies, acidification of the in vitro release medium, and in vitro J744-macrophage experiments (phagocytosis and toxicity of the preparations) to determine the optimal formulation for vaccination purposes. Formulation containing no PCL showed the highest encapsulation efficiency, although the differences were not significant. The in vitro release kinetics were characterized by a high burst effect after 1 h of incubation, followed by a slow and continuous release. For the formulation based on PLGA, the pH of the medium during release dropped from 7.4 to 3.5 while the presence of PEC attenuated the pH drop. All formulations showed light toxicity by the MTT assay, but differences were observed in terms of phagocytosis, as particles prepared with PEC showed the higher uptake by J744-macrophages and cell respiratory burst, determined by oxygen peroxide release. All these characteristics suggest that the microparticulated antigenic formulation containing the higher ratio of PEC is susceptible to be used in animal vaccination studies.  相似文献   

8.
Squalene-based oil-in-water (O/W) emulsions have been used as effective and safe adjuvants in approved influenza vaccines. However, there are concerns regarding the safety and side effects of increasing risk of narcolepsy. In present study, novel O/W microemulsions (MEs) containing wheat germ oil, D-alpha tocopheryl polyethylene glycol 1000 succinate (TPGS) and Cremophor EL (CreEL) or Solutol HS15 were formulated with/without a cationic surfactant, cetyltrimethylammonium bromide (CTAB) and then sterilized by autoclaving. Their physical properties and biological efficacies were evaluated. The results demonstrated that autoclaving reduced the droplet size to ∼20 nm with narrow size distributions resulting in monodisperse systems with good stability up to 3 years. Hemolytic activity, viscosity, pH, and osmolality were appropriate for parenteral use. Bovine serum albumin (BSA), a model antigen, after mixing with MEs retained the protein integrity, assessed by SDS-PAGE and CD spectroscopy. Greater percentages of 28SC cell viability were observed from CreEL-based MEs. Uptake of FITC-BSA-MEs increased with the increasing concentration of CTAB confirmed by CLSM images. Furthermore, cationic CreEL-based MEs could induce Th1 cytokine synthesis with an increase in TNF-α and IL-12 levels and a decrease in IL-10 level. In vivo immunization study in mice of adjuvants admixed with influenza virus solution revealed that nonionic and selected cationic CreEL-MEs enhanced immune responses as measured by influenza-specific serum antibody titers and hemagglutination inhibition titers. Particularly, cationic CreEL-based ME showed better humoral and cellular immunity with higher IgG2a titer than nonionic CreEL-based ME and antigen alone. No differences in immune responses were observed between mice immunized with selected cationic CreEL-based ME and marketed adjuvant. In addition, the selected ME induced antigen-sparing while retained immune stimulating effects compared to antigen alone. No inflammatory change in muscle fiber structure was observed. Accordingly, the developed cationic CreEL-based ME had potential as novel adjuvant for parenteral influenza vaccine.  相似文献   

9.
10.
疫苗佐剂最新研究进展   总被引:4,自引:0,他引:4  
疫苗佐剂能够提高机体对抗原的适应性免疫应答,在疫苗的研发中具有重要的作用。随着药物研发的不断进步,近年来国内外出现了许多新型佐剂。本文分类阐述了近年来疫苗佐剂的最新研究进展及应用概况,总结了佐剂对免疫系统的影响和作用机制、临床有效性和不良反应,以及新型佐剂研发最新关注热点。在寻找并设计理想佐剂的同时我们不能忽略安全问题,应深入研究佐剂的作用机制及评价模型,全面评估其安全性。  相似文献   

11.
Adjuvants have been common additions to vaccines to help facilitate vaccine delivery. With advancements in vaccine technology, several adjuvants which activate immune specific responses have emerged. Available data show these adjuvants elicit important immune responses in both healthy and immunocompromised populations, as well as the elderly. Guidelines for the use and licensure of vaccine adjuvants remain under discussion. However, there is a greater understanding of the innate and adaptive immune response, and the realization of the need for immune specific adjuvants appears to be growing. This is a focused review of four adjuvants currently in clinical trial development: ASO4, ASO2A, CPG 7907, and GM-CSF. The vaccines including these adjuvants are highly relevant today, and are expected to reduce the disease burden of cervical cancer, hepatitis B and malaria.  相似文献   

12.
Current research and development of antigens for vaccination often center on purified recombinant proteins, viral subunits, synthetic oligopeptides or oligosaccharides, most of them suffering from being poorly immunogenic and subject to degradation. Hence, they call for efficient delivery systems and potent immunostimulants, jointly denoted as adjuvants. Particulate delivery systems like emulsions, liposomes, nanoparticles and microspheres may provide protection from degradation and facilitate the co-formulation of both the antigen and the immunostimulant. Synthetic double-stranded (ds) RNA, such as polyriboinosinic acid–polyribocytidylic acid, poly(I:C), is a mimic of viral dsRNA and, as such, a promising immunostimulant candidate for vaccines directed against intracellular pathogens. Poly(I:C) signaling is primarily dependent on Toll-like receptor 3 (TLR3), and on melanoma differentiation-associated gene—5 (MDA-5), and strongly drives cell-mediated immunity and a potent type I interferon response. However, stability and toxicity issues so far prevented the clinical application of dsRNAs as they undergo rapid enzymatic degradation and bear the potential to trigger undue immune stimulation as well as autoimmune disorders. This review addresses these concerns and suggests strategies to improve the safety and efficacy of immunostimulatory dsRNA formulations. The focus is on technological means required to lower the necessary dosage of poly(I:C), to target surface-modified microspheres passively or actively to antigen-presenting cells (APCs), to control their interaction with non-professional phagocytes and to modulate the resulting cytokine secretion profile.  相似文献   

13.
Japanese encephalitis virus (JEV)-loaded poly(lactide) (PLA) lamellar and poly(DL-lactide-co-glycolide) (PLG) microparticles were successfully prepared with low molecular weight PLA by the precipitate method and with 6% w/v PLG in the organic phase, 10% w/v PVP and 5% w/v NaCl in the continuous phase, by using a water-in-oil-in-water emulsion/solvent extraction technique, respectively. JEV was entrapped in the PLG microparticles by a solvent extraction technique with trapping efficiencies up to 98%, loading level 5.5% w/w, and mean particle size 3.8 microm. The distribution (%) of JEV on the PLG microparticles surface, outer layer, and core were 11.2, 41.7 and 46.4%, respectively. The cumulative release of JEV had an upper limit of approximately 58% of the JEV load at 24 days. The steady release rate was 1.33 microg JEV/mg microparticles/day of JEV release maintained for 24 days. The corresponding virus loading of the PLA lamellae is approximately 0.78% w/w and the loading efficiency (77.8%), JEV content (7.84 microg/mg), and yield (96.3%), respectively. The distribution (%) of JEV on the microparticles surface, outer layer, and core were 82.1, 13.3 and 2.2%, respectively. The live JEV challenge in mice test, in which mice received one dose of 20 mg JEV-loaded PLG microparticles, 20 mg JEV-loaded PLA lamellar in comparison with JEV or PBS solution, was evaluated after IP immunization of BALB/c mice. The study results show that the greatest survival was observed in the group of mice immunized with 20 mg JEV-loaded PLG microparticles and 20 mg JEV-loaded PLA microparticles group (80%). The JEV incorporation, physicochemical characterization data, and the animal results obtained in this study may be relevant in optimizing the vaccine incorporation and delivery properties of these potential vaccine targeting carriers.  相似文献   

14.
目的探讨壳聚糖在幽门螺杆菌疫苗中的免疫佐剂效应。方法将20只Balb/c小鼠分为4组,分别以磷酸盐缓冲液、单纯幽门螺杆菌(Hp)抗原、Hp抗原+壳聚糖酸溶液、Hp抗原+壳聚糖颗粒进行口服免疫,用ELISA法检测胃黏膜中白细胞介素(IL)-2I、L-4,IL-10。结果胃黏膜内IL-10和IL-4的含量在以壳聚糖为佐剂组(255.25,237.05 pg/mg和14.70,14.48 pg/mg)显著高于无佐剂组(104.33和6.49 pg/mg)和对照组(67.13,4.19 pg/mg)(P<0.05~0.01)。结论以壳聚糖为佐剂的Hp疫苗可明显促进TH2细胞因子IL-4I、L-10的分泌,这可能在其免疫防御中起作用。  相似文献   

15.
Microparticles, containing an antigenic complex from Brucella ovis (HS), were evaluated for vaccine purposes against brucellosis. They were prepared by the double emulsion solvent evaporation method using two different polyesters, poly-lactide-co-glycolide acid (75:25; RG 756) and poly-epsilon-caprolactone. The encapsulation efficiency and release of HS from the microparticles, their capacity to be phagocytosed and also their toxicity on murine monocytes J774.2 were investigated. Both polymers lead to smooth and spherical sub-5 microm particles, with approximately 30% of the antigen initial dose encapsulated. SDS-PAGE and immunoblot of extracted antigens confirmed that the apparent molecular weight and antigenicity remained unaltered after the encapsulation procedure. However, the in vitro release of the antigens differed among them. The release profile for PLGA microparticles was continuous, whereas PEC ones released the antigens in a triphasic release pattern. Phagocytosis was clearly influenced by the hydrophobicity of the polymer, increasing in the case of PEC microparticles. Toxicity assay showed that both types of microparticles induced similar levels of mitochondrial damage. In conclusion, HS-PEC microparticles could be used as an effective vaccine against brucellosis, as the antigen is released in boosters and they are greatly phagocytosed by macrophages.  相似文献   

16.
Aluminum (Al) salt-based adjuvants are present in a large variety of licensed vaccines and their use is widely considered for formulations in clinical trials. Although the regulatory agencies have clearly stated the acceptable levels of Al salts in vaccines for human use, there are no general indications for preclinical research. This brief commentary reviews the current status of Al concentrations in licensed vaccines, the related potential toxicity in preclinical species, and proposes a general guideline for selection of suitable Al salt levels in preclinical models, focusing on the formulation development for recombinant protein antigens. A table with conversion factors is included in order to provide a tool for calculation of doses with different Al salts.  相似文献   

17.
This study describes the isolation, purification, characterization, and adjuvant activity of an orally active adjuvant substance from the tuber of Pinellia ternata, as an active herbal component of the traditional Japanese herbal (Kampo) medicine, Sho-seiryu-to (SST, Chinese name: Xiao-Qing-Long-Tang), which has been reported to show oral adjuvant activity for nasally administered influenza HA vaccine [Int. J. Immunopharmacol. 16 (1994) 605]. The active compound was identified as 9S, 12S, 13S-trihydroxy-10E-octadecenoic acid using infrared spectra, proton magnetic resonance, mass spectrometry, and circular dichroism, and named pinellic acid. Oral administration of pinellic acid (1 microg) to BALB/c mice given primary and secondary intranasal inoculations of influenza HA vaccine (1 microg) enhanced antiviral IgA antibody (Ab) titers 5.2- and 2.5-fold in nasal and bronchoalveolar washes, respectively, and antiviral IgG Ab titers 3-fold in bronchoalveolar wash and serum. Intranasal administration of pinellic acid (1 microg) with influenza HA vaccine (1 microg) slightly enhanced antiviral IgG Ab titers in bronchoalveolar wash and serum but not antiviral IgA Ab titers in nasal and bronchoalveolar washes. Pinellic acid showed no hemolytic activity. The results of this study suggest that pinellic acid may provide a safe and potent oral adjuvant for nasal influenza HA vaccine.  相似文献   

18.
Genital herpes is one of the most common sexually transmitted diseases worldwide. Currently, there are three FDA-approved nucleoside analogs and other therapies such as foscarnet and cidofovir used to treat genital herpes. Resiquimod, the latest immune response modifier (IRM), has shown in vivo evidence of efficacy against herpes simplex virus (HSV) type 2. The first clinical trial involving resiquimod demonstrated that it reduced the recurrence rate of genital herpes, but phase III trials were suspended due to lack of efficacy. Resiquimod shows promise for other viral infections and as a vaccine adjuvant.  相似文献   

19.
Injectable biodegradable polymeric particles (usually microspheres) represent an exciting approach to control the release of vaccine antigens to reduce the number of doses in the immunization schedule and optimize the desired immune response via selective targeting of antigen to antigen presenting cells. After the first couple of decades of their study, much progress has been made towards the clinical use of antigen-loaded microspheres. Poly(lactide-co-glycolic acids) (PLGAs) have been studied most commonly for this purpose because of their proven safety record and established use in marketed products for controlled delivery of several peptide drugs. PLGA microspheres have many desirable features relative to standard aluminum-based adjuvants, including the microspheres' ability to induce cell-mediated immunity, a necessary requirement for emergent vaccines against HIV and cancer. This review examines several impediments to PLGA microparticle development, such as PLGA-encapsulated antigen instability and deficiency of animal models in predicting human response, and describes new trends in overcoming these important issues. PLGA microparticles have displayed unprecedented versatility and safety to accomplish release of one or multiple antigens of varying physical-chemical characteristics and immunologic requirements, and have now met numerous critical benchmarks in development of long-lasting immunity after a single injected dose.  相似文献   

20.
Caffeine as an analgesic adjuvant   总被引:1,自引:0,他引:1  
Caffeine is a ubiquitous substance. From a historical standpoint, caffeine is one of the oldest substances consumed by man in the form of coffee beans, teas, guanara beans and mate. Caffeine is commonly found in many analgesic products as an adjuvant. Caffeine is almost completely absorbed in the GI tract. Since caffeine is lipid soluble, it is rapidly absorbed into the brain where it becomes active within 6-8 min. Caffeine has some analgesic properties itself and because of its rapid absorption and distribution, is useful as an adjuvant in combination analgesic medications. Because of the wide availability in beverages and medications, concerns regarding overuse resulting in caffeinism, dependence, habituation and addiction have been raised. Extensive review of the literature reveals that occurrence of these conditions resulting from the use of caffeine is minimal and, therefore, caffeine is effective and safe as an analgesic adjuvant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号