首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The utilisation of nonviral gene delivery methods has been increasing st-eadily, however, a drawback has been the relative low efficiency of gene transfer with naked DNA compared with viral delivery methods. Invivo electroporation, which has previously been used clinically to deliver chemotherapeutic agents, also enhances the delivery of plasmid DNA and has been used to deliver plasmids to several tissue types, particularly muscle and tumour. Recently, a large number of preclinical studies for a variety of therapeutic modalities have demonstrated the potential of electrically mediated gene transfer. Although clinical trials using gene transfer with invivo electroporation have not as yet been realised, the tremendous growth of this technology suggests that the first trials will soon be initiated.  相似文献   

2.
The physical phenomenon of electroporation has been successfully exploited in vitro for the delivery of genes, drugs, and other molecules with increasing frequency over the past two decades. This type of electrically mediated delivery has been translated into an in vivo setting in more recent years with a focus on therapeutic molecules. One promising area is the delivery of genes as a therapy.Advances in molecular medicine have produced a very large amount of information about genes that translate to therapeutic molecules when expressed in living cells. Current standard methods for transferring genes utilize viruses to deliver DNA into cells. These viral methods have not yielded optimal results in most cases. Therefore, there is an increasing interest in nonviral methods for gene delivery. In vivo electrically mediated gene delivery is an attractive alternative because of the site specific nature of delivery as well as the universal applicability of electroporation. A review of the studies performed to investigate and develop this new gene delivery technology is presented.  相似文献   

3.
10-23脱氧核酶(10-23 DNAzyme,10-23DZ)是近年来利用体外分子进化技术筛选得到的一种具有催化功能的单链DNA分子,能高效、特异催化RNA特定部位的切割反应,实现mRNA水平的基因沉默.目前,10-23DZ已被广泛应用于肿瘤、动脉粥样硬化、感染性疾病等的治疗研究,逐渐成为基因治疗研究的重要手段.如何将其有效地导人机体是10-23DZ进入临床应用的关键问题之一.目前,已有多种递送载体和方法用于10-23DZ的体内转染,如直接注射、电穿孔、脂质体、纳米颗粒、体内表达等.  相似文献   

4.
The combined treatment consisting of a chemotherapeutic agent and pulsed electric fields has been termed electrochemotherapy. This relatively new treatment modality relies on the physical effects of locally applied electric fields to destabilize cell membranes in the presence of a drug. Membrane destabilization, electroporation, allows increased movement of molecules into the cytosol. Thus, the pulses are used to locally deliver drugs to the interior of cells. This type of treatment has principally been used to deliver bleomycin to tumor cells in vitro and in vivo. Marked antitumor effects have been reported in preclinical studies. In addition, electrochemotherapy clinical trials have been conducted for the treatment of head and neck squamous cell carcinoma, melanoma, and basal cell carcinoma. Objective response rates ranging from 72 to 100% have been reported from these trials. A review of the preclinical and clinical data for this novel drug delivery method is presented.  相似文献   

5.
The Achilles heel of gene-based therapy is gene delivery into the target cells efficiently with minimal toxic effects. Viral vectors for gene/DNA vaccine delivery are limited by the safety and immunological problems. Recently, nonviral gene delivery mediated by electroporation has been shown to be efficient in different tissues including skin. There are no detailed reports about the effects of electroporation on skin tissue, when used for gene/DNA vaccine delivery. In a previous study we demonstrated the efficacy of skin targeted DNA vaccine delivery using electroporation in rabbits [Medi, B.M., Hoselton, S., Marepalli, B.R., Singh, J., 2005. Skin targeted DNA vaccine delivery using electroporation in rabbits. I. Efficacy. Int. J. Pharm. 294, 53-63]. In the present study, we investigated the safety aspects of the electroporation technique in vivo in rabbits. Different electroporation parameters (100-300 V) were tested for their effects on skin viability, macroscopic barrier property, irritation and microscopic changes in the skin. Skin viability was not affected by the electroporation protocols tested. The electroporation pulses induced skin barrier perturbation and irritation as indicated by elevated transepidermal water loss (TEWL) and erythema/edema, respectively. Microscopic studies revealed inflammatory responses in the epidermis following electroporation using 200 and 300 V pulses. However, these changes due to electroporation were reversible within a week. The results suggest that the electroporation does not induce any irreversible changes in the skin and can be a useful technique for skin targeted DNA vaccine delivery.  相似文献   

6.
Plasmid-based gene delivery to muscle is a treatment strategy for many diseases with potential advantages above viral-based gene delivery methods, however, with a relative low transfection efficiency. We compared two physical methods—electroporation and ultrasound—that facilitate DNA uptake into cells. Mice (C57Bl/6) were injected intramuscular using plasmid DNA encoding an intracellular protein (p53) followed by electroporation or ultrasound. Then 48 hr after the injections the mice were sacrificed. The parameter for transfection efficiency was the area of muscle expressing the transgene. The p53 expression plasmid showed a 36-fold increase (p = 0.015) in transfection efficiency with electroporation compared to ultrasound. Compared with ultrasound, electroporation significantly improves transfection efficiency of naked plasmid DNA transfer into skeletal muscle.  相似文献   

7.
Walther W  Stein U 《Drugs》2000,60(2):249-271
The efficient delivery of therapeutic genes and appropriate gene expression are the crucial issues for clinically relevant gene therapy. Viruses are naturally evolved vehicles which efficiently transfer their genes into host cells. This ability made them desirable for engineering virus vector systems for the delivery of therapeutic genes. The viral vectors recently in laboratory and clinical use are based on RNA and DNA viruses processing very different genomic structures and host ranges. Particular viruses have been selected as gene delivery vehicles because of their capacities to carry foreign genes and their ability to efficiently deliver these genes associated with efficient gene expression. These are the major reasons why viral vectors derived from retroviruses, adenovirus, adeno-associated virus, herpesvirus and poxvirus are employed in more than 70% of clinical gene therapy trials worldwide. Among these vector systems, retrovirus vectors represent the most prominent delivery system, since these vectors have high gene transfer efficiency and mediate high expression of therapeutic genes. Members of the DNA virus family such as adenovirus-, adeno-associated virus or herpesvirus have also become attractive for efficient gene delivery as reflected by the fast growing number of clinical trials using these vectors. The first clinical trials were designed to test the feasibility and safety of viral vectors. Numerous viral vector systems have been developed for ex vivo and in vivo applications. More recently, increasing efforts have been made to improve infectivity, viral targeting, cell type specific expression and the duration of expression. These features are essential for higher efficacy and safety of RNA- and DNA-virus vectors. From the beginning of development and utilisation of viral vectors it was apparent that they harbour risks such as toxicities, immunoresponses towards viral antigens or potential viral recombination, which limit their clinical use. However, many achievements have been made in vector safety, the retargeting of virus vectors and improving the expression properties by refining vector design and virus production. This review addresses important issues of the current status of viral vector design and discusses their key features as delivery systems in gene therapy of human inherited and acquired diseases at the level of laboratory developments and of clinical applications.  相似文献   

8.
Until recently, nonviral vectors were outside the mainstream of gene transfer technology. Recent problems in clinical trials using viral vectors renewed interest in these methods. The clinical usefulness of nonviral methods is still hindered by their relatively low gene delivery/transgene expression efficiencies. Vectors must navigate a series of obstacles before the therapeutic gene can be expressed. This review considers these barriers and the properties of components of nonviral vectors that are essential for nucleic acid transfer. Although developments of new physical methods (hydrodynamic delivery, ultrasound, electroporation) have made a significant impact on gene transfer efficiency, various chemical carriers (lipids and polymers) have been shown to achieve high-level gene delivery and functional expression. Success of nonviral gene targeting will depend not only on the efficacy, but also safety of this methodology, and this aspect is also discussed. Understanding problems associated with nonviral targeting can also help in designing better viral vectors. In fact, interplay between viral and nonviral technologies should lead to a continued refinement of both methodologies.  相似文献   

9.
Until recently, nonviral vectors were outside the mainstream of gene transfer technology. Recent problems in clinical trials using viral vectors renewed interest in these methods. The clinical usefulness of nonviral methods is still hindered by their relatively low gene delivery/transgene expression efficiencies. Vectors must navigate a series of obstacles before the therapeutic gene can be expressed. This review considers these barriers and the properties of components of nonviral vectors that are essential for nucleic acid transfer. Although developments of new physical methods (hydrodynamic delivery, ultrasound, electroporation) have made a significant impact on gene transfer efficiency, various chemical carriers (lipids and polymers) have been shown to achieve high-level gene delivery and functional expression. Success of nonviral gene targeting will depend not only on the efficacy, but also safety of this methodology, and this aspect is also discussed. Understanding problems associated with nonviral targeting can also help in designing better viral vectors. In fact, interplay between viral and nonviral technologies should lead to a continued refinement of both methodologies.  相似文献   

10.
Structure and design of polycationic carriers for gene delivery   总被引:2,自引:0,他引:2  
The development of safe and effective gene delivery methods is a major challenge to enable gene therapy or DNA vaccines to become a reality. Currently there are two major approaches for delivery of genetic material, viral and non-viral. The majority of on-going clinical trials in gene therapy or DNA vaccines use retroviruses and adenoviruses for delivering genetic materials. Viral delivery systems are far more effective than non-viral delivery however there are concerns regarding toxicity, immunogenicity and possible integration of viral genetic material into the human genome. Given the negative charge of the phosphate backbone of DNA, polycationic molecules have been the major focus as carriers of DNA. There are several physiological barriers to overcome for effective systemic delivery of DNA. The ideal vector must be stable in the systemic circulation, escape the reticuloendothelial system, able to extravasate tissues, enter the target cell, escape lysosomal degradation and transport DNA to the nucleus to be transcribed. With increasing understanding of the physicochemical properties essential to overcome the various barriers, it is possible to apply rational design to the cationic carriers. A number of poly-amino acids, cationic block co-polymers, dendrimers and cyclodextrins have been rationally designed to optimize gene delivery. This review will discuss approaches that have been used to design various synthetic polycations with enhanced DNA condensing ability, serum stability and endosomolytic capability for efficient gene transfer in vitro and in vivo.  相似文献   

11.
Gene therapy provides great opportunities for treating diseases from genetic disorders, infections and cancer. To achieve successful gene therapy, development of proper gene delivery systems could be one of the most important factors. Several non-viral gene transfer methods have been developed to overcome the safety problems of their viral counterpart. Polymer-based non-viral gene carriers have been used due to their merits in safety including the avoidance of potential immunogenecity and toxicity, the possibility of repeated administration, and the ease of the establishment of good manufacturing practice (GMP). A wide range of polymeric vectors have been utilized to deliver therapeutic genes in vivo. The modification of polymeric vectors has also shown successful improvements in achieving target-specific delivery and in promoting intracellular gene transfer efficiency. Various systemic and cellular barriers, including serum proteins in blood stream, cell membrane, endosomal compartment and nuclear membrane, were successfully circumvented by designing polymer carriers having a smart molecular structure. This review explores the recent development of polymeric gene carriers and presents the future directions for the application of the polymer-based gene delivery systems in gene therapy.  相似文献   

12.
Gene therapy was initially thought of as a means to correct single gene defects in hereditary disease. Since then, cancer has become the most important indication for gene therapy in clinical trials. In the foreseeable future, the best way to achieve reasonable intratumoral concentrations of a transgene with available vectors will be direct intratumoral injection with or without the help of various techniques such as endoscopy or computed tomography guidance. At present, viral and nonviral methods of gene transfer are used either in vivo or ex vivo/in vitro. The most important viral vectors currently used in clinical trials are retroviruses, adenoviruses, adeno-associated viruses and herpes viruses. However, none of them satisfies all the criteria of an ideal gene therapeutic system, and vectors with only minimal residues of their parent viruses (gutless vectors) and completely synthetic viral vectors are gaining importance. Nonviral methods of gene therapy include liposomes, injection of vector-free (naked) DNA, protein-DNA complexes, delivery by gene gun, calcium-phosphate precipitation, electroporation and intracellular microinjection of DNA. The first clinical trial of human gene therapy was performed in 1990 and since then more than 5000 patients have been treated worldwide in over 400 clinical protocols. Side effects were rare and mostly mild in all of these studies and expression of the transgene was demonstrated in patients in vivo. Despite anecdotal reports of therapeutic responses in some patients, there is still no unequivocal proof of clinical efficacy of most approaches to gene therapy in cancer, primarily due to very low transduction and expression efficacy in vivo of available vectors. Strategies for gene therapy of cancer can be subdivided into four basic concepts: 1) strengthening of the immune response against a tumor, 2) repair of cell cycle defects caused by loss of tumor suppressor genes or inappropriate activation of oncogenes, 3) suicide gene strategies and 4) inhibition of tumor angiogenesis. Gene marker studies and gene protection of normal tissue are also discussed.  相似文献   

13.
Plasmid-based gene delivery to muscle is a treatment strategy for many diseases with potential advantages above viral-based gene delivery methods, however, with a relative low transfection efficiency. We compared two physical methods—electroporation and ultrasound—that facilitate DNA uptake into cells. Mice (C57Bl/6) were injected intramuscular using plasmid DNA encoding an intracellular protein (p53) followed by electroporation or ultrasound. Then 48 hr after the injections the mice were sacrificed. The parameter for transfection efficiency was the area of muscle expressing the transgene. The p53 expression plasmid showed a 36-fold increase (p = 0.015) in transfection efficiency with electroporation compared to ultrasound. Compared with ultrasound, electroporation significantly improves transfection efficiency of naked plasmid DNA transfer into skeletal muscle.  相似文献   

14.
《Drugs in R&D》2004,5(5):293-296
Genetronics Biomedical is using its electroporation therapy technology to deliver bleomycin to tumour cells for the treatment of cancer. Genetronics have developed the MedPulser Electroporation Therapy System, which consists of an electrical pulse generator and disposable electrode applicators. The MedPulser system enables the delivery of large molecules into cells by briefly applying an electric field to the cell. This causes a transient permeability in the cell's outer membrane characterised by the appearance of pores across the membrane. After the field is discontinued, the pores close, trapping the therapeutic molecules inside the target cells. Genetronics is using the MedPulser System in conjunction with bleomycin, an antineoplastic antibiotic that binds to DNA causing strand scissions. Genetronics is seeking a licensing partner for the use of electroporation for the delivery of drugs in chemotherapy. In 1998, Genetronics entered a licensing and development agreement with Ethicon for electroporation and electrofusion. Under the terms of this agreement, Ethicon was to develop and clinically test the Genetronics electroporation delivery system and conduct all regulatory activities throughout the world except Canada. Ethicon would also market the products once regulatory approval has been obtained and Genetronics was to receive a percentage of the net sales and as license fees. However, in July 2000, Ethicon exercised its rights to terminate the agreement without cause. All rights were returned to Genetronics in January 2001. In 1997, Genetronics entered an agreement with Abbott Laboratories for the manufacture of bleomycin for use in the US in its MedPulsar system after regulatory approval had been granted for its use in the treatment of solid tumours. In a separate supply agreement, Faulding Inc. has agreed to manufacture bleomycin for Genetronic for use in Canada after regulatory approval had been granted. The MedPulsar Electroporation Therapy System with bleomycin is currently in phase III pivotal studies in the US as a treatment for recurrent and second primary squamous cell carcinomas of the head and neck. Genetronics received approval for the Electroporation Therapy system as a device in March 1999 when it achieved CE Mark certification. In February 2004, Genetronics announced that it had completed a Special Protocol Assessment review process with the US FDA for two new trials that will compare bleomycin electroporation therapy to surgery. The primary endpoint will be tissue and function preservation rather than survival. One proposal is for recurrent head and neck cancer, and the other is for disfiguring cutaneous cancer. Three Institutional Review Boards in the US have approved the two protocols and Genetronics has initiated enrollment. In June 2004, Genetronics was granted fast-track status for its MedPulsar Electroporation Therapy System clinical development programme for patients with head and neck cancer. Shifting from a primary endpoint of survival to a quality-of-life outcome will enable those clinical trials to be carried out faster with less cost and with a higher likelihood of success. As a result, Genetronic's phase III trials focussing on survival as a primary endpoint have been discontinued. This includes a phase III trial for late-stage, recurrent head and neck cancer in combination with the normal standard of treatment compared with normal standard of treatment alone. Interim results from this trial had suggested bleomycin electroporation therapy demonstrated local tumour control and preservation of organ function, as well as non-inferiority when compared with surgery. This trial was initiated in May 2002. In March 2004, Genetronics initiated a post-European regulatory approval clinical study in patients with primary or recurrent squamous cell carcinoma of the head and neck (SCCHN). This study aims to enroll approximately 100 patients at 12-15 hospitals located in the UK, Germany, Italy, France, Austria and other western European countries. The study is designed to support the commercialisation of the MedPulser Electroporation System in the EU. Prior clinical trials established the safety and performance of the MedPulser System for the treatment of SCCHN, leading to approval for sale in the EU based on achieving the CE Mark. This study will document the clinical and pharmacoeconomic benefit in support of reimbursement approval throughout Western Europe, establish centres of excellence to facilitate early sales, create a reference and customer base for a projected European commercial launch in 2005, and generate safety and efficacy data to support marketing applications in the US. The bleomycin delivery system has completed phase IIB trials in the US, Canada and Europe in patients with squamous cell carcinoma of the head and neck who have failed conventional therapies. Phase II data were submitted to the FDA in the first quarter of 2002 and a phase III trial was launched in May 2002. The therapy is also being used in France in patients with cancers of the head and neck, liver (metastatic) and melanoma. A review of the data from these phase II trials was completed in April 2001. In June 2004, Genetronics was granted two US patents. US patent 6,748,265 covers its trans-surface drug and gene delivery technology and provides additional proprietary rights for an apparatus and method to deliver genes, drugs and other molecules through tissue surfaces. The second US patent, 6,746,441, pertains to the field of ex vivo therapies and covers the introduction of molecules into cells by electroporation, either in a continuous-flow or batch mode, with a variable electric field orientation. In July 2004, Genetronics received a US patent (no. 6,763,264) covering methods for the in vivo delivery of a recombinant expression vector (DNA) or a pharmaceutical agent into tissue cells, and a method for the therapeutic application of electroporation to a patient to introduce macromolecules.  相似文献   

15.
Structural and metabolic consequences of liposome-lipoprotein interactions   总被引:1,自引:0,他引:1  
Human gene therapy is based on the technology of genetic engineering of cells, either through ex vivo or in vivo methods of gene transfer. Many autologous cell types have been successfully modified to deliver recombinant gene products. An alternate form of gene therapy based on genetic modification of non-autologous cells is described. Protection within immuno-isolating devices would allow implantation of well-established recombinant cell lines in different allogeneic hosts, potentially offering a more cost-effective approach to gene therapy. Implantation with microencapsulated fibroblasts and myoblasts has resulted in successful recombinant product delivery in vivo. Correction of disease phenotypes in animal models of human genetic diseases has also been achieved. Cell types such as myoblasts which can differentiate terminally within the implantation device are particularly promising for the future development of this method of gene therapy.  相似文献   

16.
Transdermal drug delivery has many potential advantages, but the skin's poorly-permeable stratum corneum blocks delivery of most drugs at therapeutic levels. Short high-voltage pulses have been used to electroporate the skin's lipid bilayer barriers and thereby deliver compounds at rates increased by as much as four orders of magnitude. Evidence that the observed flux enhancement is due to physical alteration of the skin by electroporation, as opposed to only providing an iontophoretic driving force, is supported by a number of different transport, electrical and microscopy studies. Practical applications of electroporation's unique effects on skin are motivated by large flux increases for many different compounds, rapidly responsive delivery profiles, and efficient use of skin area and electrical charge. Greater enhancement can be achieved by combining skin electroporation with iontophoresis, ultrasound, and macromolecules. Sensation due to electroporation can be avoided by using appropriate electrical protocols and electrode design. To develop skin electroporation as a successful transdermal drug delivery technology, the strong set of existing in vitro mechanistic studies must be supplemented with studies addressing in vivo/clinical issues and device design.  相似文献   

17.
The without a doubt major obstacle for making DNA vaccines a commercial success is delivery. If delivery cannot be made simple, cheap and effective, DNA vaccines may not become a viable option for human use. Numerous clinical trials have confirmed that a standard needle and syringe simply do not do the job, i.e., delivering the DNA payload inside the cell. Having recognized this shortcoming, investigators have developed several new approaches for DNA vaccine delivery. In particular, new types of delivery devices, originally intended for in vitro use, have been applied for in vivo delivery. These include particle bombardment or biolistic delivery, and in vivo electroporation (EP). Importantly, both techniques seem to overcome the size barrier, meaning that they work in both mice and larger animals. In vivo EP has the key features of improved DNA uptake, increased antigen expression and a local inflammation. These factors are essential to make DNA vaccines effective in a larger host. Early data from clinical trials with DNA vaccines delivered by in vivo EP are cautiously promising. Thus, we may be entering a new era of DNA vaccination where we start to see clinical effects in humans; however, these may also be accompanied by side effects, as the vaccines become more effective.  相似文献   

18.
19.
Specific anatomical and biological properties make the skin a very interesting target organ for gene therapy approaches. Different cell types of the epidermis, such as keratinocytes, melanocytes, or dendritic cells, can be genetically modified to treat a broad spectrum of diseases, including genetically inherited skin disorders, tumour diseases, metabolic disorders and infectious diseases. The easy accessibility of skin suggests that different methods for gene delivery can be pursued, depending on the desired application. The approach used to deliver DNA to the skin will influence not only the efficiency of DNA delivery, but also the level and duration of transgene expression. Furthermore, the desired biological effect will also influence the decision of which gene transfer method is the best choice. Among the current challenges of cutaneous gene therapy are: optimising the efficiency of direct in vivo gene delivery; targeting specific epidermal cells, including keratinocyte stem cells; achieving sustained gene expression and regulating gene expression in vivo. This review summarises recent advances in the field of skin gene therapy and evaluates possible strategies to overcome obstacles and achieve successful clinical applications of skin gene therapy.  相似文献   

20.
Specific anatomical and biological properties make the skin a very interesting target organ for gene therapy approaches. Different cell types of the epidermis, such as keratinocytes, melanocytes, or dendritic cells, can be genetically modified to treat a broad spectrum of diseases, including genetically inherited skin disorders, tumour diseases, metabolic disorders and infectious diseases. The easy accessibility of skin suggests that different methods for gene delivery can be pursued, depending on the desired application. The approach used to deliver DNA to the skin will influence not only the efficiency of DNA delivery, but also the level and duration of transgene expression. Furthermore, the desired biological effect will also influence the decision of which gene transfer method is the best choice. Among the current challenges of cutaneous gene therapy are: optimising the efficiency of direct in vivo gene delivery; targeting specific epidermal cells, including keratinocyte stem cells; achieving sustained gene expression and regulating gene expression in vivo. This review summarises recent advances in the field of skin gene therapy and evaluates possible strategies to overcome obstacles and achieve successful clinical applications of skin gene therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号