首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric oxide (NO) is produced in almost all tissues and organs, exerting a variety of biological actions under physiological and pathological conditions. NO is synthesized by three different isoforms of NO synthase (NOS), including neuronal, inducible, and endothelial NOSs. Because there are substantial compensatory interactions among the NOS isoforms, the ultimate roles of endogenous NO in our body still remain to be fully elucidated. Here, we have successfully developed mice in which all three NOS genes are completely deleted by crossbreeding singly NOS-/- mice. NOS expression and activities were totally absent in the triply NOS-/- mice before and after treatment with lipopolysaccharide. Although the triply NOS-/- mice were viable and appeared normal, their survival and fertility rates were markedly reduced as compared with the wild-type mice. Furthermore, these mice exhibited marked hypotonic polyuria, polydipsia, and renal unresponsiveness to an antidiuretic hormone, vasopressin, all of which are characteristics consistent with nephrogenic diabetes insipidus. In the kidney of the triply NOS-/- mice, vasopressin-induced cAMP production and membranous aquaporin-2 water channel expression were reduced associated with tubuloglomerular lesion formation. These results provide evidence that the NOS system plays a critical role in maintaining homeostasis, especially in the kidney.  相似文献   

2.
Estrogen action, via both nuclear and extranuclear estrogen receptors (ERs), induces a variety of cellular signals that are prosurvival or proliferative, whereas nitric oxide (NO) can inhibit apoptosis via caspase S-nitrosylation and via activation of soluble guanylyl cyclase to produce cGMP. The action of 17β-estradiol (E(2)) at ER is known to elicit NO signaling via activation of NO synthase (NOS) in many tissues. The MCF-10A nontumorigenic, mammary epithelial cell line is genetically stable and insensitive to estrogenic proliferation. In this cell line, estrogens or NOS inhibitors alone had no significant effect, whereas in combination, apoptosis was induced rapidly in the absence of serum; the presence of inducible NOS was confirmed by proteomic analysis. The application of pharmacological agents determined that apoptosis was dependent upon NO/cGMP signaling via cyclic GMP (cGMP)-dependent protein kinase and could be replicated by inhibition of the phosphatidylinositol 3 kinase/serine-threonine kinase pathway prior to addition of E(2). Apoptosis was confirmed by nuclear staining and increased caspase-3 activity in E(2) + NOS inhibitor-treated cells. Apoptosis was partially inhibited by a pure ER antagonist and replicated by agonists selective for extranuclear ER. Cells were rescued from E(2)-induced apoptosis after NOS blockade, by NO-donors and cGMP pathway agonists; preincubation with NO donors was required. The NOS and ER status of breast cancer tissues is significant in etiology, prognosis, and therapy. In this study, apoptosis of preneoplastic mammary epithelial cells was triggered by estrogens via a rapid, extranuclear ER-mediated response, after removal of an antiapoptotic NO/cGMP/cGMP-dependent protein kinase signal.  相似文献   

3.
The endothelium is the largest autocrine and endocrine organ of the human organism. It participates in the regulation of the blood flow and tonus of the vascular wall, activation of thrombocytes, adhesion of monocytes to the vascular wall, thrombogenesis, lipid metabolism and growth of vessels. Endothelial cells may produce some 25 different biologically active substances. The most important one among them is probably NO. Under physiological conditions endothelial cells release permanently a small amount of NO or EDRF (endothelium-derived relaxing factor) and participate thus in the regulation of the tonus of the vascular wall at rest. The presence of NO excreated by endothelial cells can be detected in all parts of the circulation, from large arteries to small capillaries. Increased NO excretion is caused by a number of physiological stimuli, e.g. a rise of the blood pressure, drop of the partial oxygen pressure or the action of acetylcholine, ADP, ATP, thrombin, bradykinin or histamine. NO is a chemical messenger which is formed during oxidation of L-arginine to L-citrullin by the action of the enzyme NO synthase (NOS). Endothelial NOS is described as eNOS (endothelial/Type III/NOS-3). There exist also two other different isoforms of this enzyme: nNOS (neuronal/Type I/NOS-1/bNOS) andiNOS (inducible/Type II/NOS-2. NO plays an important part on the regulation of vascular homeostasis. It has a number of potential antiatherogenic functions. It causes vascular vasodilatation.  相似文献   

4.
5.
BACKGROUND: The role of nitric oxide synthase (NOS) in autoimmune disease is gaining increased attention because of the relationships between NOS activity and T-lymphocyte subpopulations and, in particular, the influence of NO on cytokine production by Th1 versus Th2 cells. In addition, there is evidence that both the liver and infiltrating hepatic T cells have inducible NOS-2 activity. METHODS: We studied serum levels of nitrite (NO2-) and nitrate (NO3-) in groups of patients with liver disease secondary to hepatitis B, hepatitis C, autoimmune hepatitis and primary biliary cirrhosis (PBC). Simultaneously, in a nested subpopulation, we studied the liver expression of NOS-2. RESULTS: Interestingly, there was a significant elevation both of nitrite and of nitrate in patients with PBC but not other liver diseases. Despite such increments, there was no correlation of the levels of nitrite and nitrate with sera levels of tumor necrosis factor-alpha, interferon-gamma, alanine aminotransferase, total bilirubin, alkaline phosphatase, gamma-glutamyl transpeptidase, platelet count, IgG, IgM, antimitochondrial antibodies or prothrombin time. These data were extended by demonstrating the expression of NOS-2 by immunohistochemistry in 13/14 patients with PBC, including in 9/14 patient hepatocyte populations and 4/14 bile duct cells. In contrast, NOS-2 expression was noted in hepatitis B and hepatitis C, but only found within mononuclear cells. CONCLUSION: Our data suggest that NO produced through NOS-2 may play a role in the pathogenesis of bile duct injury in some PBC patients.  相似文献   

6.
Mediators of asthma: nitric oxide   总被引:8,自引:0,他引:8  
Endogenous nitric oxide is an ubiquitous gaseous molecule that regulates many aspects of human airway biology including the modulation of airway and vascular smooth muscle tone. It is generated from the three different enzymes nitric oxide synthases (NOS) -1, -2 and -3 which are all expressed in pulmonary cells. NOS-1 is localised primarily to neuronal structures, where NO is a mediator of the inhibitory Non-Adrenergic Non-Cholinergic System and NOS-3 is present in endothelial cells. While these enzymes are constitutively expressed, NOS-2 is an inducible enzyme independent of calcium and highly induced in inflammatory diseases such as allergic asthma, where NO may act beneficial or deleterious depending on the site of and amount of generation. The use of NO-donor compounds or classical unselective NOS inhibitors did not lead to significant therapeutical effects in asthmatic patients. Insights on the precise role of NO in asthma can only be achieved by targeting NO generation selectively. More potent and selective NOS-2 inhibitors have to clarify a role of NOS-modification based therapy in clinical routine. NO can also be detected in the exhaled air. Increased levels of exhaled NO in asthmatic patients may be useful for a non-invasive determination of airway inflammation.  相似文献   

7.
Nitric oxide (NO) generated from neuronal nitric oxide synthase (NOS-1) in intrinsic cardiac ganglia has been implicated in parasympathetic-induced bradycardia. We provide direct evidence that NOS-1 acts in a site-specific manner to promote cardiac vagal neurotransmission and bradycardia. NOS-1 gene transfer to the guinea pig right atrium increased protein expression and NOS-1 immunolocalization in cholinergic ganglia. It also increased the release of acetylcholine and enhanced the heart rate (HR) response to vagal nerve stimulation (VNS) in vitro and in vivo. NOS inhibition normalized the HR response to VNS in the NOS-1-treated group compared with the control groups (enhanced green fluorescent protein and sham) in vitro. In contrast, an acetylcholine analogue reduced HR to the same extent in all groups before and during NOS inhibition. These results demonstrate that NOS-1-derived NO acts presynaptically to facilitate vagally induced bradycardia and that upregulation of NOS-1 via gene transfer may provide a novel method for increasing cardiac vagal function.  相似文献   

8.
Prostaglandin E1 (PGE1) reduces cell death in experimental and clinical liver dysfunction. We have previously shown that PGE1 preadministration protects against NO-dependent cell death induced by D-galactosamine (D-GalN) through a rapid increase of nuclear factor kappaB (NF-kappaB) activity, inducible NO synthase (NOS-2) expression, and NO production. The present study investigates whether PGE1-induced NO was able to abolish NF-kappaB activation, NOS-2 expression, and apoptosis elicited by D-GalN. Rat hepatocytes were isolated following the classical method of collagenase perfusion of liver. PGE1 (1 micromol/L) was administered 2 hours before D-GalN (5 mmol/L) in primary culture rat hepatocytes. PGE1 reduced inhibitor kappaBalpha degradation, NF-kappaB activation, NOS-2 expression, and apoptosis induced by D-GalN. The administration of an inhibitor of NOS-2 abolished the inhibitory effect of PGE1 on NF-kappaB activation and NOS-2 expression in D-GalN-treated hepatocytes. Transfection studies using different plasmids corresponding to the NOS-2 promoter region showed that D-GalN and PGE1 regulate NOS-2 expression through NF-kappaB during the initial stage of hepatocyte treatment. PGE1 was able to reduce the promoter activity induced by D-GalN. In addition, a NO donor reduced NOS-2 promoter activity in transfected hepatocytes. In conclusion, administration of PGE1 to hepatocytes produces low levels of NO, which inhibits its own formation during D-GalN-induced cell death through the attenuation of NF-kappaB-dependent NOS-2 expression. Therefore, a dual role for NO in PGE1-treated D-GalN-induced toxicity in hepatocytes is characterized by a rapid NO release that attenuates the late and proapoptotic NOS-2 expression.  相似文献   

9.
AIM: To determine the incidence of Epstein Barr virus associated gastric carcinoma (GC) in Brazil and compare the expressions of apoptosis related proteins and nitric oxide synthases between EBV positive and negative gastric carcinoma. METHODS: In situ hybridization of EBV-encoded small RNA-1 (EBER-1) and PCR was performed to identify the presence of EBV in GCs. Immunohistochemistry was used to identify expressions of bcl-2, bcl-xl, bak, bax, p53, NOS-1, NOS-2, and NOS-3 proteins in 25 EBV positive GCs and in 103 EBV negative GCS. RESULTS: 12% of the cases of GC (25/208) showed EBER-1 and EBNA-1 expression. The cases were preferentially of diffuse type with intense lymphoid infiltrate in the stroma. EBV associated GCs showed higher expression of bcl-2 protein and lower expression of bak protein than in EBV negative GCs. Indeed, expressions of NOS-1 and NOS-3 were frequently observed in EBV associated GCs. CONCLUSION: Our data suggest that EBV infection may protect tumor cells from apoptosis, giving them the capacity for permanent cell cycling and proliferation. In addition, EBV positive GCs show high expression of constitutive NOS that could influence tumor progression and aggressiveness.  相似文献   

10.
The role of nitric oxide in tissue destruction   总被引:7,自引:0,他引:7  
Nitric oxide (NO) is synthesized via the oxidation of arginine by a family of nitric oxide synthases (NOS), which are either constitutive (ie. endothelial (ec)NOS and neuronal (nc)NOS) or inducible (iNOS). The production of nitric oxide plays a vital role in the regulation of physiological processes, host defence, inflammation and immunity. Pro-inflammatory effects include vasodilation, oedema, cytotoxicity and the mediation of cytokine-dependent processes that can lead to tissue destruction. Nitric oxide-dependent tissue injury has been implicated in a variety of rheumatic diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis and osteoarthritis. Conversely, the production of NO by endothelial cell NOS may serve a protective, or anti-inflammatory, function by preventing the adhesion and release of oxidants by activated neutrophils in the microvasculature. In this chapter we describe the multifaceted role of nitric oxide in inflammation and address the potential therapeutic implications of NOS inhibition.  相似文献   

11.
The tumor suppressor gene product p53 plays an important role in the cellular response to DNA damage from exogenous chemical and physical mutagens. Therefore, we hypothesized that p53 performs a similar role in response to putative endogenous mutagens, such as nitric oxide (NO). We report here that exposure of human cells to NO generated from an NO donor or from overexpression of inducible nitric oxide synthase (NOS2) results in p53 protein accumulation. In addition, expression of wild-type (WT) p53 in a variety of human tumor cell lines, as well as murine fibroblasts, results in down-regulation of NOS2 expression through inhibition of the NOS2 promoter. These data are consistent with the hypothesis of a negative feedback loop in which endogenous NO-induced DNA damage results in WT p53 accumulation and provides a novel mechanism by which p53 safeguards against DNA damage through p53-mediated transrepression of NOS2 gene expression, thus reducing the potential for NO-induced DNA damage.  相似文献   

12.
Sato K  Ozaki K  Oh I  Meguro A  Hatanaka K  Nagai T  Muroi K  Ozawa K 《Blood》2007,109(1):228-234
The molecular mechanisms by which mesenchymal stem cells (MSCs) suppress T-cell proliferation are poorly understood, and whether a soluble factor plays a major role remains controversial. Here we demonstrate that the T-cell-receptor complex is not a target for the suppression, suggesting that downstream signals mediate the suppression. We found that Stat5 phosphorylation in T cells is suppressed in the presence of MSCs and that nitric oxide (NO) is involved in the suppression of Stat5 phosphorylation and T-cell proliferation. The induction of inducible NO synthase (NOS) was readily detected in MSCs but not T cells, and a specific inhibitor of NOS reversed the suppression of Stat5 phosphorylation and T-cell proliferation. This production of NO in the presence of MSCs was mediated by CD4 or CD8 T cells but not by CD19 B cells. Furthermore, inhibitors of prostaglandin synthase or NOS restored the proliferation of T cells, whereas an inhibitor of indoleamine 2,3-dioxygenase and a transforming growth factor-beta-neutralizing antibody had no effect. Finally, MSCs from inducible NOS-/- mice had a reduced ability to suppress T-cell proliferation. Taken together, these results suggest that NO produced by MSCs is one of the major mediators of T-cell suppression by MSCs.  相似文献   

13.
It has been shown that the hypothalamic-pituitary-adrenal (HPA) axis responses to immune-derived stimuli in particular can be modulated by nitric oxide (NO). In the present study we examined the effect of endogenous and exogenous NO on the HPA axis responses to neural stimuli which are not related to immune functions. Intracerebroventricular injection of NOR-3, a donor of NO, had no effect on basal HPA axis activity but significantly attenuated the secretion of median eminence (ME) CRH-41 as well as the serum ACTH and corticosterone (CS) in response to acute photic stimulation in a dose-dependent manner. Intracerebroventricular administration of N-omega-nitro-L-arginine methyl ester (L-NAME), a general NOS inhibitor, significantly enhanced ACTH and CS responses to this stress but did not change the basal levels of these hormones. On the other hand, i.c.v. injection of aminoguanidine, an inhibitor of inducible NO synthase (NOS) but not of neuronal NOS, did not affect the HPA axis responses to photic stimulation. These results suggest that: (1) NO is involved in modulation of the HPA axis responses to neural stimuli which are not dependent on immune factors, (2) the effect of NO is mediated by inhibition of hypothalamic ME CRH-41 secretion, and (3) this effect is probably mediated by neuronal NOS and not by inducible NOS.  相似文献   

14.
BACKGROUND & AIMS: The biliary epithelium is involved both in bile production and in the inflammatory/reparative response to liver damage. Recent data indicate that inflammatory aggression to intrahepatic bile ducts results in chronic progressive cholestasis. METHODS: To understand the effects of nitric oxide on cholangiocyte secretion and biliary tract pathophysiology we have investigated: (1) the effects of proinflammatory cytokines on NO production and expression of the inducible nitric oxide synthase (NOS2), (2) the effects of NO on cAMP-dependent secretory mechanisms, and (3) the immunohistochemical expression of NOS2 in a number of human chronic liver diseases. RESULTS: Our results show that: (1) tumor necrosis factor (TNF)-alpha, and interferon (IFN)-gamma, synergically stimulate NO production in cultured cholangiocytes through an increase in NOS2 gene and protein expression; (2) micromolar concentrations of NO inhibit forskolin-stimulated cAMP production by adenylyl cyclase (AC), cyclic adenosine monophosphate (cAMP)-dependent fluid secretion, and cAMP-dependent Cl(-) and HCO(3)(-) transport mediated by cystic fibrosis transmembrane conductance regulator (CFTR) and anion exchanger isoform 2, respectively; (3) cholestatic effects of NO and of proinflammatory cytokines are prevented by NOS-2 inhibitors and by agents (manganese(III)-tetrakis(4-benzoic acid)porphyrin [MnTBAP], urate, trolox) able to block the formation of reactive nitrogen oxide species (RNOS); (4) NOS2 expression is increased significantly in the biliary epithelium of patients with primary sclerosing cholangitis (PSC). CONCLUSIONS: Our findings show that proinflammatory cytokines stimulate the biliary epithelium to generate NO, via NOS2 induction, and that NO causes ductular cholestasis by a RNOS-mediated inhibition of AC and of cAMP-dependent HCO(3)(-) and Cl(-) secretory mechanisms. This pathogenetic sequence may contribute to ductal cholestasis in inflammatory cholangiopathies.  相似文献   

15.
16.
Cytoskeletal proteins are crucial in maintaining cellular structure and, in certain cell types, also play an essential role in motility and shape change. Nitric oxide (NO) is an important paracrine mediator of vascular and platelet function and is produced in the vasculature by the enzyme NO synthase type 3 (NOS-3). Here, we demonstrate in human platelets that the polymerization state of beta-actin crucially regulates the activation state of NOS-3, and hence NO formation, through altering its binding of heat shock protein 90 (Hsp90). We found that NOS-3 binds to the globular, but not the filamentous, form of beta-actin, and the affinity of NOS-3 for globular beta-actin is, in turn, increased by Hsp90. Formation of this ternary complex among NOS-3, globular beta-actin, and Hsp90, in turn, results in an increase in both NOS activity and cyclic guanosine-3',5'-monophosphate, an index of bioactive NO, as well as an increased rate of Hsp90 degradation, thus limiting the duration for which NOS-3 remains activated. These observations suggest that beta-actin plays a critical role in regulating NO formation and signaling in platelets.  相似文献   

17.
BACKGROUND/AIMS: We have investigated the role of the nitric oxide (NO) and prostaglandins (PGs), respectively, synthesized by nitric oxide synthase 2 (NOS-2) and cyclooxygenase-2 (COX-2), in the outcome of liver regeneration after partial hepatectomy (PH). METHODS: Liver mass recovery and molecular parameters related to cell proliferation and apoptotic death have been determined. RESULTS: NOS-2 and COX-2 are normally both expressed in the remnant liver after PH, and inhibition of either one delays regeneration. We found, however, that simultaneous suppression of the activities of NOS-2 (by gene knockout) and COX-2 (by pharmacological inhibition) resulted in animal death between 24 and 72 h after PH. Analysis of liver mass recovery and molecular parameters related to cell proliferation and apoptotic death revealed increased liver-cell apoptosis and an insufficient proliferative response. Broad-specificity caspase inhibitors, such as z-Val-Ala-Asp.fmk (z-VAD), or administration of NO-donors, rescued animals from death, revealing a critical apoptotic bias at this stage of proliferation. CONCLUSIONS: These findings demonstrate that simultaneous signaling by NO and prostaglandins plays an important role in the mechanism of liver regeneration after PH by protecting the remnant tissue from apoptotic death.  相似文献   

18.
Nitric oxide (NO.) is a short-lived mediator which can be induced in a variety of cell types and produces many physiologic and metabolic changes in target cells. The inducible or high-output NO. synthase (NOS) pathway was first characterized in macrophages activated by lipopolysaccharide (LPS) and interferon gamma (IFN-gamma). Hepatocytes also express an inducible NOS following exposure to the combination of endotoxin (LPS) and tumor necrosis factor (TNF), interleukin 1 (IL-1), and IFN-gamma. In this study, to identify which of these cytokines, if any, was acting to induce the gene expression for hepatocyte NOS, we measured the levels of rat hepatocyte NOS mRNA by Northern blot analysis after stimulation by various combinations of endotoxin and cytokines in vitro. We found the mRNA for hepatocyte NOS to be a single band at approximately 4.5 kilobases which was maximally up-regulated (approximately 70-fold) by the combination of TNF, IL-1, IFN-gamma, and LPS. Abundance of NOS mRNA peaked 6-8 hr after stimulation and then declined by 25% at 24 hr. Unstimulated hepatocytes in vitro showed only a trace mRNA band after prolonged autoradiographic exposure. As single agents, TNF and IL-1 were the most effective inducers of hepatocyte NOS mRNA. Combinations of two or three stimuli revealed strong synergy between TNF, IL-1, and IFN-gamma. The increased mRNA levels correlated with elevated nitrogen oxide release and cGMP levels in the culture supernatants. Dexamethasone and cycloheximide inhibited induction of mRNA for hepatocyte NOS in a dose-dependent fashion. The addition of NG-monomethyl-L-arginine had no effect on mRNA levels but effectively blocked NO. formation. The inducible hepatocyte NOS mRNA was also detected in rat hepatocytes following chronic hepatic inflammation triggered by Corynebacterium parvum injection in vivo. These data demonstrate that the inducible NOS is functional in rat hepatocytes both in vitro and in vivo and that this pathway is under complex control. Endotoxin and inflammatory cytokines act synergistically to up-regulate gene expression for hepatocyte NOS, whereas glucocorticoids down-regulate the mRNA.  相似文献   

19.
The combined effects of hypoxia and interleukin 1, lipopolysaccharide, or tumor necrosis factor alpha on the expression of genes encoding endothelial constitutive and inducible nitric oxide synthases, endothelin 1, interleukin 6, and interleukin 8 were investigated in human primary pulmonary endothelial cells and whole pulmonary artery organoid cultures. Hypoxia decreased the expression of constitutive endothelial nitric oxide synthase (NOS-3) mRNA and NOS-3 protein as compared with normoxic conditions. The inhibition of expression of NOS-3 corresponded with a reduced production of NO. A combination of hypoxia with bacterial lipopolysaccharide, interleukin 1 beta, or tumor necrosis factor alpha augmented both effects. In contrast, the combination of hypoxia and the inflammatory mediators superinduced the expression of endothelin 1, interleukin 6, and interleukin 8. Here, we have shown that inflammatory mediators aggravate the effect of hypoxia on the down-regulation of NOS-3 and increase the expression of proinflammatory cytokines in human pulmonary endothelial cells and whole pulmonary artery organoid cultures.  相似文献   

20.
Crystalline silica stimulates macrophages in vitro to release interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), and nitric oxide (NO) and induces apoptosis of macrophages. Because the fibrogenic potential of a particulate paralleled its ability to induce apoptosis in macrophages, we investigated the underlying mechanisms by which IL-1beta and NO mediate apoptosis and inflammation in murine silicosis. First, we demonstrated that silica induced NO production and apoptosis in vitro using the IC-21 macrophage cell line. Both NO release and apoptosis could be inhibited by neutralizing anti-IL-1beta antibody or the NO synthase (NOS) inhibitor N(G)-nitro-L-arginine-methyl ester (L-NAME), demonstrating the requirement for IL-1beta-mediated NO release in silica-induced apoptosis. We exposed IL-1beta knockout (IL-1beta(-/-)) mice, inducible NOS knockout (iNOS(-/-)) mice, and wild-type mice to 250 mg/m(3) silica for 5 h/d for 10 d using an inhalation chamber. Exposure of wild-type mice to silica resulted in lung inflammation, apoptosis, and significantly larger and more numerous silicotic lesions than in IL-1beta(-/-) mice over a 12-wk course. We also exposed iNOS(-/-) mice via inhalation in the same protocol and compared with wild-type mice and demonstrated that iNOS(-/-) mice had significantly reduced apoptosis and inflammation. These results demonstrated an association between apoptosis and inflammation in murine silicosis and support a potential role for IL-1beta-dependent NO-mediated apoptosis in the evolution of silicosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号