共查询到11条相似文献,搜索用时 15 毫秒
1.
The sources and distribution of subcortical afferents to the anterior neocortex were investigated in the rat using the horseradish peroxidase technique. Injections into the prefrontal cortex labelled, in addition to the mediodorsal thalamic nucleus, neurons in a total of fifteen subcortical nuclei, distributed in the basal telencephalon, claustrum, amygdala, thalamus, subthalamus, hypothalamus, mesencephalon and pons. Of these, the projections from the zona incerta, the lateroposterior thalamic nucleus, and the parabrachial region of the caudal mesencephalon to the prefrontal cortex have not previously been described.Different parts of the mediodorsal thalamic nucleus project to different areas of the frontal cortex. Thus, horseradish peroxidase injections in the most ventral pregenual part of the medial cortex labelled predominantly neurons in the medial anterior and dorsomedial posterior parts of the mediodorsal nucleus; injections into the more dorsal pregenual area labelled only neurons in the lateral and ventral parts of the nucleus; injections placed supragenually labelled neurons in the dorsolateral posterior part of the nucleus; and injections into the dorsal bank of the anterior rhinal sulcus labelled neurons in the centromedial part of the nucleus.Several other subcortical nuclei had projections overlapping with that of the mediodorsal thalamic nucleus. Five different types of such overlap were distinguished: (1) cell groups labelled after horseradish peroxidase injections into one of the subfields of the projection area of the mediodorsal nucleus (defined as the prefrontal cortex), but not outside this area (parataenial nucleus of the thalamus); (2) cell groups labelled both after injection into a subfield of the projection area of the mediodorsal nucleus and after injections in a restricted area outside this area (anteromedial, ventral and laterposterior thalamic nuclei); (3) cell groups labelled after injections into all subfields of the mediodorsal nucleus projection area, but not outside this area (ventral tegmental area, basolateral nucleus of amygdala); (4) cell groups labelled after injections into any area of the anterior neocortex, including the mediodorsal nucleus projection area (parabrachial neurons of the posterior mesencephalon); (5) cell groups labelled after all neocortical injections investigated (claustrum, magnocellular nuclei of the basal forebrain, lateral hypothalamus, zona incerta, intralaminar thalamic nuclei, nuclei raphe dorsalis and centralis superior, and locus coeruleus).We can draw the following conclusions from these and related findings. First, because of the apparent overlap of projections of the mediodorsal, the anteromedial and ventral thalamic nuclei in the rat, parts of the prefrontal cortex can also be called ‘cingulate’ and ‘premotor’. Second, on the basis of projections from parts of the mediodorsal nucleus, the prefrontal cortex of the rat can be subdivided into areas corresponding to those in other species. Third, the neocortex receives afferents from a large number of subcortical cell groups outside the thalamus, distributed from the telencephalon to the pons; however, the prefrontal cortex seems to be the only neocortical area innervated by the ventral tegmental area and amygdala. Finally, neither the prefrontal cortex nor the mediodorsal thalamic nucleus receives afferents from regions directly involved in sensory and motor functions. 相似文献
2.
Miguel Pérez de la Mora Andrea Gallegos-Cari Yexel Arizmendi-García Daniel Marcellino Kjell Fuxe 《Progress in neurobiology》2010
Dopamine plays an important role in fear and anxiety modulating a cortical brake that the medial prefrontal cortex exerts on the anxiogenic output of the amygdala and have an important influence on the trafficking of impulses between the basolateral (BLA) and central nuclei (CeA) of amygdala. Dopamine afferents from the ventral tegmental area innervate preferentially the rostrolateral main and paracapsular intercalated islands as well as the lateral central nucleus of amygdala activating non-overlapping populations of D1- and D2-dopamine receptors located in these structures. Behaviorally, the intra-amygdaloid infusion of D1 agonists and antagonists elicits anxiogenic and anxiolytic effects respectively on conditioned and non-conditioned models of fear/anxiety suggesting an anxiogenic role for D1 receptors in amygdala. The analysis of the effects of D2 agonists and antagonists suggest that depending of the nature of the threat the animal experiences in anxiety models either anxiogenic or anxiolytic effects are elicited. It is suggested that D1- and D2-dopamine receptors in the amygdala may have a differential role in the modulation of anxiety. The possibility is discussed that D1 receptors participate in danger recognition facilitating conditioned–unconditioned associations by the retrieval of the affective properties of the unconditioned stimuli, and in the control of impulse trafficking from cortical and BLA regions to BLA and CeA nuclei respectively whereas D2 receptors have a role in setting up adaptive responses to cope with aversive environmental stimuli. 相似文献
3.
Serotonin(1A)-receptors (5-HT(1A)-Rs) are important components of the 5-HT system in the brain. As somatodendritic autoreceptors they control the activity of 5-HT neurons, and, as postsynaptic receptors, the activity in terminal areas. Cocaine (COC), amphetamine (AMPH), methamphetamine (METH) and 3,4-methylenedioxymethamphetamine ("Ecstasy", MDMA) are psychostimulant drugs that can lead to addiction-related behavior in humans and in animals. At the neurochemical level, these psychostimulant drugs interact with monoamine transporters and increase extracellular 5-HT, dopamine and noradrenalin activity in the brain. The increase in 5-HT, which, in addition to dopamine, is a core mechanism of action for drug addiction, hyperactivates 5-HT(1A)-Rs. Here, we first review the role of the various 5-HT(1A)-R populations in spontaneous behavior to provide a background to elucidate the contribution of the 5-HT(1A)-Rs to the organization of psychostimulant-induced addiction behavior. The progress achieved in this field shows the fundamental contribution of brain 5-HT(1A)-Rs to virtually all behaviors associated with psychostimulant addiction. Importantly, the contribution of pre- and postsynaptic 5-HT(1A)-Rs can be dissociated and frequently act in opposite directions. We conclude that 5-HT(1A)-autoreceptors mainly facilitate psychostimulant addiction-related behaviors by a limitation of the 5-HT response in terminal areas. Postsynaptic 5-HT(1A)-Rs, in contrast, predominantly inhibit the expression of various addiction-related behaviors directly. In addition, they may also influence the local 5-HT response by feedback mechanisms. The reviewed findings do not only show a crucial role of 5-HT(1A)-Rs in the control of brain 5-HT activity and spontaneous behavior, but also their complex role in the regulation of the psychostimulant-induced 5-HT response and subsequent addiction-related behaviors. 相似文献
4.
The cognitive functions of the caudate nucleus 总被引:1,自引:0,他引:1
The basal ganglia as a whole are broadly responsible for sensorimotor coordination, including response selection and initiation. However, it has become increasingly clear that regions of the basal ganglia are functionally delineated along corticostriatal lines, and that a modular conception of the respective functions of various nuclei is useful. Here we examine the specific role of the caudate nucleus, and in particular, how this differs from that of the putamen. This review considers converging evidence from multiple domains including anatomical studies of corticostriatal circuitry, neuroimaging studies of healthy volunteers, patient studies of performance deficits on a variety of cognitive tests, and animal studies of behavioural control. We conclude that the caudate nucleus contributes to behaviour through the excitation of correct action schemas and the selection of appropriate sub-goals based on an evaluation of action-outcomes; both processes fundamental to successful goal-directed action. This is in contrast to the putamen, which appears to subserve cognitive functions more limited to stimulus-response, or habit, learning. This modular conception of the striatum is consistent with hierarchical models of cortico-striatal function through which adaptive behaviour towards significant goals can be identified (motivation; ventral striatum), planned (cognition; caudate) and implemented (sensorimotor coordination; putamen) effectively. 相似文献
5.
The basal ganglia are often conceptualised as three parallel domains that include all the constituent nuclei. The ‘ventral domain’ appears to be critical for learning flexible behaviours for exploration and foraging, as it is the recipient of converging inputs from amygdala, hippocampal formation and prefrontal cortex, putatively centres for stimulus evaluation, spatial navigation, and planning/contingency, respectively. However, compared to work on the dorsal domains, the rich potential for quantitative theories and models of the ventral domain remains largely untapped, and the purpose of this review is to provide the stimulus for this work. We systematically review the ventral domain’s structures and internal organisation, and propose a functional architecture as the basis for computational models. Using a full schematic of the structure of inputs to the ventral striatum (nucleus accumbens core and shell), we argue for the existence of many identifiable processing channels on the basis of unique combinations of afferent inputs. We then identify the potential information represented in these channels by reconciling a broad range of studies from the hippocampal, amygdala and prefrontal cortex literatures with known properties of the ventral striatum from lesion, pharmacological, and electrophysiological studies. Dopamine’s key role in learning is reviewed within the three current major computational frameworks; we also show that the shell-based basal ganglia sub-circuits are well placed to generate the phasic burst and dip responses of dopaminergic neurons. We detail dopamine’s modulation of ventral basal ganglia’s inputs by its actions on pre-synaptic terminals and post-synaptic membranes in the striatum, arguing that the complexity of these effects hint at computational roles for dopamine beyond current ideas. The ventral basal ganglia are revealed as a constellation of multiple functional systems for the learning and selection of flexible behaviours and of behavioural strategies, sharing the common operations of selection-by-disinhibition and of dopaminergic modulation. 相似文献
6.
Recent work has shown that time-of-day influences drug-seeking behavior. The present experiments tested the hypothesis that the master circadian pacemaker located in the suprachiasmatic nucleus of the hypothalamus (SCN) is required for generating day:night differences in drug-seeking behavior, specifically the acquisition, extinction, and reinstatement of cocaine-induced conditioned place preference (CPP). Sham and SCN-lesioned (SCNx) rats were trained for cocaine-induced CPP behavior at either ZT4 (Zeitgeber time 4, 4 h after lights-on) or ZT12 (lights-off). After being tested for side preference, rats were allowed to extinguish CPP. This was followed by cocaine-induced reinstatement with 5 mg/kg and 10 mg/kg of cocaine. SCNx animals exhibited no 24-h locomotor activity rhythm. Acquisition of CPP behavior did not vary with time-of-day, but was greater in SCNx animals. Sham rats tested at ZT12 took significantly longer to extinguish CPP behavior compared to ZT4, an effect completely abolished by SCN lesions. Cocaine-induced reinstatement of CPP did not vary with time of day in sham rats. However, SCNx animals tested at ZT4 trended towards greater reinstatement to the low dose of cocaine, and displayed significantly less reinstatement to the higher dose of cocaine than sham rats. Additionally, SCNx rats tested for reinstatement to the lower dose of cocaine displayed greater reinstatement at ZT4 than at ZT12. We conclude that: 1) acquisition of CPP behavior does not vary between the two times of day tested but is influenced tonically by the SCN, 2) extinction of cocaine CPP varies with time-of-day and this variation depends critically on the SCN, and 3) reinstatement of cocaine CPP does not vary between the two times of day tested. However, day:night differences in reinstatement are unmasked in animals lacking an SCN, suggesting the possibility that an extra-SCN oscillator is responsible for generating variation in this cocaine-seeking behavior. 相似文献
7.
Neurons that produce histamine are exclusively located in the tuberomamillary nucleus of the posterior hypothalamus and send widespread projections to almost all brain areas. Neuronal histamine is involved in many physiological and behavioral functions such as arousal, feeding behavior and learning. Although conflicting data have been published, several studies have also demonstrated a role of histamine in the psychomotor and rewarding effects of addictive drugs. Pharmacological and brain lesion experiments initially led to the proposition that the histaminergic system exerts an inhibitory influence on drug reward processes, opposed to that of the dopaminergic system. The purpose of this review is to summarize the relevant literature on this topic and to discuss whether the inhibitory function of histamine on drug reward is supported by current evidence from published results. Research conducted during the past decade demonstrated that the ability of many antihistaminic drugs to potentiate addiction-related behaviors essentially results from non-specific effects and does not constitute a valid argument in support of an inhibitory function of histamine on reward processes. The reviewed findings also indicate that histamine can either stimulate or inhibit the dopamine mesolimbic system through distinct neuronal mechanisms involving different histamine receptors. Finally, the hypothesis that the histaminergic system plays an inhibitory role on drug reward appears to be essentially supported by place conditioning studies that focused on morphine reward. The present review suggests that the development of drugs capable of activating the histaminergic system may offer promising therapeutic tools for the treatment of opioid dependence. 相似文献
8.
Research over the last few years has demonstrated that the amygdaloid complex in amniotes shares basic developmental, hodological and neurochemical features. Furthermore, homolog territories of all main amygdaloid subdivisions have been recognized among amniotes, primarily highlighted by the common expression patterns for numerous developmental genes. With the achievement of new technical approaches, the study of the precise neuroanatomy of the telencephalon of the anuran amphibians has been possible, revealing that most of the structures present in amniotes are recognizable in these anamniotes. Thus, recent investigations have yielded enough results to support the notion that the organization of the anuran amygdaloid complex includes subdivisions with origin in ventral pallial and subpallial territories, a strong relationship with the vomeronasal and olfactory systems, abundant intra-amygdaloid connections, a main output center involved in the autonomic system, profuse amygdaloid fiber systems, and distinct chemoarchitecture. When all these new data about the development, connectivity and neurochemistry of the amygdaloid complex in anurans are taken into account, it becomes patent that a basic organization pattern is shared by both amniotic and anamniotic tetrapods. 相似文献
9.
The present study describes the organization of the nuclei of the cholinergic, catecholaminergic, serotonergic and orexinergic systems in the brains of two members of Euarchontoglires, Lepus capensis and Tupaia belangeri. The aim of the present study was to investigate the nuclear complement of these neural systems in comparison to previous studies on Euarchontoglires and generally with other mammalian species. Brains were coronally sectioned and immunohistochemically stained with antibodies against choline acetyltransferase, tyrosine hydroxylase, serotonin and orexin-A. The majority of nuclei revealed in the current study were similar between the species investigated and to mammals generally, but certain differences in the nuclear complement highlight potential phylogenetic interrelationships within the Euarchontoglires and across mammals. In the northern tree shrew the nucleus of the trapezoid body contained neurons immunoreactive to the choline acetyltransferase antibody with some of these neurons extending into the lamellae within the superior olivary nuclear complex (SON). The cholinergic nature of the neurons of this nucleus, and the extension of cholinergic neurons into the SON, has not been noted in any mammal studied to date. In addition, cholinergic neurons forming the medullary tegmental field were also present in the northern tree shrew. Regarding the catecholaminergic system, the cape hare presented with the rodent specific rostral dorsal midline medullary nucleus (C3), and the northern tree shrew lacked both the ventral and dorsal divisions of the anterior hypothalamic group (A15v and A15d). Both species were lacking the primate/megachiropteran specific compact portion of the locus coeruleus complex (A6c). The nuclei of the serotonergic and orexinergic systems of both species were similar to those seen across most Eutherian mammals. Our results lend support to the monophyly of the Glires, and more broadly suggest that the megachiropterans are more closely related to the primates than are any other members of Euarchontoglires studied to date. 相似文献
10.
This study investigated the nuclear organization of four immunohistochemically identifiable neural systems (cholinergic, catecholaminergic, serotonergic and orexinergic) within the brains of three male Tasmanian devils (Sarcophilus harrisii), which had a mean brain mass of 11.6 g. We found that the nuclei generally observed for these systems in other mammalian brains were present in the brain of the Tasmanian devil. Despite this, specific differences in the nuclear organization of the cholinergic, catecholaminergic and serotonergic systems appear to carry a phylogenetic signal. In the cholinergic system, only the dorsal hypothalamic cholinergic nucleus could be observed, while an extra dorsal subdivision of the laterodorsal tegmental nucleus and cholinergic neurons within the gelatinous layer of the caudal spinal trigeminal nucleus were observed. Within the catecholaminergic system the A4 nucleus of the locus coeruleus complex was absent, as was the caudal ventrolateral serotonergic group of the serotonergic system. The organization of the orexinergic system was similar to that seen in many mammals previously studied. Overall, while showing strong similarities to the organization of these systems in other mammals, the specific differences observed in the Tasmanian devil reveal either order specific, or class specific, features of these systems. Further studies will reveal the extent of change in the nuclear organization of these systems in marsupials and how these potential changes may affect functionality. 相似文献
11.
The oculomotor accessory nucleus, often referred to as the Edinger–Westphal nucleus [EW], was first identified in the 17th century. Although its most well known function is the control of pupil diameter, some controversy has arisen regarding the exact location of these preganglionic neurons. Currently, the EW is thought to consist of two different parts. The first part [termed the preganglionic EW—EWpg], which controls lens accommodation, choroidal blood flow and pupillary constriction, primarily consists of cholinergic cells that project to the ciliary ganglion. The second part [termed the centrally projecting EW—EWcp], which is involved in non-ocular functions such as feeding behavior, stress responses, addiction and pain, consists of peptidergic neurons that project to the brainstem, the spinal cord and prosencephalic regions. However, in the literature, we found few reports related to either ascending or descending projections from the EWcp that are compatible with its currently described functions. Therefore, the objective of the present study was to systematically investigate the ascending and descending projections of the EW in the rat brain. We injected the anterograde tracer biotinylated dextran amine into the EW or the retrograde tracer cholera toxin subunit B into multiple EW targets as controls. Additionally, we investigated the potential EW-mediated innervation of neuronal populations with known neurochemical signatures, such as melanin-concentrating hormone in the lateral hypothalamic area [LHA] and corticotropin-releasing factor in the central nucleus of the amygdala [CeM]. We observed anterogradely labeled fibers in the LHA, the reuniens thalamic nucleus, the oval part of the bed nucleus of the stria terminalis, the medial part of the central nucleus of the amygdala, and the zona incerta. We confirmed our EW–LHA and EW–CeM connections using retrograde tracers. We also observed moderate EW-mediated innervation of the paraventricular nucleus of the hypothalamus and the posterior hypothalamus. Our findings provide anatomical bases for previously unrecognized roles of the EW in the modulation of several physiologic systems. 相似文献