首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drugs such as p-chloroamphetamine or a combination of tranylcypromine and tryptophan release serotonin in the central nervous system and produce a behavioral serotonin syndrome. However, in the presence of methysergide or following destruction of descending spinal serotonergic projections by 5,7-dihydroxytryptamine, central serotonin release produces hyperlocomotion. This supports the hypothesis that release of serotonin in the brain promotes locomotion but that the expression of this effect can be blocked by concomitant intraspinal effects of serotonin release. Hyperlocomotion induced by serotonin release is attenuated or blocked by: (a) pretreatment with p-chlorophenylalanine; (b) acute surgical lesions of the basal diencephalon; (c) chronic lesions of the ventromedial midbrain tegmentum by local injection of 5,7-dihydroxytryptamine; and (d) acute surgical decortication. Medial decortication tends to be more effective then lateral decortication. Hyperlocomotion produced by methamphetamine is also attenuated or blocked by acute basal diencephalic lesions or decortication. It is suggested that ascending serotonergic and dopaminergic projections collaborate in the generation of spontaneous voluntary motor activity.  相似文献   

2.
Adult rats were subjected to intracerebroventricular injections of 5,7-dihydroxytryptamine (5,7-DHT; 150 micro g) and, 15 days later, to intrahippocampal grafts of fetal raphe cell suspensions. About 11 months later, we assessed baseline and electrically evoked release of tritium ([3H]) in hippocampal slices, preloaded with tritiated ([3H])choline or [3H]serotonin (5-HT), in the presence or absence of the 5-HT1B receptor agonist CP-93,129 and the 5-HT receptor antagonist methiothepine. HPLC determinations of monoamine concentrations were also performed. The lesions reduced the concentration of 5-HT (-90%) and the accumulation (-80%) as well as the evoked release (-90%) of [3H]5-HT. They also decreased the inhibitory effects of CP-93,129 on the evoked release of [3H]5-HT. Most interestingly, they facilitated the evoked release of [3H]acetylcholine (+20%). In slices from rats subjected to lesions and grafts, the responsiveness of the serotonergic autoreceptors (presumably located on the terminals of the grafted neurons) and the release of acetylcholine were close to normal. These results confirm that grafts rich in serotonergic neurons may partially compensate for the dramatic effects of 5,7-DHT lesions on serotonergic hippocampal functions. The lesion-induced reduction of the 5-HT1B autoreceptor-mediated inhibition of evoked 5-HT release may be an adaptation enhancing serotonergic transmission in the (few) remaining terminals. The facilitated release of acetylcholine is probably caused by a reduced serotonergic tone on the inhibitory 5-HT1B heteroreceptors of the cholinergic terminals. When related to data in the literature, this facilitation may be of particular interest in terms of transmitter-based strategies developed to tackle cognitive symptoms related to neurodegenerative diseases.  相似文献   

3.
Serotonergic neurons throughout the brain were destroyed by early postnatal treatment of rats with an intracisternal injection of 5,7-dihydroxytryptamine (5,7-DHT), as demonstrated with biochemical measurements of serotonin and immunocytochemical localization of serotonin-containing neurons. Using these methods, it was shown that approximately 75-98% of serotonergic neurons underwent cell death in rats which were treated on day 3. In contrast, intracisternal administration of 5,7-DHT in adult rats led to the loss of distal serotonergic terminals without apparent loss of the cell bodies. Desipramine pretreatment prevented significant effects of 5,7-DHT on noradrenergic neurons.  相似文献   

4.
The aim of this study was to investigate the consequences of partial vs. complete serotonergic (5-HT) depletions on the immunoreactivity of striatal interneurons containing neuropeptide Y (NPY). Taking into account the plasticity of the monoaminergic neurons, the effects of various doses of 5,7-dihydroxytryptamine (5,7-DHT) injected into the anterior raphe nuclei and P-chlorophenylalanine (PCPA) administration were compared in the dorsal (caudate-putamen) and the ventral (nucleus accumbens) striatum. Twenty days after administering 5,7-DHT injections inducing a substantial but partial decrease in the striatal 5-HT concentrations (about 80%), we detected a significant decrease in the number of NPY immunoreactive cells. In contrast, the PCPA inhibition of serotonin synthesis in the neurons spared by the partial lesion or the near-complete neurotoxic lesion induced an increase in the number of striatal NPY neurons. These results suggest that complex adaptive mechanisms are probably responsible for the changes in striatal NPY reactivity observed after a partial lesion and that these neurons can adapt according to the extent of 5-HT depletion. Upon comparing the NPY responses in the dorsal and ventral components of the striatal complex, no main differences were observed; while in the caudate-putamen, the changes were primarily found to occur in the medial zone. This finding is discussed here with reference to the topographical effects of dopaminergic or glutamatergic deafferentation. Finally, these results suggest that a complete interruption of the 5-HT transmission may lead to an increase in the intracellular NPY level, which may be associated with a decrease in the release of the peptide. It can therefore be postulated that serotonergic neurons normally exert a positive influence on NPY striatal neurons. © 1996 Wiley-Liss, Inc.  相似文献   

5.
p-Hydroxyamphetamine (p-OHA) has been shown to have a number of pharmacological actions, including causing abnormal behaviors such as increased locomotor activity and head-twitch response in rodents. We have recently reported that intracerebroventricular (i.c.v.) administration of p-OHA dose-dependently induces prepulse inhibition (PPI) disruption in mice, which is attenuated by pretreatment with haloperidol, clozapine or several dopaminergic agents. Haloperidol and clozapine have affinities for serotonergic (especially 5-HT2A) receptors. To investigate the involvement of the central serotonergic systems in p-OHA-induced PPI disruption, herein we tested several serotonergic agents to determine their effects on p-OHA-induced PPI disruption. p-OHA-induced PPI disruption was attenuated by pretreatment with 5,7-dihydroxytryptamine (5,7-DHT, a neurotoxin which targets serotonin-containing neurons) and p-chlorophenylalanine (PCPA, a serotonin synthesis inhibitor). p-OHA-induced PPI disruption was also attenuated by pretreatment with ketanserin (a 5-HT2A/2C receptor antagonist) and MDL100,907 (a selective 5-HT2A receptor antagonist). These data suggest that p-OHA-induced PPI disruption may involve increased serotonin release into the synaptic cleft, which then interacts with the post-synaptic 5-HT2A receptor.  相似文献   

6.
Data from previous experiments in rats indicate that release of serotonin in the central nervous system increases renin and corticosterone secretion. To determine which serotonergic neurons are involved, lesions of the dorsal or median raphe nuclei were produced by local injections of 5,7-dihydroxytryptamine (5,7-DHT) in rats, and 2 weeks later, the renin responses to parachloroamphetamine (PCA) were determined. Plasma corticosterone was also measured. PCA produced significant increases in plasma renin activity and plasma corticosterone in sham-lesioned animals and animals with median raphe lesions. The plasma corticosterone response to PCA was also normal in rats with dorsal raphe lesions but the renin response was significantly reduced. The data support the hypothesis that serotonergic neurons in the dorsal raphe nucleus are part of a neural pathway mediating increased renin secretion, and that the stimulatory effect of serotonin on corticosterone secretion is mediated by a different pathway.  相似文献   

7.
Serotonergic neurons throughout the brain were destroyed by early postnatal treatment of rats with an intracisternal injection of 5,7-dihydroxytryptamine (5,7-DHT), as demonstrated with biochemical measurements of serotonin and immunocytochemical localization of serotonin-containing neurons. Using these methods, it was shown that approximately 75–98% of serotonergic nuerons underwent cell death in rats which were treated on day 3. In contrast, intracisternal administration of 5,7-DHT in adult rats led to the loss of distal serotonergic terminals without apparent loss the cell bodies. Desipramine prevented significant effects of 5,7-DHT on noradrenergic neurons.  相似文献   

8.
Extracellular levels of serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were monitored by microdialysis in the hippocampal formation previously denervated of its serotonergic input by an intraventricular injection of 5,7-dihydroxytryptamine (5,7-DHT), and in 5,7-DHT denervated hippocampi reinnervated by grafted fetal rat serotonin neurons. Two weeks after 5,7-DHT lesion, baseline 5-HT release was reduced to levels below detection, and KCl- and p-chloro-amphetamine-evoked release was reduced by 90-95%. In the chronically denervated hippocampus (3 months after lesion), baseline 5-HT release had recovered to near-normal levels, but KCl- and p-chloroamphetamine-evoked release remained severely impaired. Addition of the 5-HT re-uptake blocker indalpine to the perfusion medium induced a 5-6-fold increase in serotonin overflow in the normal hippocampus, while the serotonin overflow in the 5,7-DHT denervated hippocampus remained unaffected. The intrahippocampal fetal raphe transplants restored 5-HT release to near-normal levels, not only under baseline conditions but also in the presence of re-uptake blockade. Both KCl- and p-chloroamphetamine-induced release had recovered in the grafted hippocampus and the responses were even greater than those seen in normal animals. In both normal and grafted hippocampus addition of the sodium channel blocker tetrodotoxin reduced 5-HT overflow to the level seen in the denervated hippocampus. The new hippocampal serotonin innervation, established by the grafts, was markedly denser than normal, and the tissue 5-HT and 5-HIAA levels were 3-4-fold higher than normal in the grafted hippocampi. The 5-HIAA level in the perfusate collected from the grafted hippocampi showed a similar increase above normal, whereas 5-HT release was maintained within the normal range, both under baseline conditions and in the presence of re-uptake blockade. The results indicate that the grafted serotonergic raphe neurons are spontaneously active at the synaptic level, despite their ectopic location. The ability of the grafted neurons to maintain 5-HT release within the normal range suggests that local regulatory mechanisms at the terminal level can compensate for abnormalities in the graft-derived innervation density.  相似文献   

9.
m-Chlorophenylpiperazine, a serotonin receptor agonist, produced dose-related decrease of TSH plasma levels in the rat. This effect was prevented by a pretreatment with metergoline, a serotonin receptor blocker. Chemical destruction of central serotonin pathways, induced by intraventricular injection of 5,7-dihydroxytryptamine, significantly increased the TSH-inhibiting effect of m-CPP. These findings suggest the possible development of supersensitivity of central serotonin receptors involved in the control of TSH secretion.  相似文献   

10.
Effects of i.c.v. administration of 5,7-dihydroxytryptamine (5,7-DHT) on biochemistry and behavior were studied in awake Sprague-Dawley rats. It was found that 5,7-DHT depletion of striatal tissue levels of serotonin (5-HT) does not diminish extracellular levels until substantial depletions occur. This finding is similar to those observed after 6-hydroxydopamine lesions of the brain dopamine systems. Although varying amounts of 5,7-DHT produced serotonin depletions in striatal tissue, decreases in extracellular levels were only observed at tissue depletions greater than 60% compared to saline-injected control subjects. Thus, the effects of serotonin lesions which produce only moderate depletions may not be the result of decreased extracellular serotonin, but instead may be the result of compensatory changes in remaining neurons which maintain normal extracellular serotonin concentrations. Different degrees of striatal serotonin depletion were associated with opposite behavioral effects. Moderate levels of serotonin depletion (50-75%) produced evidence of increased anxiety, while these effects were no longer seen in rats with more severe 5-HT depletions (>75%).  相似文献   

11.
Degeneration of serotonergic fibers in the rat striatum was produced by local administration of the serotonergic neurotoxin 5, 7-dihydroxytryptamine (5,7-DHT) or the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)), which is also toxic to serotonergic neurons. One week before neurotoxin administration, fibroblasts engineered to express the human BDNF gene were grafted into the mesencephalon, dorsal to the substantia nigra. Rats implanted with fibroblasts expressing the LacZ gene were used as controls, as well as sham-operated animals (not injected with any neurotoxin). After a survival period of 1 week, the serotonergic innervation of the striatum was assessed by measuring serotonin (5-HT) content and by immunohistochemical detection of 5-HT positive fibers. BDNF-producing cells prevented the striatal 5-HT loss induced by local administration of either 5,7-DHT or MPP(+), as well as the striatal dopamine (DA) loss induced by the latter neurotoxin. Grafting of fibroblasts carrying the BDNF or the Lac-Z gene did not modify striatal 5-HT or DA content in sham-operated animals. In 5, 7-DHT-lesioned rats, implanted or not with control Lac-Z fibroblasts, a striking reduction in the density of 5-HT immunoreactive fibers was observed. By contrast, the density of 5-HT fibers was similar in rats implanted with BDNF-producing fibroblasts as compared to sham-operated controls. The protective effect of BDNF on the damage to serotonergic terminals induced by the two neurotoxins suggests the interest of this neurotrophin in the treatment of behavioral disorders associated to neurodegenerative diseases.  相似文献   

12.
The indirect dopaminergic (DA) agonist amphetamine has frequently been used to study functional responses of DA grafted neurons. However, it is not known if striatal responses, primarily related to DA release by the grafted neurons, are modulated by the host striatal afferents. We investigated the changes in amphetamine-induced rotational behavior and striatal expression of Fos in DA-denervated and grafted rats subjected to serotonergic denervation and/or treatment with the alpha(1)-adrenergic receptor antagonist Prazosin. Acute serotonergic lesions with p-chlorophenylalanine suppressed the expression of Fos induced by 1 mg/kg of amphetamine in both the grafted and the contralateral striatum. Chronic serotonergic denervation with 5,7-dihydroxytryptamine induced a significant reduction in Fos expression in both the grafted and nongrafted striata and a nonsignificant reduction in the contraversive rotation. In DA-innervated striata, Prazosin significantly reduced the expression of Fos but only in the presence of serotonergic innervation. However, Prazosin did not decrease the expression of Fos induced by grafts located in striata not subjected to serotonergic denervation. The present results suggest functional integration of transplanted DA neurons and major host striatal afferent systems, particularly the serotonergic system, in modulating responses of the host striatal neurons. However, indirect effects exerted by the noradrenergic system on the normal striatum were not observed in the DA-denervated and grafted striata.  相似文献   

13.
Young adult Long-Evans female rats were subjected to intracerebroventricular injections of 150 microg 5,7-dihydroxytryptamine (5,7-DHT), 2 microg 192 IgG-saporin, or a combination of both neurotoxins. All rats were tested for olfactory recognition (short-term memory) using a task based on spontaneous exploration of odor sources. Compared with animals undergoing sham operations, 5,7-DHT reduced the concentration of serotonin by 60-80% in the frontoparietal cortex, hippocampus, striatum and the olfactory bulbs. After 192 IgG-saporin treatment, acetylcholine concentrations were reduced by approximately 40% in all these structures, except the striatum. Neither lesion induced a significant deficit in olfactory recognition. These data suggest that combined lesions of cholinergic and serotonergic neurons in the rat brain do not alter olfactory perception or olfactory short-term memory.  相似文献   

14.
Nitric oxide synthase (NOS) activity and NO-mediated cGMP synthesis were studied in the rat forebrain of control animals and animals which had received a unilateral lesioning of dopaminergic or serotonergic pathways. Lesioning of the dopaminergic innervation using 6-hydroxydopamine resulted in a 50% decrease in NOS activity in the lesioned frontal cortex and caudate putamen. Lesioning of the serotonergic innervation using 5,7-dihydroxytryptamine had no effect on NOS activity. NO-mediated cGMP accumulation in rat forebrain slices was not affected by 6-hydroxydopamine or 5,7, -dihydroxytryptamine lesioning. Using cGMP immunocytochemistry, it was demonstrated that NO-mediated cGMP synthesis was absent from dopaminergic, serotonergic, GABA-ergic and neuronal NOS-containing nerve fibres. A minor colocalization of cGMP immunoreactivity was found in parvalbumin-containing fibres in the cortex. Extensive colocalization between cGMP immunoreactivity and the acetylcholine transporter was found in all cortical areas and in the caudate putamen. There was no effect of the lesions on this colocalization. These results demonstrate NO-mediated cGMP accumulation in cholinergic fibres in the forebrain of the rat and suggest an anterograde signalling function of NO in cholinergic neuronal systems in the cortex and caudate putamen of the rat.  相似文献   

15.
Localization of GABAA and GABAB receptor subtypes on serotonergic neurons   总被引:1,自引:0,他引:1  
The effect of selective destruction of serotonin (5-HT)-containing neurons with 5,7-dihydroxytryptamine (5,7-DHT) on [3H] muscimol and (-)-[3H]baclofen binding was investigated in various rat brain regions. Ten days after intracerebroventricular 5,7-DHT, serotonin levels and [3H]imipramine binding were markedly decreased. 5,7-DHT reduced [3H]muscimol binding only in the mesencephalon, and (-)-[3H]baclofen binding was unmodified in all the areas considered. These results suggest that except in the mesencephalon GABA receptors may not be localized on serotonergic nerve terminals.  相似文献   

16.
Fenfluramine (FE) is a halogenated amphetamine derivative that has been used in the treatment of obesity. It has been suggested that the effects of FE on the striatum are mediated by serotonergic mechanisms. However, several major afferent systems may be involved, and administration of FE may be useful to study interactions between these systems. In this work, the effects of FE on striatopallidal neurons and the possible involvement of the major striatal afferent systems were studied in rats by determination of FE-induced changes in striatal levels of preproenkephalin (PPE) mRNA using in situ hybridization. Injection of FE induced a significant increase (60%) in striatal levels of PPE mRNA. This increase was blocked by pretreatment with the D(1) dopamine receptor antagonist SCH-23390 or with the NMDA glutamate receptor antagonist MK-801, or by lesion of the serotonergic system with 5,7-dihydroxytryptamine or p-chlorophenylalanine. In 6-hydroxydopamine lesioned rats, the lesion-induced increase in PPE mRNA levels was not affected by injection of FE, but was reduced by simultaneous serotonergic deafferentation. The results suggest that the serotonergic, glutamatergic, and dopaminergic system interact to increase striatal PPE mRNA levels after FE administration.  相似文献   

17.
The aim of this study was to examine the effects of serotonergic lesions to the dorsal raphe on midbrain dopaminergic systems. 5,7-Dihydroxytryptamine lesions of the dorsal raphe resulted in a substantial loss of serotonin in the medial prefrontal cortex (about 75%) and the nucleus accumbens (about 50%), while no change in DA levels or DA metabolism were noted in either region at 12 days postlesion. A transient basal locomotor activation was noted in the lesioned animals compared to the sham controls 7 to 12 days after the lesions. The locomotor response to an acute dose of cocaine was also enhanced in 5,7-dihydroxytryptamine lesioned rats, however, no change in the time course or magnitude of the behavioral locomotor response to repeated cocaine administration was observed. Restraint for 30 min increased DA metabolism in both the NAS and mPFC of sham rats, as expected. However, in 5,7-dihydroxytryptamine lesioned rats, restraint stress enhanced the usual stress-induced increase in DA metabolism by about 50 and 150% in the medial prefrontal cortex and nucleus accumbens, respectively. Our results indicate the 5,7-dihydroxytryptamine lesions of the dorsal raphe lower serotonin in both the mPFC and NAS leading to an enhanced responsiveness of the DA projections in both regions. This effect may be explained by a loss of sensitivity of DA receptors in 5,7-dihydroxytryptamine denervated rats. This interpretation implies that the stimulated, but not basal, release of DA in the mPFC and NAS is dependent on serotonin tone. © 1996 Wiley-Liss, Inc.  相似文献   

18.
The intraventricular administration of 6-hydroxydopamine (6-OHDA) depletes the striatum of dopamine (DA). When given to rat pups at an early age, the toxin also increases striatal serotonin (5-HT) content. In the accompanying report we observed that endogenous 5-HT, like DA, exerts an inhibitory influence on the release of acetylcholine (ACh) from striatal slices prepared from control animals and that the extent of this inhibition is related to the degree of serotonergic innervation of the region being examined. To determine whether this hyperinnervation was accompanied by an increase in serotonergic influence on ACh release, striatal slices were prepared from adult rats, preincubated with [3H]choline, superfused, and exposed to electrical field stimulation. The efflux of tritium into the superfusate was used as a measure of ACh release. In confirmation of previous reports, we observed that direct and indirect agonists of DA and 5-HT both reduced ACh overflow from control slices, whereas overflow was increased by antagonists of these amines. Slices prepared from rats given 6-OHDA-induced lesions as adults were responsive to each of these pharmacological manipulations, as well. In contrast, ACh overflow from slices prepared from animals lesioned with 6-OHDA as neonates was not modified by either dopaminergic or serotonergic drugs. These results suggest that the serotonergic hyperinnervation of striatum produced by neonatal 6-OHDA is accompanied by a loss of the inhibitory influence of endogenous 5-HT and DA on striatal ACh release and, thus, provide no evidence for a role for either transmitter in the behavioral sparing associated with such lesions.  相似文献   

19.
This study assessed behavioural and neurochemical effects of i.c.v. injections of both the cholinergic toxin 192 IgG-saporin (2 microgram) and the serotonergic toxin 5,7-dihydroxytryptamine (5,7-DHT; 150 microgram) in Long-Evans female rats. Dependent behavioural variables were locomotor activity, forced T-maze alternation, beam walking, Morris water-maze (working and reference memory) and radial-maze performances. After killing by microwave irradiation, the concentrations of acetylcholine, monoamines and 5-hydroxyindoleacetic acid (5-HIAA) were measured in the hippocampus, frontoparietal cortex and striatum. 192 IgG-saporin reduced the concentration of acetylcholine by approximately 40% in the frontoparietal cortex and hippocampus, but had no effect in the striatum. 5,7-DHT lesions reduced the concentration of serotonin by 60% in the frontoparietal cortex and 80% in the hippocampus and striatum. Noradrenaline was unchanged in all structures except the ventral hippocampus where it was slightly increased in rats given 192 IgG-saporin. Cholinergic lesions induced severe motor deficits but had no other effect. Serotonergic lesions produced diurnal and nocturnal hyperactivity but had no other effect. Rats with combined lesions were more active than those with only serotonergic lesions, showed motor dysfunctions similar to those found in rats with cholinergic lesions alone, and exhibited impaired performances in the T-maze alternation test, the water-maze working memory test and the radial-maze. Taken together and although cholinergic lesions were not maximal, these data show that 192 IgG-saporin and 5,7-DHT lesions can be combined to selectively damage cholinergic and serotonergic neurons, and confirm that cholinergic-serotonergic interactions play an important role in some aspects of memory, particularly in spatial working memory.  相似文献   

20.
We have investigated the effect of nicotinic receptor stimulation on acetylcholine (ACh) release measured by radioassay in rat striatal slices. Since the release of ACh in the striatum is tonically inhibited by endogenous dopamine and nicotine enhances the release of dopamine, we studied the release of ACh when the dopaminergic input was impaired. We used chemical denervation (6-hydroxydopamine pretreatment) or D2-receptor-blockade by sulpiride to remove the dopaminergic control of the cholinergic neurons. In our experiments nicotine failed to increase ACh release from striatal slices taken from rats whose dopaminergic-cholinergic interaction was not impaired but it enhanced the release of ACh from slices dissected from 6-hydroxydopamine pretreated rats or in the presence of sulpiride. Our results provide neurochemical evidence for the existence of nicotinic receptors on striatal cholinergic interneurons. Since the spontaneous release of ACh enhanced by nicotine was inhibited by tetrodotoxin it seems very likely that (-)-nicotine acts on the somatodendritic part of cholinergic interneurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号